Learning Objectives

- Explain how expenditure plans are determined when the price level is fixed.
- Explain how real GDP is determined when the price level is fixed.
- Explain the expenditure multiplier.
- Explain how imports and taxes influence the multiplier.
The Multiplier

- The multiplier is the amount by which a change in autonomous expenditure is magnified or multiplied to determine the change in equilibrium expenditure and real GDP.

\[
\frac{\Delta \text{GDP}}{\Delta \text{AE}}
\]
"The Multiplier"

- what happened?
 - $\overline{AD_0} \rightarrow \overline{AD_1}$; $\Delta \overline{AD} > 0$
 - $y_0^{eq} \rightarrow y_1^{eq}$; $\Delta y^{eq} > 0$
- the multiplier:
 \[
 \frac{\Delta y^{eq}}{\Delta \overline{AD}} = \frac{AB}{CD} = \frac{BD}{CD} > 1.0!
 \]

$\mathbf{y} = C + I \quad \Delta \mathbf{Y} = \Delta C + \overline{\Delta I} \quad 4 = 2 + 2$
\[T = T + t \times Y \]

\(T \): tax revenue

\(\overline{T} \): autonomous tax revenue

\(\overline{T} \): property taxes

\(\overline{T} \): tax exemptions on income forms

- yourself
- your wife
- your children

\(t \): marginal tax rate

\(t \): from tax tables

Model Options

<table>
<thead>
<tr>
<th>Left Side</th>
<th>Right Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T = \overline{T})</td>
<td>(\overline{T} = 0)</td>
</tr>
<tr>
<td>(t = 0)</td>
<td>(t = z)</td>
</tr>
</tbody>
</table>
Multiplier Algebra

Basic Keynesian Model

<table>
<thead>
<tr>
<th>Model</th>
<th>no trade</th>
<th>with public sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y = C + I + G)</td>
<td>(Y = C + I + G)</td>
<td></td>
</tr>
<tr>
<td>(C = a + b(Y - T))</td>
<td>(C = a + b(Y - T))</td>
<td></td>
</tr>
<tr>
<td>(G = G)</td>
<td>(G = G)</td>
<td></td>
</tr>
<tr>
<td>(I = I)</td>
<td>(I = I)</td>
<td></td>
</tr>
<tr>
<td>(T = T)</td>
<td>(T = T)</td>
<td></td>
</tr>
<tr>
<td>(\Delta Y = a + b(T - I) + I + G)</td>
<td>(\Delta Y = a + b(T - I) + I + G)</td>
<td></td>
</tr>
<tr>
<td>(\Delta Y = a + b(T - I) + I + G)</td>
<td>(\Delta Y = a + b(T - I) + I + G)</td>
<td></td>
</tr>
<tr>
<td>(\frac{\Delta Y}{\Delta I} = 1/(1 - b))</td>
<td>(\frac{\Delta Y}{\Delta I} = \frac{1}{1 - (1 - t)b})</td>
<td></td>
</tr>
</tbody>
</table>

Investment Multiplier

\(\Delta Y / \Delta I = \frac{1}{1 - b} \): name it!

\(\Delta Y / \Delta G = \frac{1}{1 - b} \): name it!

\(\Delta Y / \Delta T = -\frac{1}{1 - b} \): name it!