# **ACE Market Game Examples**

Presenter:

Leigh Tesfatsion Professor of Economics and Mathematics Department of Economics Iowa State University Ames, Iowa 50011-1070 http://www.econ.iastate.edu/tesfatsi/ tesfatsi@iastate.edu

1

# Outline

# ACE double-auction trading game

# An ACE two-sector trading game

### **EX 1: ACE Double-Auction Trading Game**

# J. Nicolaisen, V. Petrov, L. Tesfatsion, IEEE Transactions on Evolutionary Computation, 5(5), 2001, 504-523 http://www.econ.iastate.edu/tesfatsi/mpeieee.pdf

### Key Issue Addressed:

Relative role of structure vs. learning in determining performance of a double-auction design for a day-ahead electricity market.

# Key Issues We Address

\* Sensitivity of market performance to changes in **market structure:** 

- **RCON** = Relative seller/buyer concentration
- **RCAP** = Relative demand/supply capacity

\* Sensitivity of market performance to changes in **trader learning**:

Individual learning via Reinforcement Learning (RL) Social mimicry via Genetic Algorithms (GAs)

### Market Performance Measures

Market Efficiency: Actual total net benefits extracted from the market relative to maximum possible total net benefits (competitive benchmark).

Market power: The manner in which extracted total net benefits are distributed among the market participants.

### Dynamic Flow of DA Market: Simple View



### Dynamic Flow of DA Market: Detailed View



(DISCRIMINATORY- PRICE DOUBLE AUCTION WITH STRATEGIC BIDS/OFFERS)

7

### Structural Treatment Factor Values (tested for each learning treatment)

| Ns = Number of Sellers<br>Nb = Number of Buyers |                      |      | RCAP    |         |         |
|-------------------------------------------------|----------------------|------|---------|---------|---------|
| Cs = Seller Supply C<br>Cb = Buyer Demand       | Capacity<br>Capacity |      | 1/2     | 1       | 2       |
| RCON=Ns/Nb<br>RCAP=NbCb/NsCs                    |                      |      | Ns = 6  | Ns = 6  | Ns = 6  |
|                                                 |                      | 2    | Nb = 3  | Nb = 3  | Nb = 3  |
|                                                 |                      |      | Cs = 10 | Cs = 10 | Cs = 10 |
|                                                 |                      |      | Cb = 10 | Cb = 20 | Cb = 40 |
|                                                 | R                    |      | Ns = 3  | Ns = 3  | Ns = 3  |
|                                                 | С                    | 1    | Nb = 3  | Nb = 3  | Nb = 3  |
|                                                 | Ο                    |      | Cs = 20 | Cs = 10 | Cs = 10 |
|                                                 | Ν                    |      | Cb = 10 | Cb = 10 | Cb = 20 |
|                                                 |                      |      | Ns = 3  | Ns = 3  | Ns = 3  |
|                                                 |                      |      | Nb = 6  | Nb = 6  | Nb = 6  |
|                                                 |                      | 4 /0 | Cs = 40 | Cs = 20 | Cs = 10 |
|                                                 |                      | 1/2  | Cb = 10 | Cb = 10 | Cb = 10 |

### True Total Demand and Supply Schedules (True Reservation Prices)



# The Computational World

### **Public Access:**

#### // Public Methods

The *World Event Schedule,* i.e., a system clock that permits inhabitants to time and synchronize activities (e.g., submission of asks/bids into the DA market); Protocols governing trader collusion; Protocols governing trader insolvency; Methods for receiving data; Methods for retrieving World data.

### **Private Access:**

#### // Private Methods

Methods for gathering, storing, and sending data; // Private Data

World attributes (e.g., spatial configuration); World inhabitants (DA market, buyers, sellers); World inhabitants' methods and data.

# The Computational DA Market

### **Public Access:**

#### // Public Methods

getWorldEventSchedule(clock time); Protocols governing the public posting of bids/offers; Protocols governing matching, trades, and settlements; Methods for receiving data; Methods for retrieving Market data.

### **Private Access:**

#### // Private Methods

Methods for gathering, storing, and sending data.

#### // Private Data

Data recorded about sellers (e.g., seller offers); Data recorded about buyers (e.g., buyer bids); Address book (communication links).

# A Computational DA Trader

### **Public Access:**

#### // Public Methods

getWorldEventSchedule(clock time); getWorldProtocols (collusion, insolvency); getMarketProtocols (posting, matching, trade, settlement); Methods for receiving data;

Methods for retrieving Trader data.

