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Sheep, Explorers and Phase Transitions

 “I have supposed a Human Being to be capable of various physical states,

and varying degrees of consciousness, as follows:

(a)  the ordinary state, with no consciousness of the presence of Fairies;

(b)  the eerie state, in which, while conscious of actual surroundings,

 he is also conscious of the presence of Fairies;

(c)  a form of trance, in which, while unconscious of actual surroundings, and apparently asleep,

he (i.e. his immaterial essence) migrates to other scenes in the actual world, or in Fairyland,

and is conscious of the presence of Fairies.”

LEWIS CARROLL

{A}The Fallacy of Composition{/A}

In the previous chapter, we learnt two important things about how the economy works.

First, human decisionmaking reflects the different beliefs and expectations of individuals.

Second, the interactions beween these different individuals can produce unexpected

collective outcomes.  In turn, it’s the evolution of these collective outcomes that shapes

each agent’s future behaviour.  What agents believe affects what happens to the economy

and, in turn, what happens to the economy affects what agents believe.  The impacts of

this positive feedback loop are what this book is all about.  We call it coevolutionary

learning.

For the time being, we’ll regard the first problem as a psychological one and the

second as a systems problem.1  Having looked at aspects of psychology in the previous

chapter, our aim in this chapter is to look more deeply into the systems problem.  This

problem lies at the core of the complexity issue.  It’s not difficult to understand why.  All

of us have the feeling that our economy is complex .  Why is it so complex?  One reason

is that it involves a very large number of elements.  In a major city economy, for example,

                                                          
1 By the end of this chapter, however, we’ll argue that both are systems problems; because a single human
brain is just as much a complex adaptive system as a group of human brains.
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several million human agents can link together in myriads of different ways.  In a national

economy, an even greater number of interactions can arise.  Adopting this view of

economic complexity is just one way of looking at the problem.  It turns out to be a

combinatorial view.

Most of us aren’t expected to know very much about the whole economy and the

way it works.  What we often know (or can find out) are the prices of things we buy or

sell, the interest rates at which we borrow or lend, and a little about the alternative ways

we might earn our living and spend our money.  Beyond these personal aspects, however,

we tend to think of the rest of the economy as some giant accounting system, capable of

balancing out all those transactions resulting from specific patterns of interaction between

all the agents involved.  Some of us believe we know more than this, others feel that they

know even less.  Most of us simply take our economy for granted, partly because we

don’t understand the way it really works.

What we tend to forget is that any specific pattern of transactions, whether in

equilibrium or disequilibrium, is just one collective possibility.  It’s nothing more than

one plausible set of agents’ interactions from among many candidates.  The magical thing

is that, somehow, all of these chosen transactions seem to get coordinated.  We have little

idea of how this fantastically complex system selects this particular pattern of

interactions, manages to balanced them out, and then somehow decides where to go next.

Because inductive agents learn and adapt, forever changing the ways they choose to

interact, a coevolving economy is actually open-ended.  There’s simply no way we can

know how each and every agent is going to behave, least of all what the economy as a

whole will do under different conditions.  Future outcomes depend on the historical

trajectory of choices made along the way.

Most economists acknowledge that what seems to be true for individuals isn’t

always true for society as a whole.  Conversely, what seems to be true for all may be quite

false for any one individual.  In stressing that things aren’t always what they seem at first,

Paul Samuelson provides some paradoxical examples in the form of the following true

statements:2

                                                          



92

1.  – If all farmers work hard and nature cooperates to produce a bumper crop, total income

may fall, and probably will;

2.  – One man may solve his own unemployment problem by great ingenuity in finding a job

or by a willingness to work for less, but all cannot necessarily solve their job problems in

this way;

3.  – Higher prices for one industry may benefit its firms; but if the prices of everything

bought and sold increased in the same proportion, no one would be better off.

4.  – It may pay the United States to reduce tariffs charged on goods imported, even if other

countries refuse to lower their tariff barriers;

5.  – Attempts of individuals to save more in depression may lessen the total of the

community’s savings;

6.  – What’s prudent behaviour for an individual may at times be folly for a nation.

Many of the above paradoxes hinge upon a single confusion or fallacy.  Logicians

have dubbed it the “fallacy of composition,”  In books on logic, you can find the

following definition:

FALLACY OF COMPOSITION:

A fallacy in which what is true of a part is, on that account alone,

alleged to be also necessarily true.

