1 Gross Domestic Product (GDP)

- GDP is the total dollar value of all final goods and services produced in a country within a given period of time.

- GDP includes the value of goods produced, such as houses and corns. It also includes the value of services, such as airplane rides and the professors’ lectures. The output of each of these is valued at its market price, and the values are added together to get GDP.

- The level of GDP is computed every three months by the Bureau of Economic Analysis (a part of the U.S. Department of Commerce).

- In 1997, the GDP of the United States is about 8 trillion dollars. In 1997 the US population is about 268 million. Thus in 1997 the per capita GDP (GDP per person) is roughly 30,000 US dollars.
2 Computing GDP

• Suppose the economy produces two types of goods, apples and oranges. Then

\[GDP = \text{Price of Apples times quantity of apples} + \text{Price of oranges times quantity of oranges} \]

• Suppose the price of apples is 0.5 and the price of oranges is 1.0. Suppose the economy produced 4 units of apples and 3 units of oranges. Then

\[GDP = 0.5 \times 4 + 1.0 \times 3 = 5.00. \]

• Suppose the economy produces N types of goods, the price of the i\text{th} type is \(P_i \), and the quantity of the i\text{th} type good is \(Q_i \). Then

\[GDP = P_1 \times Q_1 + P_2 \times Q_2 + ... + P_N \times Q_N. \]
3 Nominal versus Real GDP

- Prices of goods change over time. The value of final goods and services measured at current prices is called Nominal GDP. The value of goods and services measured using a set of constant prices (base year prices, the base year can be for example 1992) is called the Real GDP.

Suppose again the economy produces two types of goods, apples and oranges. Suppose we choose 1998 as the base year. Then

\[
\text{Real GDP of 2002} = 1998 \text{ Price of Apples} \times 2002 \text{ quanity of apples} + 1998 \text{ Price of oranges} \times 2002 \text{ price of oranges}
\]

and

\[
\text{Nominal GDP of 2002} = 2002 \text{ Price of Apples} \times 2002 \text{ quanity of apples} + 2002 \text{ Price of oranges} \times 2002 \text{ price of oranges}
\]
4 Some Notes

- GDP measures the value of currently produced goods and services. Used goods are not included. The sale of used cars, for example, are not included in GDP.

- The sale of intermediate goods are not included in GDP. GDP includes only final goods and services.

 For example, suppose a cattle rancher sells one unit of meat to McDonald’s for 0.5 dollars, and then McDonald’s sells you a hamburger for 1.50 dollars. Should GDP include both the meat and the hamburger (a total of 2 dollars) or just the hamburger (1.5 dollars)?

- Inventories are often included in GDP.
5 National Income Accounting

- Goods and services produced by the economy are ultimately purchased by consumers and other agents who spend money to buy them. A useful division of GDP according to alternative uses of the economy’s output is the following:

\[Y = C + I + G + NX \]

where \(Y \) stands for GDP, \(C \) is consumption, \(I \) is investment, \(G \) is government purchases, and \(NX \) is net exports.
• **Consumption** consists of goods and services bought by households or consumers.
 Durable goods: goods that last a long time, such as cars and TYs.
 Nondurable goods: goods that last a short time, such as food and clothing.
 Services: such as haircuts and airplane rides.

• **Investment** consists of good bought for future use. Investment can also be divided into three categories.
 Business fixed investment: new machinery and equipment bought by firms.
 Residential fixed investment: new houses bought by households.
 Inventory investment: increase in firms’ inventories.

• **Government Purchases** are the goods and services bought by federal, state and local governments. This includes military equipment, highways and bridges, and the services of government employees.

• **Net Exports** are the goods and services purchased by foreigners.
6 The Components of GDP

- Table 2.1.

- The Increasing role of services:

 In 1992, the service sector in the US accounts for 72 percent of its GDP (in Germany it is 57 percent) and employed 76 percent of its labor force.

 Meanwhile, the share of manufacturing has fallen in all the big economies. In 1992, it accounts for only 23 percent of America’s GDP and even smaller 18 percent of jobs. In Britain and Canada manufacturing has also tumbled to less than 20 percent. Even in Japan and Germany, the strongholds of manufacturing, services is no more than 30 percent of GDP.

 Services are also the fastest growing part of international trade, accounting for 20 percent of total world trade and 30 percent of American exports.

- The services Sector:

 Legal services, business services (consulting), health, hotels, education, financial services, transport and communications.
7 Other Measures of Income

- GNP, gross national product, measures total income earned by nationals.

 GNP is equal to GDP plus total income earned by US nationals in other countries minus income earned domestically by foreign nationals.

- NNP, net national product, is GNP net of the depreciation of capital.

 Depreciation, the consumption of fixed capital, is the amount of the economy’s capital stock that wears out during the year. Depreciation equals 10 percent of GNP each year.

 Because the depreciation of capital is a cost of producing the output of the economy, subtracting it from GNP shows the net result of economic activity.

- National Income is NNP minus Indirect Business Taxes (sales taxes). NNP measures how much everyone in the economy has earned after the indirect taxes.

 Indirect business taxes are the difference between the price the consumers pay and the the price the firm receives.

 Important: employee compensation accounts for 70 percent of national income, corporate profits 12 percent.