### **Private Access:**

### // Private Methods

Methods for gathering, storing, and sending data; Methods for calculating expected & actual profit outcomes; Method for updating my bid/offer strategy (LEARNING). // Private Data

Data about me (history, profit function, current wealth,...); Data about external world (rivals' bids/offers, ...); Address book (communication links).

### What Do DA Traders Learn? Supply Offers and Demand Bids

- Offer for each Seller i = reported supply q<sub>i</sub><sup>s</sup> of real power in Mega-Watts (MWs) together with a reported unit (i.e., per-MW) price p<sub>i</sub> in dollars \$ per MW
- Bid for each Buyer j = reported demand q<sub>j</sub><sup>D</sup> for real power in MWs together with a reported unit price p<sub>j</sub> in \$ per MW
- Action choices for sellers = Their possible OFFERS

Action choices for buyers = Their possible BIDS

### How Might DA Traders Learn?

### \* One possibility:

Reactive Reinforcement Learning (RL)

Asks....

# Given *past* events, what action should I take *now*?

**Examples:** Three-parameter RL based on human-subject experiments (Roth-Erev, 1995,1998), Modified Roth-Erev RL for electricity double auctions (Nicolaisen, Petrov, Tesfatsion, IEEE TEC, 2001)

### How Might DA Traders Learn...

\* Another possibility:

Anticipatory Learning

Asks....

If I take this action *now*, what will happen in the *future*?

**Examples:** Q-Learning (Watkins, 1989); Temporal-Difference Reinforcement Learning (Sutton/Barto, 1998) Learning Method Used for This study: Reactive Reinforcement Learning MRE = Modified Roth-Erev RL (Nicolaisen et al., 2001)



Each trader maintains action choice propensities q, normalized to action choice probabilities Prob, to choose actions. A good (bad) profit r<sub>k</sub> for action a<sub>k</sub> results in a strengthening (weakening) of the propensity q<sub>k</sub> for a<sub>k</sub>.

# MRE = Modified Roth-Erev RL

- 1. **Initialize** action propensities to an initial propensity value.
- 2. Generate choice probabilities for all actions using current propensities.
- 3. Choose an action according to the current choice probability distribution.
- 4. Update propensities for all actions using the reward for the last chosen action.
- 5. Repeat from step 2.

### **MRE Updating of Action Propensities**

### **Parameters:**

- q<sub>i</sub>(1) Initial propensity
- $\dot{\epsilon}$  Experimentation
- $\phi$  Recency (forgetting)

### Variables:

- a<sub>i</sub> Current action choice
- q<sub>i</sub> Propensity for action a<sub>i</sub>
- a<sub>k</sub> Last action chosen
- r<sub>k</sub> Reward for action a<sub>k</sub>
- t Current time step
- N Number of actions

$$q_j(t+1) = [1-\phi]q_j(t) + E_j(\epsilon, N, k, t)$$

$$\mathcal{E}_{j}(\epsilon, N, k, t) = \begin{cases} r_k(t)[1-\epsilon] & \text{if } j = k \\ q_j(t) \frac{\epsilon}{N-1} & \text{if } j \neq k \end{cases}$$

### From Propensities to Probabilities for MRE

$$p_j(t) = \frac{q_j(t)}{\sum_{j=0}^{N-1} q_j(t)}$$

 $p_j(t)$  = Probability of choosing action j at time t N = Number of available actions at each time t