The six statements mentioned above are typical of the many instances of the

fallacy of composition that appear in economics texts.  In the course of books like

Samuelson’s, these paradoxes are resolved.  There are no magic formulas or hidden

tricks.  Each is explained in terms of standard economic principles.  Some fallacies are

due to comparative price or quantity changes at different levels of the economy, while

others are due to structural properties of the whole economy.  The interested reader might

care to attempt an explanation of each.

                                                                                                                                                                            
2 See Samuelson (1976), page 14.
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Our view is that paradoxical statements typically chosen to illustrate the fallacy of

composition (like the six mentioned above) hardly scratch the surface compared to the

full set of paradoxes that can arise.  Furthermore, they’re a select group which can be

resolved with the conventional static equilibrium view of the economy.  In other words,

most are traps which exist inside the world of stasis only.  Although they’re treated as if

they’re exceptions to the rule, what’s overlooked is the fact that the truly challenging

economic paradoxes arise in that other world of economics: the world of morphogenesis.

Many have nothing to do with equilibrium prices, but are due to the positive feedback

loop associated with learning from others and from collective experiences.  In other

words, they’re governed by the coevolutionary learning processes in the economy.

A central difficulty in the economy, then, is one of dynamic interdependencies.

How do we find a way of handling the huge variety of behaviour – both individual and

collective – that can arise when economic agents interact over space and time?

Complexity arises, then, because of the ways in which economic agents choose to work

together.  Furthermore, unusual collective properties can arise if the agents choose to

interact in particular ways.  We caught a glimpse of some of these unexpected phenomena

in Schelling’s segregation model (Chapter 1) and Arthur’s bar problem (Chapter 2).  The

point to remember is that we need to know what the agents are thinking and doing

interactively over time, not simply what prices they’re paying at specific points in time.

Before we probe the perplexing issue of dynamics more deeply, consider the

following example of how the systems problem comes about.  Instead of sandpiles, this

simplifying illustration involves action on a billiard table.  If you roll a billiard ball across

such a table, any reasonable player can predict the path that it will follow.  If you roll two

balls across the table at the same time, it’s still not difficult to calculate each ball’s path

individually.  Once you add a few more balls, however, there’s a strong chance that some

balls will bump into others.  The problem of keeping track of every ball’s path and

collision possibilities becomes more difficult.  Now imagine what would happen if, with

the help of friends, you rolled 100 balls across the table at the same time!  They’d be

bumping into each other all the time.  Predicting their individual paths would be

impossible.  The system as a whole would become unpredictable at the individual level.
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If you happen to be a Grand Master at Chess, you’d probably be interested in the

pattern of behaviour over the entire table?  Oddly enough, the problem begins to simplify

again at this macrolevel.  The more balls you roll, the less important it is to trace every

ball exactly.  Once there are lots of balls rolling across the table, a new behavioural

paradigm takes over.  Individual interactions start to average out.  Suddenly you can make

reasonable predictions about the average speed and the average time between collisions.

Macroscopic patterns form.  A new kind of order has arisen.  These collective properties

emerge unexpectedly out of the countless number of individual interactions.

The billiard ball model turns out to be the starting point for the kinetic theory of

gases.3  In a container full of many particles, all whizzing around and bumping into each

other at all sorts of speeds, one property is always stable with respect to all the other

elements (such as type of gas, shape of container, and so on).  That property is

temperature.  A stable temperature is an emergent property because we would never have

expected it by looking at the individual particles themselves, or the shape of the

container, or anything else which is part of the whole system.  By now, you’ve probably

got the message; emergence is one of the hallmarks of complexity in both physical and

socio-economic systems.

Certainly economic agents are more complicated than billiard balls.  Nevertheless,

the notions of interactive complexity and emergence are identical in both cases.

Remember those music lovers at the El Farol bar.  Nobody risked much chance of

bumping into anyone else if the bar wasn’t crowded.  But as soon as the crowd grew to

more than sixty, the chances of brushing up against one or two pushing-and-shoving bar

louts were pretty high.  From week to week, it was impossible to guess how many would

turn up next Thursday evening.  Despite all this uncertainty at the individual level, the

mean attendance over time converged to a predictable value.  Order emerged from

seemingly random behaviour.

