ECONOMICS 207 SPRING 2008 PROBLEM SET 4 KEY

Problem 1. Solve the following equations for x.

a.
$$8x^2 - 22x + 15 = 0$$

$$8x^{2} - 22x + 15 = 0$$

$$\Rightarrow (2x - 3)(4x - 5) = 0$$

$$\Rightarrow x = 3/2 \text{ or } x = 5/4$$

b.
$$15x^2 - 145x + 90 = 0$$

$$15x^{2} - 145x + 90 = 0$$

$$\Rightarrow 3x^{2} - 29x + 18 = 0$$

$$\Rightarrow (x - 9)(3x - 2) = 0$$

$$\Rightarrow x = 9 \text{ or } x = 2/3$$

Date: August 25, 2008.

1

Problem 2. Solve the following equations for x_1 .

a.
$$81x_1^{-1/3} - 27 = 0$$

$$81x_1^{-1/3} - 27 = 0$$

$$\Rightarrow 81x_1^{-1/3} = 27$$

$$\Rightarrow x_1^{-1/3} = 27/81 = 3^{-1}$$

$$\Rightarrow x_1^{1/3} = 3$$

$$\Rightarrow x_1 = 27$$

b.
$$50x_1^{-2/5} - 2 = 0$$

$$50x_1^{-2/5} - 2 = 0$$

$$\Rightarrow 50x_1^{-2/5} = 2$$

$$\Rightarrow x_1^{-2/5} = 2/50 = 5^{-2}$$

$$\Rightarrow x_1^{1/5} = 5$$

$$\Rightarrow x_1 = 5^5 = 3125$$

Problem 3. Solve the following equations for x_1 .

a.
$$2x_1^{2/3} = x_1^{3/4}$$

$$2x_1^{2/3} = x_1^{3/4}$$

$$\Rightarrow 2x_1^{2/3} - x_1^{3/4} = 0$$

$$\Rightarrow x_1^{2/3}(2 - x_1^{3/4 - 2/3}) = 0$$

$$\Rightarrow x_1^{2/3}(2 - x_1^{1/12}) = 0$$

$$\Rightarrow x_1^{2/3} = 0 \quad \text{or} \quad x_1^{1/12} = 2$$

$$\Rightarrow x_1 = 0 \quad \text{or} \quad x = 2^{12} = 4096$$

b.
$$2x_1^{1/3} = 3x_1^{1/2}$$

$$2x_1^{1/3} = 3x_1^{1/2}$$

$$\Rightarrow x_1^{1/3}(2 - 3x_1^{1/6}) = 0$$

$$\Rightarrow x_1^{1/3} = 0 \quad \text{or} \quad 2 - 3x_1^{1/6} = 0$$

$$\Rightarrow x_1 = 0 \quad \text{or} \quad x_1^{1/6} = 2/3$$

$$\Rightarrow x_1 = 0 \quad \text{or} \quad x_1 = (2/3)^6 = 64/729$$

Problem 4. Solve the following systems of equations for x_1 and x_2 using the method of elimination.

$$x_1 + x_2 = 1 3x_1 + 2x_2 = 4$$

Add the first equation multiplied by -2 to the second equation.

$$3x_1 + 2x_2 + (x_1 + x_2) \times (-2) = 4 + 1 \times (-2)$$

 $\Rightarrow x_1 = 2$

Add the first equation multiplied by -3 to the second equation.

$$3x_1 + 2x_2 + (x_1 + x_2) \times (-3) = 4 + 1 \times (-3)$$

 $\Rightarrow -x_2 = 1$
 $\Rightarrow x_2 = -1$

So the solution is

$$x_1 = 2, \quad x_2 = -1$$

b.

$$x_1 - 3x_2 = -9$$

$$2x_1 - 7x_2 = -22$$

Add the first equation multiplied by -2 to the second equation.

$$2x_1 - 7x_2 + (x_1 - 3x_2) \times (-2) = -22 - 9 \times (-2)$$

 $\Rightarrow -x_2 = -4$
 $\Rightarrow x_2 = 4$

Add the first equation multiplied by $\frac{-7}{3}$ to the second equation.