### Sample Table of Experimental Results

|               | Relative Capacity                             |                                                |                                            |  |  |  |
|---------------|-----------------------------------------------|------------------------------------------------|--------------------------------------------|--|--|--|
|               | 1/2                                           | 1                                              | 2                                          |  |  |  |
|               |                                               | -                                              | -                                          |  |  |  |
|               | MP StdDev                                     | MP StdDev                                      | MP StdDev                                  |  |  |  |
|               | All Buyers: -0.13* (0.09)                     | All Buyers: -0.15* (0.09)                      | All Buyers: 0.10 (0.30)                    |  |  |  |
|               | All Sellers: 0.55* (0.38)                     | All Sellers: 0.38* (0.33)                      | All Sellers: -0.10 (0.25)                  |  |  |  |
|               | Buyer[1]: -0.12* (0.08)                       | Buyer[1]: -0.13* (0.10)                        | Buyer[1]: 0.10 (0.30)                      |  |  |  |
|               | Buyer[2]: -0.20 (0.40)                        | Buyer[2]: -0.75* (0.33)                        | Buyer[2]: ZP (0.00)                        |  |  |  |
| 2             | Buyer[3]: ZP (0.00)                           | Buyer[3]: ZP (0.00)                            | Buyer[3]: ZP (0.00)                        |  |  |  |
|               | Seller[1]: ZP (0.00)                          | Seller[1]: ZP (0.00)                           | Seller[1]: ZP (0.00)                       |  |  |  |
|               | Seller[2]: ZP (0.00)                          | Seller[2]: -0.50 (1.34)                        | Seller[2]: -0.12 (0.34)                    |  |  |  |
|               | Seller[3]: 0.54 (0.63)                        | Seller[3]: 0.45* (0.40)                        | Seller[3]: -0.10 (0.22)                    |  |  |  |
|               | Seiler[4]: ZP (0.00)                          | Seller[4]: ZP (0.00)                           | Seller[4]: ZP (0.00)                       |  |  |  |
|               | Seller[5]: ZP (0.00)                          | Seller[5]: -0.42 (1.67)                        | Seller[5]: -0.08 (0.36)                    |  |  |  |
|               | Seller[o]: 0.55 (0.60)                        | Seller[6]: 0.46* (0.41)                        | Sener[0]: -0.09 (0.24)                     |  |  |  |
|               | Efficiency: 99.81 (0.02)                      | Efficiency: 96.30 (0.05)                       | Efficiency: 99.88 (0.06)                   |  |  |  |
|               | MP StdDev                                     | MP StdDev                                      | MP StdDev                                  |  |  |  |
| D. L. C.      | All Buyers: -0.22* (0.12)                     | All Buyers: -0.13* (0.10)                      | All Buyers: 0.13 (0.33)                    |  |  |  |
| Relative      | All Sellers: 0.80* (0.53)                     | All Sellers: 0.28 (0.35)                       | All Sellers: -0.10 (0.26)                  |  |  |  |
| Concentration |                                               |                                                | Description of the second                  |  |  |  |
|               | Buyer[1]: -0.21* (0.11)                       | Buyer[1]: -0.11* (0.10)                        | Buyer[1]: 0.13 (0.33)                      |  |  |  |
|               | Buyer[2]: -0.31 (0.44)<br>Buyer[3]: 7P (0.00) | Buyer[2]: -0.80* (0.40)<br>Buyer[3]: ZP (0.00) | Buyer[2]: ZF (0.00)<br>Buyer[3]: ZP (0.00) |  |  |  |
| 1             | Divertif. 23 (0.00)                           | Dayer[3]. 22 (0.00)                            | Duyer[0]. 21 (0.00)                        |  |  |  |
|               | Seller[1]: ZP (0.00)                          | Seller[1]: ZP (0.00)                           | Seller[1]: ZP (0.00)                       |  |  |  |
|               | Seller[2]: ZP (0.00)                          | Seller[2]: -0.37 (1.89)                        | Seller[2]: -0.10 (0.34)                    |  |  |  |
|               | Seller[3]: 0.76* (0.63)                       | Seller[3]: 0.34 (0.45)                         | Seller[3]: -0.11 (0.24)                    |  |  |  |
|               | Efficiency: 92.13 (0.09)                      | Efficiency: 94.59 (0.07)                       | Efficiency: 100.00 (0.00)                  |  |  |  |
|               | MP StdDev                                     | MP StdDev                                      | MP StdDev                                  |  |  |  |
|               | All Buyers: -0.21* (0.12)                     | All Buyers: -0.14* (0.08)                      | All Buyers: 0.09 (0.24)                    |  |  |  |
|               | All Sellers: 0.67* (0.46)                     | All Sellers: 0.30 (0.31)                       | All Sellers: -0.07 (0.19)                  |  |  |  |
|               | Buver[1]: -0.18* (0.12)                       | Buver[1]: -0.14* (0.10)                        | Buyer[1]: 0.09 (0.27)                      |  |  |  |
|               | Buyer[2]: -0.37 (0.47)                        | Buver[2]: -0.77* (0.44)                        | Buver[2]: ZP (0.00)                        |  |  |  |
| 1/2           | Buver[3]: ZP (0.00)                           | Buver[3]: ZP (0.00)                            | Buyer[3]: ZP (0.00)                        |  |  |  |
| 1/2           | Buyer[4]: -0.20* (0.11)                       | Buyer[4]: -0.11 (0.11)                         | Buyer[4]: 0.10 (0.25)                      |  |  |  |
|               | Buyer[5]: -0.38 (0.47)                        | Buyer[5]: -0.73* (0.46)                        | Buyer[5]: ZP (0.00)                        |  |  |  |
|               | Buyer[6]: ZP (0.00)                           | Buyer[6]: ZP (0.00)                            | Buyer[6]: ZP (0.00)                        |  |  |  |
|               | Seller[1]: ZP (0.00)                          | Seller[1]: ZP (0.00)                           | Seller[1]: ZP (0.00)                       |  |  |  |
|               | Seller[2]: ZP (0.00)                          | Seller[2]: 0.14 (2.69)                         | Seller[2]: -0.08 (0.27)                    |  |  |  |
|               | Seller[3]: 0.63* (0.55)                       | Seller[3]: 0.32 (0.48)                         | Seller[3]: -0.07 (0.17)                    |  |  |  |
|               |                                               |                                                |                                            |  |  |  |
|               | Efficiency: 91.84 (0.09)                      | Efficiency: 94.24 (0.07)                       | Efficiency: 100.00 (0.00)                  |  |  |  |