{A}Irreducible Interactions{/A}

                                                          
3 See Bossomaier and Green (1998).
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There seems to be a consistent message here about simple and complex economic

systems, at least in terms of two key properties.  By and large, simple economic systems

are homogeneous and weakly-interactive.  Individual beliefs and expectations must be

sufficiently uniform, and the level of interactions sufficiently weak or trivial, for us to be

able to predict collective patterns of behaviour with any confidence.  By way of

comparison, complex economies are heterogeneous and strongly-interactive.  They lie

beyond the point where individual behaviour can be discerned with any degree of

confidence.  Somehow, the whole economic system gets transformed into a qualitatively

different behavioural state.

What we find is a high degree of irregularities together with heterogeneity of

individual behaviour.  The surprising thing is that intrinsic unpredictability of individual

behaviour does not imply any unpredictability of collective behaviour. Furthermore, any

failure to predict does not imply a failure to understand or explain.  Not knowing the full

details, we may nevertheless build theories that seek to explain the generic properties.

Collective order may depend little on the details of structure and function.  This was the

point of the billiard-ball example and the bar problem.  Despite our ignorance of all the

individual elements, we can still uncover interesting collective features like statistical

averages.

[Fig. 3.1 near here]

Are such distinctions between simple  and complex systems fundamentally important in

economic life?  I believe so.  Plenty of examples may be found.  Even when people

appear to be doing very simple things - like driving a car, buying food or going to the

movies - their pattern of interactions can quickly add up to more complexity than we can

handle.  One example, familiar to all of us, is the unwelcome traffic jam.  If the flow

pattern of traffic on a roadway happens to approach a critical flow density, a qualitatively

different kind of collective behaviour appears.  The traffic changes from a free-flowing

state to one in which stop-start waves propagate back and disrupt the flow

discontinuously.  Which flow pattern you meet depends on what others are doing, not just
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on what you choose to do.  Technically, this kind of unexpected change is known as a

phase transition.  But now we’re getting ahead of ourselves again.

Suppose that you’re planning to go to the movies.  Which one do you see?  Even

if the reviews in the papers and magazines have kept you up to date with what’s on -

expanding your know-what, so to speak - you’ll still want to get other opinions.  So you

talk to your family and friends, to find out what they thought of the ones they saw.

Which movie you decide to see will depend on what you learn from other people, people

who’ve already gone through similar choice processes to the one in which you’re

engaged.  Afterwards, other people will ask you what film you saw and what you thought

of it.  Then you can boast a good degree of know-whether, i.e. whether any of the ones

you’ve seen are worthy of their attention.

If you also happen to follow the fortunes of the recent releases from the major

studios, you may learn that one of the films you elected to see has taken off like a rocket.

Later, however, it loses its momentum.  It ends up making a nice profit.  Another starts

more slowly, but builds up an ever-increasing audience, doing well enough to earn a place

on the all-time earners’ list.  Most of the others fizzle out, not even covering their

production and distribution costs.  You realize that you can’t always pick the big winner

beforehand.  Because the movie selection business is strongly-interactive, individual

market shares at the macrolevel are hard to predict.  There are many subtle and surprising

ways in which agent characteristics and connectivity structure affect the market shares of

competing products.4  We’ll return to the issue of connectivity shortly.

As noted earlier, the defining characteristic of a coevolving economy is that some

of its collective properties can’t be predicted from our knowledge of the agents involved

or their likely interactions.  Even if we could recognize and understand the implications

of all the two-way interactions between pairs of agents, we would still be ignorant about

three-way, four-way, and larger groups of interaction.  This suggests a second way of

distinguishing between simple and complex economic systems.  A complex economy is

never additive.  It behaves quite differently from what we’d expect by simply adding up

                                                          
4 For an interesting information contagion model, designed to isolate the effects of informational feedback
on the market-share allocation process, see Lane (1997).
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these pairs, trios and quartets of interaction.  Self-organizing economies are not additive;

they’re emergent.  This is precisely why some of their collective behaviours can’t be

predicted in advance.  There’s simply no way of combining the parts into an aggregate

when we’re ignorant about the nature and extent of some of the interactions.

Aristotle may have been the first to recognize that the whole is something more

than the sum of its parts.  But it was the Scottish philosopher, David Hume, who

impressed upon us the need to distinguish between the simple and the complex.  Hume

lived in the so-called Age of Enlightenment; along with such great French thinkers as

Voltaire and Rousseau.  His main work, A Treatise of Human Nature, was published

when Hume was twenty-eight years old, though he claimed that the idea for the book

came to him when he was only fifteen.