$$2x_1 - 7x_2 + (x_1 - 3x_2) \times \frac{-7}{3} = -22 - 9 \times \frac{-7}{3}$$

 $\Rightarrow -\frac{x_1}{3} = -1$
 $\Rightarrow x_1 = 3$

$$x_1 = 3, \quad x_2 = 4$$

5

c.

$$-x_1 + 5x_2 = 13$$
$$-x_1 + 4x_2 = 10$$

Add the first equation multiplied by -1 to the second equation.

$$-x_1 + 4x_2 + (-x_1 + 5x_2) \times (-1) = 10 + 13 \times (-1)$$

 $\Rightarrow \qquad -x_2 = -3$
 $\Rightarrow \qquad x_2 = 3$

Add the first equation multiplied by $-\frac{4}{5}$ to the second equation.

$$-x_{1} + 4x_{2} + (-x_{1} + 5x_{2}) \times \frac{-4}{5} = 10 + 13 \times \frac{-4}{5}$$

$$\Rightarrow \frac{-x_{1}}{5} = -\frac{2}{5}$$

$$\Rightarrow x_{1} = 2$$

So the solution is

$$x_1 = 2, \quad x_2 = 3$$

d.

$$2x_1 + 3x_2 = 4$$
$$5x_1 + 7x_2 = 9$$

Add the first equation multiplied by $-\frac{5}{2}$ to the second equation.

$$5x_1 + 7x_2 + (2x_1 + 3x_2) \times \frac{-5}{2} = 9 + 4 \times \frac{-5}{2}$$

$$\Rightarrow \frac{-x_2}{2} = -1$$

$$\Rightarrow x_2 = 2$$

Add the first equation multiplied by $-\frac{7}{3}$ to the second equation.

$$5x_{1} + 7x_{2} + (2x_{1} + 3x_{2}) \times \frac{-7}{3} = 9 + 4 \times \frac{-7}{3}$$

$$\Rightarrow \frac{x_{1}}{3} = -\frac{1}{3}$$

$$\Rightarrow x_{1} = -1$$

$$x_1 = -1, \quad x_2 = 2$$

e.

$$2x_1 + 2x_2 = 8$$
$$5x_1 + 4x_2 = 17$$

Add the first equation multiplied by $-\frac{5}{2}$ to the second equation.

$$5x_1 + 4x_2 + (2x_1 + 2x_2) \times \frac{-5}{2} = 17 + 8 \times \frac{-5}{2}$$

 $\Rightarrow -x_2 = -3$
 $\Rightarrow x_2 = 3$

Add the first equation multiplied by -2 to the second equation.

$$5x_1 + 4x_2 + (2x_1 + 2x_2) \times (-2) = 17 + 8 \times (-2)$$

 $x_1 = 1$

$$x_1 = 1, \quad x_2 = 3$$

KEY 7

Problem 5. Solve the following systems of equations for x_1 , x_2 , and x_3 using the method of elimination.

a.

$$\{x_1 = 1, x_2 = 3, x_3 = -2\}$$
$$x_1 + 2x_2 - 2x_3 = 11$$
$$3x_1 + 7x_2 - 10x_3 = 44$$
$$3x_1 + 4x_2 + x_3 = 13$$

Add the first equation multiplied by -3 to the second equation.

$$3x_1 + 7x_2 - 10x_3 + (x_1 + 2x_2 - 2x_3) \times (-3) = 44 + 11 \times (-3)$$

$$\Rightarrow \qquad x_2 - 4x_3 = 11 \tag{1}$$

Add the first equation multiplied by -3 to the third equation.

$$3x_1 + 4x_2 + x_3 + (x_1 + 2x_2 - 2x_3) \times (-3) = 13 + 11 \times (-3)$$

$$\Rightarrow \qquad -2x_2 + 7x_3 = -20 \tag{2}$$

Add equation (1) multiplied by 2 to equation (2)

$$-2x_{2} + 7x_{3} + (x_{2} - 4x_{3}) \times 2 = -20 + 11 \times 2$$

$$\Rightarrow -x_{3} = 2$$

$$\Rightarrow x_{3} = -2$$
(3)