- Disposable Personal Income is the amount households and non-corporate businesses have available after satisfying their tax obligations to the government.
8 The GDP Deflator

Different goods and services have different prices and they change over time and relative to each other. Economists want to summarize the Overall level of prices in the economy in one number.

One index that does that is the GDP Deflator, also called the implicit price deflator for GDP.

\[
\text{GDP Deflator} = \frac{\text{Nominal GDP}}{\text{Real GDP}}.
\]

or

\[
\text{Nominal GDP} = \text{Real GDP} \times \text{GDP Deflator}
\]

Thus the definition of the GDP deflator separates nominal GDP into two parts: the part that measures quantities (real GDP) and the other that measures prices (the GDP deflator).

Here, nominal GDP measures the current dollar value of the output of the economy. Real GDP measures the economy’s current output valued at constant (base-year) prices. The GDP deflator measures the price of output (or the overall level of current prices) relative to its price in the base year.
To better understand this, consider an economy with only one good, corns. Let P be the current price of corns. Let Q be the quantity of corns the economy produces currently. Let P_{bas} be the price of corns in some base year. Then Nominal GDP is $P \times Q$ and real GDP is $P_{bas} \times Q$ and

$$
GDP\text{ Deflator} = \frac{P}{P_{bas}}
$$

which is just the price of corns in the current year relative to the price of corns in the base year.

Note: Suppose the economy produces two goods, or three goods, do you know how compute the GDP deflator?
9 The Consumer Price Index

The Consumer Price Index (CPI) is the most commonly used measure of the economy’s overall level of prices.

The aim of CPI is to measure in a single index the cost of living. It focuses on the prices of goods and services that typical consumers buy (or the goods and services included in a typical consumer’s basket), not the prices of all goods and services produced in the whole economy.

Suppose a typical consumer buys 5 apples and 2 oranges every month. Suppose 1992 is chosen to be the base year. Then

\[
CPI = \frac{5 \times \text{current price of apples} + 2 \times \text{current price of oranges}}{5 \times 1992 \text{ price of apples} + 2 \times 1992 \text{ price of oranges}}
\]

CPI tells us how much it costs now to buy 5 apples and 2 oranges relative to how much it costs to buy the same basket in the base year.

Notice in the above definition, the quantities of the goods in the typical consumer’s basket are fixed, or in other words the weights of the different goods in the formula are fixed. Thus CPI is also called a fixed-weight price index.
The GDP deflator and the CPI give somewhat different information about what’s happening to the overall level of prices in the economy.

The first difference is that the GDP deflator measures the prices of all goods and services produced, whereas the CPI measures the prices of only the goods and services bought by consumers.

The second difference is that the GDP deflator includes only those goods produced domestically. Imported goods are not part of GDP and do not show up in the GDP deflator.

The third and most subtle difference results from the way the two measures aggregate the many prices in the economy. The CPI assigns fixed weights to the prices of different goods, whereas the GDP deflator assigns changing weights. In other words, the CPI is computed using a fixed basket of goods, whereas the GDP deflator allows the basket of goods to change over time as the composition of GDP changes.
Class Work: Mankiw page 38. Problem 6:
Two goods: bread and car.
Year 2000: 100 cars produces and sold at 50,000 dollars each; 500,000 units of bread produced and sold at 10 dollars each unit.
Year 2010: 120 cars produces and sold at 60,000 dollars each; 400,000 units of bread produced and sold at 20 dollars each unit.
(b) Suppose a typical consumer consumes 1 car and 10 units of bread. Compute the year 2010 CPI, taking again year 2000 as the base year.
10 The Inflation Rate

Let P_t be the price level of period t. Let P_{t-1} be the price level of period $t - 1$. Then the rate of inflation over periods t and $t - 1$ is

$$\pi = \frac{P_t - P_{t-1}}{P_{t-1}}.$$

Correspondingly, period t price level is equal to last year’s price level adjusted for inflation:

$$P_t = P_{t-1} + \pi \times P_{t-1}$$

In the United States in the mid-and-later-1990s, the inflation rate was relatively low, around 2 to 3 percent per year, even though prices were much higher than they were 20 years earlier. High inflation rates in the 1970s had pushed up the price level. Once raised, the price level does not fall unless the inflation rate is negative— that is, unless there is deflation.
11 The Unemployment Rate

The unemployment rate measures the percentage of those people wanting to work who do not have jobs.

A person is employed if he or she spent most of the previous week working at a paid job, as opposed to keeping house, going to school, or doing something else.

A person is unemployed if he or she is not employed and is waiting for the start date of a new job, is on temporary layoff, or has been looking for a job.

A person who fits into neither of the above two categories, such as a student or retiree, is not in the labor force. A person who wants a job but has given up looking – a discouraged worker – is counted as not being in the labor force.

The labor force is defined as the sum of the employed and unemployed, and the unemployment rate is defined as the percentage of the labor force that is unemployed.

The labor-force participation rate measures the percentage of the adult population that is in the labor force.
12 The Okun’s Law

What relationship should we expect to find between unemployment and real GDP?

Employed workers help to produce goods and services and unemployed workers do not, increases in the unemployment rate should be associated with decreases in real GDP. This negative relationship between unemployment and GDP is called Okun’s law, after Arthur Okun, the economist who first studied it in 1962.

Question: Can you think of a scenario in which the Okun’s law is violated?
13 Readings

Mankiw, chapter 2.