TABLE VI EXPERIMENTAL MARKET POWER AND EFFICIENCY OUTCOMES FOR THE BEST FIT MEE ALGORITHM WITH 1000 AUCTION ROUNDS AND PARAMETER VALUES s(1) = 9.00, r = 0.10, and c = 0.20

ZP indicates that zero profits were earned both in the auction and in competitive equilibrium.

### Summary of Policy-Relevant DA Findings

- Market Efficiency: Generally high when traders use MRE (Modified Roth-Erev) reinforcement learning but not when traders use GA (genetic algorithm) social mimicry (type of learning can matter).
- Structural Market Power: Microstructure of the DA market is strongly predictive for the relative market power of traders (*rule details matter*).
- Strategic Market Power: Traders are not able to change their relative market power through learning (*importance of countervailing power*).

### Ex 2: An ACE Bilateral Trade Hash-and-Beans Economy



# Dynamic Flow of ACE H&B Economy



# Dynamic Flow of Activity for H & B Firms

- Each firm f starts out (T=0) with money M<sub>f</sub>(O) and a production capacity Cap<sub>f</sub>(O)
- Firm f's *fixed cost FC<sub>f</sub>(T)* in each T ≥ 0 is proportional to its current capacity Cap<sub>f</sub>(T)
- At beginning of each T ≥ 0, firm f selects a supply offer = (production level, unit price)
- At end of T ≥ 0, firm f is *solvent* if it has NetWorth(T) = [Profit(T)+M<sub>f</sub>(T)+ValCap<sub>f</sub>(T)] > 0
- If solvent, firm f allocates its profits (+ or -) between M<sub>f</sub>, CAP<sub>f</sub>, and dividend payments.

### Dynamic Flow of Activity for Consumer-Shareholders

 Each consumer k starts out (T=0) with a *lifetime* money endowment profile

(Mk<sub>youth</sub>, Mk<sub>middle</sub>, Mk<sub>old</sub>)

- In each T ≥ 0, consumer k's utility is measured by U<sub>k</sub>(T)=(hash(T) - h<sub>k</sub>\*)<sup>α</sup>k • (beans(T) - b<sub>k</sub>\*)<sup>[1-α</sup>k<sup>]</sup>
- In each T ≥ 0, consumer k seeks to secure maximum utility by *searching* for beans and hash to buy at *lowest possible prices*.
- At end of each T ≥ 0, consumer k *dies* unless consumption meets subsistence needs (b<sub>k</sub>\*, h<sub>k</sub>\*).

### **Experimental Design Treatment Factors**

- Initial size of consumer sector [ K(0) ]
- Initial concentration [ N(0), J(0), Cap(0) values ]
- Firm learning (supply offers & profit allocations)
- Firm cost functions
- Firm initial money holdings [ M<sub>f</sub>(0) ]
- Firm rationing protocols (for excess demand)
- Consumer price discovery processes
- Consumer money endowment profiles/TMax (rich, poor, א, א, life cycle u-shape)
- Consumer preferences (θ values)
- Consumer subsistence needs (b\*,h\*)

# The Computational World

### **Public Access:**

#### // Public Methods

The *World Event Schedule,* i.e., a system clock that permits inhabitants to time and synchronize activities (e.g., opening/closing of H & B markets); Protocols governing firm collusion; Protocols governing firm insolvency; Methods for receiving data; Methods for retrieving World data.

### **Private Access:**

#### // Private Methods

Methods for gathering, storing, and sending data;

#### // Private Data

World attributes (e.g., spatial configuration); World inhabitants (H & B markets, firms, consumers); World inhabitants' methods and data.