Add equation (1) multiplied by $\frac{7}{4}$ to equation (2)

$$-2x_{2} + 7x_{3} + (x_{2} - 4x_{3})\frac{7}{4} = -20 + 11 \times \frac{7}{4}$$

$$\Rightarrow \qquad -\frac{1}{4}x_{2} = -\frac{3}{4}$$

$$\Rightarrow \qquad x_{2} = 3$$

Add $x_2 = 3$ multiplied by -2 to the first equation; and add $x_3 = -2$ multiplied by 2 to the first equation.

$$x_1 + 2x_2 - 2x_3 - 2x_2 + 2x_3 = 11 + 3 \times (-2) - 2 \times 2$$

 \Rightarrow $x_1 = 1$

$$x_1 = 1, \quad x_2 = 3, \quad x_3 = -1$$

b.

$$\{x_1 = 2, x_2 = 2, x_3 = -1\}$$

$$\frac{1}{2}x_1 + 2x_2 + x_3 = 4$$

$$2x_1 + 10x_2 + 4x_3 = 20$$

$$3x_1 + 6x_2 + 7x_3 = 11$$

Add the first equation multiplied by -4 to the second equation.

$$2x_1 + 10x_2 + 4x_3 + \left(\frac{1}{2}x_1 + 2x_2 + x_3\right) \times (-4) = 20 + 4 \times (-4)$$

$$\Rightarrow \qquad 2x_2 = 4$$

$$\Rightarrow \qquad x_2 = 2$$

Add the first equation multiplied by -6 to the second equation.

$$3x_1 + 6x_2 + 7x_3 + \left(\frac{1}{2}x_1 + 2x_2 + x_3\right) \times (-6) = 11 + 4 \times (-6)$$

$$\Rightarrow \qquad -6x_2 + x_3 = -13 \tag{4}$$

Add $x_2 = 2$ multiplied by 6, i.e., $6x_2 = 12$, to equation (4).

$$-6x_2 + x_3 + 6x_2 = -13 + 12$$

 $\Rightarrow x_3 = -1$

Add $x_2 = 2$ multiplied by -2 to the first equation; and add $x_3 = -1$ multiplied by -1 to the first equation.

$$\frac{1}{2}x_1 + 2x_2 + x_3 - 2x_2 - x_3 = 4 - 4 + 1
\Rightarrow \frac{1}{2}x_1 = 1
\Rightarrow x_1 = 2$$

$$x_1 = 2, \quad x_2 = 2, \quad x_3 = -1$$

9

c.

$$\{x_1 = 1, x_2 = -1, x_3 = 2\}$$

$$3x_1 + \frac{1}{3}x_2 + 2x_3 = \frac{20}{3}$$

$$6x_1 + x_2 + 4x_3 = 13$$

$$-3x_1 - 2x_2 - 3x_3 = -7$$

Add the first equation multiplied by -2 to the second equation.

$$6x_1 + x_2 + 4x_3 + \left(3x_1 + \frac{1}{3}x_2 + 2x_3\right) \times (-2) = 13 + \frac{20}{3} \times (-2)$$

$$\Rightarrow \frac{1}{3}x_2 = -\frac{1}{3}$$

$$\Rightarrow x_2 = -1$$

Add the first equation to the third equation.

$$-3x_1 - 2x_2 - 3x_3 + (3x_1 + \frac{1}{3}x_2 + 2x_3) = -7 + \frac{20}{3}$$
$$-\frac{5}{3}x_2 - x_3 = -\frac{1}{3}$$
 (5)

Add $x_2 = -1$ multiplied by $\frac{5}{3}$ to equation (5).

$$-\frac{5}{3}x_2 - x_3 + \frac{5}{3}x_2 = -\frac{1}{3} - \frac{5}{3}$$

$$\Rightarrow \qquad -x_3 = -2$$

$$\Rightarrow \qquad x_3 = 2$$

Add $x_2 = -1$ multiplied by -1 to the second equation; and add $x_3 = 2$ multiplied by -4 to the second equation.

$$6x_1 + x_2 + 4x_3 - x_2 - 4x_3 = 13 + 1 - 8$$

$$\Rightarrow \qquad 6x_1 = 6$$

$$\Rightarrow \qquad x_1 = 1$$

$$x_1 = 1, \quad x_2 = -1, \quad x_3 = 2$$

Problem 6. Solve the following systems of equations for x_1 and x_2 using the method of substitution.