In Hume's day, there was a widespread belief in angels.  Yes, we’re talking about

those human figures with wings.  Many people of Hume's time also claimed that they had

a very clear idea of heaven.  According to Hume, however, "heaven" and "angels" are

complex ideas.  If we think about this for a moment, we quickly realize that our personal

idea of "heaven" consists of a great many elements.  It may include "pearly gates,"

"angels," "streets of gold", and so forth.  Breaking heaven down into its various

constituent parts doesn't solve the problem for us because each of the parts - pearly gates,

angels and streets of gold - are still complex ideas in themselves.

The prize for the most amusing illustration of Aristotle's view should go to the

systems scientist, John Casti.  In recalling Mark Twain's tale about Those Extraordinary

Twins, Siamese twins called Luigi and Angelo, Casti reminds us that the story was based

on the lives of the first recorded Siamese twins in the real world.5  These twins, Chang

and Eng, were born in Siam in 1811 but ended up as American citizens.  The truly

fascinating thing was that both of them had an army of children: seven daughters and

three sons for Chang, seven sons and five daughters for Eng.  How they managed to be so

productive is anyone's guess!

Hume and Casti were stressing the same point: if you want to study the behaviour

of a system composed of several parts, breaking it up into its constituent parts and
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studying each of them separately won't always help you to understand the whole thing.

It's pretty clear that Mark Twain, for one, would not have been the least bit interested if

Chang and Eng had been separated at birth.  Siamese twins are very special because

they’re linked together in an unusual manner.  It's the connection itself which makes them

interesting and unique.  The result is a  system far more complicated than that of a typical

human being.  In trying to understand the whole system "Chang-and-Eng", it's essential to

take this connectivity into account.

Connectivity is not just a fundamental feature of living systems.  As we showed in

the example of movie selection, it’s also an important feature of products which we buy

and sell in our everyday economic activities.  A car is an excellent example of

connectivity.  If you’d lived all your life in the remotest jungles of Africa, chances are

that you might never have seen a car.  Then one day you come to town and happen to see

this strange object, the purpose of which is unknown to you.  The functions of each of its

components are carefully explained to you in your native language - what the carburettor

does, where the fuel is injected, how the wheels turn on axles, and so on.  But imagine if

the aim of the whole exercise is never revealed.  Chances are high that you might never

guess that this strange object sitting before you is designed for one simple purpose - to

transport human beings from one place to another.  A car’s detailed structure is complex,

but its overall purpose is behaviourally simple.

As you may have guessed already, the ability of a car to move is an emergent

simplicity, an ordered outcome that the car can carry out by virtue of its overall

organization.  So is the ability of a clock to “tell” the time or of a fan to cool the

surrounding air.6  Many products that we buy and sell possess regularities of behaviour

that seem to transcend their own ingredients.  We know what the emergent simplicities

happen to be.  But imagine if we didn't.  Even after having all the intricate parts and

                                                                                                                                                                            
5 The tale of these twins can be found in a book addressing the possible creation of a “science of surprise.”
For the part on Twain’s tale, see Casti (1994), pages 171-2.

6 Time is rather special in other ways as well.  Whether we think of it as flowing like sand, or turning on
wheels within wheels, time escapes irretrievably.  It simply keeps on keeping on.  All that a clock really
does is mark that progress for us.  Timepieces don’t really keep time, they just keep up with it!
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mechanisms of a car or a clock or a fan explained to us in minute detail, we might never

guess what the whole machine does.

Emergent simplicities can’t be deduced by a reductionist approach, i.e. reducing

the apparent complicatedness of the problem by analyzing its constituent parts and then

linking them together by relatively simple rules.  Yet this is what much of economics

attempts to do.  Whole economies are subdivided into statistically convenient subclasses,

like industries and households.  These subclasses are often subdivided into even smaller

parts, like jobs and persons.  Then comes the problematical step.  By making some

simplifying assumptions about the behaviour of these smaller parts, economists draw

conclusions about collective outcomes.

The reductionist strategy – take it apart, see what the pieces are, understand how

they fit together – does help with simpler economic systems.  But it runs into major

headaches when the system of interest is truly complex.  Regrettably, we cannot use the

reductionist philosophy to explain more than the very simplest interactions between or

within human populations.  It simply won't work on more complicated problems.