# A Computational Market

#### **Public Access:**

#### // Public Methods

getWorldEventSchedule(clock time); Protocols governing the public posting of supply offers; Protocols governing matching, trades, and settlements; Methods for receiving data; Methods for retrieving Market data.

### **Private Access:**

#### // Private Methods

Methods for gathering, storing, and sending data.

#### // Private Data

Data recorded about firms (e.g., sales); Data recorded about consumers (e.g., purchases); Address book (communication links).

# A Computational Consumer

### **Public Access:**

#### // Public Methods

getWorldEventSchedule(clock time); getWorldProtocols (stock share ownership); getMarketProtocols (price discovery process, trade process); Methods for receiving data;

Methods for retrieving stored Consumer data.

### **Private Access:**

### // Private Methods

Methods for gathering, storing, and sending data; Method for determining my budget constraint; Method for searching for lowest prices.

#### // Private Data

Data about me (history, utility function, current wealth,...); Data about external world (posted supply offers, ...); Address book (communication links).

# **A Computational Firm**

### **Public Access:**

#### // Public Methods

getWorldEventSchedule(clock time); getWorldProtocols (collusion, insolvency); getMarketProtocols (posting, matching, trade, settlement); Methods for receiving data; Methods for retrieving Firm data.

### **Private Access:**

### // Private Methods

Methods for gathering, storing, and sending data; Methods for calculating expected & actual profit outcomes; Method for allocating my profits to my shareholders; Method for updating my supply offers (LEARNING).

#### // Private Data

Data about me (history, profit function, current wealth,...); Data about external world (rivals' supply offers, ...); Address book (communication links).

### **Interesting Issues for Exploration**

- Initial conditions → carrying capacity? (Survival of firms/consumers in long run)
- ◆ Initial conditions → market clearing? (Walrasian equilibrium benchmark)
- Initial conditions → market efficiency? (Walrasian equilibrium benchmark)
- Standard concentration measures at T=0 → good predictors of long-run market power?
- Importance of learning vs. market structure for market performance? (Gode/Sunder, JPE, 1993)

### ACE Hash-and-Beans Economy: Comp Lab Implementation

Christopher Cook and Leigh Tesfatsion, **"Agent-Based Computational Laboratories for the Experimental Study of Complex Economic Systems,"** Working Paper, ISU Department of Economics, in progress.

- Computational laboratory under construction for the ACE Hash-and-Beans Economy
- Programming language C#/.Net (all WinDesktops)

Under development for Econ 308 (ACE course)
 www.econ.iastate.edu/classes/econ308/tesfatsion/

# ACE Hash & Beans Economy: Comp Lab Main Screen

| 🖳 Form1                                           |                                                                          |                                                         |                                                               |  |  |  |  |  |  |
|---------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------|--|--|--|--|--|--|
| <u>File T</u> ools <u>W</u> indow <u>H</u> elp    |                                                                          |                                                         |                                                               |  |  |  |  |  |  |
| 📙 Untitled 1 (Empty Lab)                          |                                                                          |                                                         |                                                               |  |  |  |  |  |  |
| Hash & Bean Multi-Market Economy Model            |                                                                          |                                                         |                                                               |  |  |  |  |  |  |
| Group Count<br>Cons Type 1 100<br>Cons Type 2 100 | Consumer Details<br>Group Name:<br>Cons Type 2<br>Count: 100             | Consumption Needs:<br>Hash: 3<br>Beans: 3               | Endowment Schedule:<br>Lifecycle [edit]<br>Initial: 25        |  |  |  |  |  |  |
| Total: 200                                        | Add                                                                      | Preference: [ <u>edit]</u><br>α = 0.505 Slightly Prefer | s Hash                                                        |  |  |  |  |  |  |
| Group Count<br>Large 1 1<br>Small 20 20           | Firm Details<br>Group Name:<br>Small<br>Hash Firms: 20<br>Bean Firms: 20 | Initial Assets:<br>Money: 50<br>Capacity: 10            | Cost Function:<br>Default [edit]<br>^ Capacity: 1.0           |  |  |  |  |  |  |
| Total: 21 21                                      | Add                                                                      | Profit Distribution:<br>Money: 0.5<br>Dividends: 0.5    | Learning Strategy:<br>Random P & Q (Det <mark>- [edit]</mark> |  |  |  |  |  |  |
| Experiment Number: T                              | rial Count:<br>5                                                         | Trial Length ( TMax ):<br>∫100                          | START                                                         |  |  |  |  |  |  |