Problem 1. Solve the following system of equations.

\[4x_1^{1/2}x_2^{3/8} - 1 = 0 \]
\[3x_1^{1/2}x_2^{-5/8} - 3 = 0 \]
Problem 2. Find the derivatives of each of the following functions with respect to x.

a. $y = \frac{\ln(x^2) - 3x}{2x^2 + e^x}$

b. $y = (2x^4 + 5x^3 - x^2 - 2)(2x^2 + 7x)$

c. $y = e^{2x^2} + 4x(3x^2 - 2x + 5)^3$
Problem 3. In the following problem you are given a production function for a firm where y is the variable representing the level of output and x is the level of the variable input. You are given the price (p) of the output and the price (w) of the single variable input. The function representing output as a function of input is given by

$$output = y = f(x) = 20x + 200x^2 - 3x^3$$

a. Write a function representing the revenue of the firm as a function of price and output level.

$$Revenue =$$

b. Write a composite function representing the revenue of the firm as a function of price and input level.

$$Revenue =$$

c. Write a function representing the cost of the firm as a function of input price and input level.

$$Cost =$$

d. Write a function representing the profit of the firm as a function of input price, output price and input level.

$$Profit =$$
e. Assume that the price of output for this firm is \(p = 3 \). Assume that the price of the input \(w = 8268 \).

Write an equation for the profit of this firm that depends on the input level.

\[
\text{Profit} = \]

f. Maximize profit by taking the derivative of the function in part e with respect to \(x \), setting it equal to zero, and solving for the input level \(x \).
Problem 4. Find the second derivative of each of the following functions with respect to the indicated variable

a. \(y = 60x + 600x^2 - 9x^3 - 8268, \ x \)

b. \(y = 1000x + 400x^2 - 20x^3 - 1960, \ x \)

c. \(y = 16x^{3/8}z^{1/4} - 3x - 2z, \ x \)
d. \(y = 16x^{3/8}z^{1/4} - 3x - 2z, \quad z \)

e. \(y = 8x_1^{1/2}x_2^{3/8} - x_1 - 3x_2, \quad x_1 \)

f. \(y = 8x_1^{1/2}x_2^{3/8} - x_1 - 3x_2, \quad x_2 \)
Problem 5. Find the indefinite integral of each of the following functions with respect to the variable indicated. Write in the form $F(x) + c$.

a. $f(x) = 6x^2 + 2x - 5$, x

b. $f(x) = -\frac{5}{7}x^{-2/7}$, x

c. $4x_1^{-1/2}x_2^{3/8} - 1$, x_1
Problem 6. Find the definite integral of each of the problems.

a. \(\int_{1}^{4} (5x + 4) \, dx \)

b. \(\int_{1}^{5} (3x^2 - 4x + 2) \, dx \)

c. \(\int_{0}^{10} (9x^2 - 60x + 20) \, dx \)