Obviously, it’s difficult to predict the exact branchings of a complex coevolving

system which involves living elements - like a human brain, a bustling city or an

expanding economy.  The sheer complexity of some human systems is mind-boggling.

For example, a brain is a collection of immensely many parts.  Estimates of just how

many vary from 10 billion to 100 billion neurons.  These parts are hooked up to each

other in incredibly complex ways, most neurons being connected to several hundred

others.  Some are connected to thousands of others!  Having so many connecting wires,

it's impossible to even imagine what an accurate circuit diagram would look like.  It

would need a gigantic computer system just for its storage.  Although we do understand

some basic features of how this gigantic neural telephone system works, we know

virtually nothing about the meaning of the messages flowing through it.

Speaking metaphorically, we’re left groping in the dark!  Even an expert

electronic engineer would have trouble understanding how a circuit worked if he didn't

know what its components did or how they were linked together.  This is precisely the

situation in many parts of human society.  Our cities are another example.  Each of us
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knows very little about what other people and other organizations do and has limited

knowledge of the circulatory patterns which the city generates.  Yet, despite this

uncertainty - or perhaps because of it - the city manages to survive!  Most of the time it

seems to be operating under the principle of "more of the same."  Every now and then,

however, it suffers abrupt and permanent change.  The city's apparent equilibrium is

suddenly punctuated by an avalanche of changes.  To all intents and purposes, it

undergoes a phase transition.

Phase transitions are quite commonplace in many physical systems.  A lesser

known fact is that they also occur in schools of fish, in human brains and on city

highways.  When the interactions between the components of the system are sufficiently

dense, and when those interactions add up in such a way as to make for large-scale

correlations, then a different kind of entity emerges.  Remember that sandpile behaviour

we met in Chapter One.  Self-organized criticality takes hold.  The fascinating thing is

that this new entity is on a higher level of organization than its constituents.  It obeys

certain laws of its own.  These higher-level laws are sometimes very simple.

The collective behaviour of crowds at a concert or voters at a meeting can undergo

phase transitions.  Before a public meeting starts, many of the individuals in the audience

are unknown to each other.  What can they possibly have in common?  Perhaps only one

thing, but one important thing.  Once they begin to listen to the same performers, they

begin to influence each other - by laughing, applauding or interrupting.  These interactive

modes of behaviour tend to get "locked-in" very quickly.  Their contagious nature creates

self-reinforcing loops of interaction between performers and audience.  The performers

are aware of the interaction between themselves and the audience.  They can sense the

mood of the audience as a whole.  In fact, their very success or failure relies heavily on

the audience's collective psyche.

Such self-reinforcing feedback loops are of paramount importance in collective

modes of behaviour.  They help to explain why a phase transition can arise.  Once the

density of interactions exceeds a critical threshold, then the collective character of the

system can change unexpectedly.  To further illustrate the pervasive nature of phase
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transitions, let's look at a toy experiment, one in which this kind of qualitative change is

"catalysed" at critical thresholds of interaction.

{A}Getting Well-Connected{/A}

Simpler toy problems are useful in science because they allow us to gain insight into

more complicated, real-world ones.  The toy problem of interest here involves random

graphs.  Before we launch into a discussion of random graphs, however, a few

introductory words about graph theory and modelling are in order.

Conventional economic modelling involves postulating causal relationships

between known variables of the problem.  These variables are often measured over

aggregates of agents.  Such models attempt to formalize relationships in the language of

mathematics.  As we learnt in the previous section, and will find throughout the course of

this book, it may be impossible to model a truly complex system in this way.7  In many

ecological and economic systems, there are simply far too many variables and far too

many interactions to measure.  Some of our forebearers were well aware of this difficulty.

For example, Joseph Schumpeter delivered a cautionary message about the use of

economic models more than fifty years ago: "The process of social life is a function of so

many variables, many of which are not amenable to anything like measurement, that even

mere diagnosis of a given state of things becomes a doubtful matter quite apart from the

formidable sources of error that open up as soon as we attempt prognosis."8

In many economic situations, the formulation and use of such conventional

mathematical models is highly questionable.  This is where graph theory can provide an

alternative means of studying the relational processes involved.  A graph is simply a set

of vertices or nodes together with a set of edges or links connecting certain pairs of nodes.

