Problem 1. Consider the following matrices.

\[
A = \begin{bmatrix}
1 & 4 & 3 \\
-2 & -9 & -8 \\
-3 & -8 & 0
\end{bmatrix} \quad B = \begin{bmatrix}
64 & 24 & 5 \\
-24 & -9 & -2 \\
11 & 4 & 1
\end{bmatrix}
\]

\[
F = \begin{bmatrix}
1 & -2 & 2 \\
-3 & 7 & -2 \\
3 & -7 & 3
\end{bmatrix} \quad G = \begin{bmatrix}
7 & -8 & -10 \\
3 & -3 & -4 \\
0 & 1 & 1
\end{bmatrix}
\]

\[
a = \begin{bmatrix}
1 \\
2 \\
3
\end{bmatrix} \quad b = \begin{bmatrix}
6 \\
-17 \\
5
\end{bmatrix} \quad c = \begin{bmatrix}
9 \\
-16 \\
19
\end{bmatrix}
\]

Compute the following
a. \(A + B \)

b. \(AB \)
c. BA

d. a'T

e. a'a

f. GF
Problem 2. For each of the following problems, find the critical points. For each critical point state whether the function is at a relative maximum, relative minimum, or otherwise. Also find the points of inflection for each function.

a. \(f(x) = -2x^3 + 25x^2 + 100x \)

Hint: The inflection point is \(x = \frac{25}{6} \)
b. \(f(x) = x^6 + \frac{6}{5}x^5 - 30x^4 \)

Hint: The inflection points are \(x = \frac{2 \pm 4\sqrt{19}}{6} \)

Figure 2. \(f(x) = x^6 + \frac{6}{5}x^5 - 30x^4 \)
c. \(f(x) = \frac{7}{4}x^4 - 7x^3 - 63x^2 + 280x \)

Hint: The inflection points are \(x = 1 \pm \sqrt{7} \)

Figure 3. \(f(x) = \frac{7}{4}x^4 - 7x^3 - 63x^2 + 280x \)
d. \(f(x) = \frac{5x^2 + 5x + 45}{4x^2 + 4} = \frac{5x^2 + 5x + 45}{4(x+1)} \)

Hint: The second derivative of this function is \(\frac{45}{2(x+1)^3} \).

Figure 4. \(f(x) = \frac{5x^2 + 5x + 45}{4x^2 + 4} \)
Problem 3. a. Use elementary row operations to solve the following system of equations. The answers are $x_1 = 1, x_2 = 2$

$$Qx = r$$

$$\begin{pmatrix} 1 & 4 \\ -2 & -9 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 9 \\ -20 \end{pmatrix}$$
b. Use elementary row operations to solve the following system of equations. The answers are $x_1 = 1$, $x_2 = -1$, $x_3 = 3$.

$$Ax = b$$

$$\begin{pmatrix}
1 & 4 & 3 \\
-2 & -9 & -8 \\
-3 & -8 & 0
\end{pmatrix} \begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix} = \begin{pmatrix}
6 \\
-17 \\
5
\end{pmatrix}$$
More Space for Part 3b
c. Use elementary row operations to solve the following system of equations. The answers are $x_1 = 1$, $x_2 = -1$, $x_3 = 3$.

$$Fx = c$$

$$\begin{pmatrix} 1 & -2 & 2 \\ -3 & 7 & -2 \\ 3 & -7 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 9 \\ -16 \\ 19 \end{pmatrix}$$
More Space for Part 3c
\[
B = \begin{pmatrix}
64 & 24 & 5 \\
-24 & -9 & -2 \\
11 & 4 & 1
\end{pmatrix}
\]
\[
G = \begin{pmatrix}
7 & -8 & -10 \\
3 & -3 & -4 \\
0 & 1 & 1
\end{pmatrix}
\]
\[
b = \begin{pmatrix}
6 \\
-17 \\
5
\end{pmatrix}
\]
\[
c = \begin{pmatrix}
9 \\
-16 \\
19
\end{pmatrix}
\]

What is the following product?

\(Bb\)

What is the following product?

\(Gc\)
Problem 4. The cost function for a firm is a rule or mapping that tells the total cost of production of any output level produced by the firm. If the variable \(y \) represents the output of the firm, then the cost function is given by \(c(y) \). Marginal cost represents the change in the cost of production for the firm as output changes and is given by the derivative of the cost function with respect to output, i.e., Marginal Cost (MC) = \(\frac{dc(y)}{dy} \). A competitive firm facing a fixed output price maximizes profit at the output level where marginal cost is equal to price as in the figure 5.

\[c(y) = 400 + 500y - 25y^2 + 2y^3 \]

The area below the cost curve is a measure of variable cost and can be found by integrating the marginal cost curve from 0 to any given output level \(y \). The shaded area in figure 6 represents the variable cost of production for the cost function \(c(y) = 400 + 500y - 25y^2 + 2y^3 \) because the integral of marginal cost is variable cost.
Producer surplus is the area below a given price and above the marginal cost curve. Producer surplus is the unshaded area below the horizontal line at 676 in figure 6. Producer surplus can be computed by subtracting the shaded area from total revenue.

a. Find the profit maximizing level of output for the following firm. Demonstrate that the level you choose maximizes profit.

\[
\begin{align*}
\text{price} & = p = 676 \\
\text{cost} & = c(y) = 400 + 500y - 25y^2 + 2y^3
\end{align*}
\]

b. Find the profit maximizing level of output when the price is 600. Demonstrate that the level you choose maximizes profit.
c. Explain in words why setting price equal to marginal cost and solving for the optimal output gives the same answers as taking the derivative of profit with respect to y, setting the result equal to zero and solving for the optimal y. Remember that

\[\text{Profit} = py - c(y) \]

\[\text{Profit} = \pi = 676y - \left[400 + 500y - 25y^2 + 2y^3 \right] \]

\[\frac{d\pi}{dy} = \]

d. Show that variable cost for this firm when it maximizes profit with a price of $676 is $5137.

e. Show that producer surplus for this profit maximizing firm when the price is $676 is $2299.

f. Show that variable cost for this firm when it maximizes profit with a price of $600 is $4500.
g. Show that producer surplus for this profit maximizing firm when the price is $600 is $1500.

h. How much is the firm worse off when price falls from $676 to $600?

i. Cross-hatch the change in producer surplus in Figure 6.
Problem 5. In the following problem you are given a production function for a firm where y is the level of output and x is the level of the variable input. You are given the price (p) of the output and the price (w) of the single variable input.

output price \(p = 10 \)

input price \(w = 2810 \)

\[
y = output = f(x) = 50x + 60x^2 - 3x^3
\]

Figure 7. Revenue, Cost and Profit

a. Write down an equation that represents profit for the firm.
b. Maximize this function by taking its derivative with respect to the variable input x and setting the resulting equation equal to zero.

c. If you identify more than one critical value from setting the first derivative of profit equal to zero, show which ones, if any, maximize profit.
d. Rewrite the optimal level of input for this firm?

e. What is the optimal level of output for this firm?

f. Explain in words why the value of the marginal product for this firm is equal to the price of the single variable input at the profit maximizing level of input use. You can use the following information in explaining this phenomenon. Say something about the benefits of using an input must not be less than the cost of the input.

\[Output = y = f(x) \]

\[MP = \text{Marginal Product} = \frac{df(x)}{dx} = f'(x) = \frac{\Delta y}{\Delta x} \]

\[Revenue = pf(x) \]

\[Cost = wx \]

\[Profit = \pi = Revenue - Cost = pf(x) - wx \]

\[\frac{d\pi}{dx} = \]