a.

$$24x_1^{-3/4}x_2^{1/2} - 9 = 0$$
$$48x_1^{1/4}x_2^{-1/2} - 32 = 0$$

From the first equation,

$$24x_1^{-3/4}x_2^{1/2} - 9 = 0$$

$$\Rightarrow 24x_1^{-3/4}x_2^{1/2} = 9$$

$$\Rightarrow \frac{24}{9}x_1^{-3/4} = x_2^{-1/2}$$

$$\Rightarrow x_2^{-1/2} = \frac{8}{3}x_1^{-3/4}$$

Substitute $x_2^{-1/2} = \frac{8}{3}x_1^{-3/4}$ into the second equation.

$$48x_1^{1/4}x_2^{-1/2} - 32 = 0$$

$$\Rightarrow 48x_1^{1/4} \left(\frac{8}{3}x_1^{-3/4}\right) - 32 = 0$$

$$\Rightarrow x_1^{1/4} \left(\frac{8}{3}x_1^{-3/4}\right) = 32/48$$

$$\Rightarrow x_1^{-1/2} = \frac{2}{3} \times \frac{3}{8} = 4^{-1}$$

$$\Rightarrow x_1^{1/2} = 4$$

$$\Rightarrow x_1 = 16$$

Substitute $x_1 = 16$ into $x_2^{-1/2} = \frac{8}{3}x_1^{-3/4}$.

$$x_{2}^{-1/2} = \frac{8}{3}x_{1}^{-3/4}$$

$$\Rightarrow x_{2}^{-1/2} = \frac{8}{3}16^{-3/4}$$

$$\Rightarrow x_{2}^{-1/2} = \frac{1}{3}$$

$$\Rightarrow x_{2} = 9$$

$$x_1 = 16, \quad x_2 = 9$$

11

b.

$$128x_1^{-3/5}x_2^{1/4} - 64 = 0$$
$$80x_1^{2/5}x_2^{-3/4} - 5 = 0$$

From the first equation,

$$128x_1^{-3/5}x_2^{1/4} - 64 = 0$$

$$\Rightarrow x_1^{-3/5}x_2^{1/4} = 64/128$$

$$\Rightarrow x_2^{1/4} = 2^{-1}x_1^{3/5}$$

$$\Rightarrow x_2^{-3/4} = 8x_1^{-9/5}$$

Substitute $x_2^{-3/4} = 8x_1^{-9/5}$ into the second equation.

$$80x_1^{2/5}x_2^{-3/4} - 5 = 0$$

$$\Rightarrow 80x_1^{2/5} \left(8x_1^{-9/5}\right) = 5$$

$$\Rightarrow x_1^{-7/5} = \frac{1}{128} = 2^{-7}$$

$$\Rightarrow x_1 = 2^5 = 32$$

Substitute $x_1 = 32$ into $x_2^{1/4} = 2^{-1}x_1^{3/5}$.

$$x_2^{1/4} = 2^{-1}x_1^{3/5}$$

 $\Rightarrow x_2^{1/4} = 2^{-1}32^{3/5} = 4$
 $\Rightarrow x_2 = 256$

$$x_1 = 32, \quad x_2 = 256$$

Problem	7.	Do	the	following	problems	from	the	book.
---------	----	----	-----	-----------	----------	------	-----	-------

- a. Section 3.6
 - 1) 1a
 - 2) 1b
 - 3) 3
 - 4) 5
- b. Section 4.2
 - 1) 3b
 - 2) 7a
 - 3) 7b
 - 4) 13
- c. Section 4.4
 - 1) 1a
 - 2) 1b
 - 3) 3
 - 4) 7a
 - 5) 7b
 - 6) 7c
 - 7) 7d
- d. Section 4.5
 - 1) 3
 - 2) 5
- e. Section 4.6 (Besides equation 2 on page 105 of the text, equation 5 on page 106 of the text is useful.)
 - 1) 3a
 - 2) 3c
 - 3) 3d
 - 4) 3e
 - 5) 3f