If each link also has a specific direction (i.e. a beginning and an end), then we call it a

                                                          

7 Here we should distinguish conventional modelling from simulation.  Many complex economic systems
may be “modelled” with the aid of agent-based simulation, a new way of doing science and a topic which is
discussed in later chapters.

8  See Schumpeter (1934).
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directed graph or digraph.  Furthermore, if the strength of the causal relationship can be

represented by a real number, the process results in a weighted digraph.  This is simply a

digraph in which every link has a real number associated with it.

We’ll use a special kind of weighted digraph in this chapter.  It’s called a signed

digraph, and is simply a weighted digraph in which the weightings are either +1 or -1.  It

usually corresponds to a situation where we can identify possible interactions or

relationships between pairs of socio-economic variables, but only to the extent of

deciding whether they’re positive or negative for the pairs involved.  We simply don’t

know enough about the strength of the various interactions to assign real numbers to

them.  Even if we can measure the strength of an interaction at one point in time, we can’t

be sure that the same relationship  will prevail at another point in time.

Take a look at Figure 3.2.  It's a signed digraph representing the causal linkages in

a key subsystem of an urban economy: a waste disposal system. The arrows indicate the

direction of influences.  A + sign indicates that the changes occur in the same direction,

but not necessarily positively.  For example, the + between P and G indicates that an

increase in the population of the city causes an increase in the amount of garbage per unit

area.  At the same time, it also indicates that a decrease in the population of the city

causes a decrease in the amount of garbage per unit area.  The - between S and D

indicates that an increase in sanitation facilities causes a decrease in the number of

diseases.  At the same time, it also indicates that a decrease in sanitation facilities causes

an increase in the number of diseases.

[Fig. 3.2 near here]

Note how some of the arrows form loops.  For example, there’s a loop of arrows

from P to M, M to C, and then from C back to P.  A loop indicates a mutual causal

relationship.  By this we mean that an initial influence on an element comes back to

amplify itself by way of other elements.  For example, in the loop P-M-C-P, an increase

in the city’s population causes an increase in modernization, which in turn increases

migration into the city, which in turn increases the population in the city.  In short, an
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increase in population causes a further increase in population through modernization and

migration.  On the other hand, a decrease in population causes a further decrease in

population through decreased modernization and decreased migration.

In such a loop, therefore, each element has a positive influence on all other

elements, either directly or indirectly, and therefore each element influences itself

positively through other elements.  The thing which distinguishes this approach from

typical closed-form modelling is that there’s no hierarchical causal priority in any of the

elements.  That’s why the loop depicts a mutual causal relationship.  None of the

elements are assumed to be the principal causal element affecting the others.  The

resulting mutual causal relationship in this loop is deviation-amplifying. For simplicity,

we’ll refer to it as a positive feedback loop.

Now look at the loop P-G-B-D-P.  This loop contains a negative influence from D

to P.  An increase in population causes an increase in the amount of garbage per unit

area, which in turn causes an increase in the number of bacteria per unit area, which in

turn causes an increase in the number of diseases, which in turn causes a decrease in

population.  In short, an increase in population causes a decrease in population through

garbage, bacteria and diseases.  On the the other hand, a decrease in population causes a

decrease in garbage, bacteria and diseases, and thus causes an increase in population.  In

this loop, therefore, any change in population is counteracted by itself.  The mutual causal

relationship in this loop is deviation-counteracting.9  Such a deviation-counteracting

process may result in stabilization or oscillation, depending on the time lag involved.

We’ll refer to it as a negative feedback loop.

The loop P-M-S-D-P has two negative influences.  An increase in population

causes causes an increase in modernization, which in turn causes an increase in sanitation

facilities, which in turn causes a decrease in the number of bacteria per unit area, which in

turn causes a decrease in the number of diseases, which in turn causes an increase in

                                                          
9  According to Magoroh Maruyama, the field of cybernetics has been more-or-less identified as a science
of self-regulating and equilibrating systems.  By focusing mostly on the deviation-counteracting aspects of
mutual causal relationships, cyberneticians have paid less attention to systems in which the mutual causal
relationships are deviation-amplifying.  Yet such systems are ubiquitous in nature and in human society.
For a more complete discussion of the distinctions, see Maruyama (1963).
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population.  This is therefore a deviation-amplifying or positive feedback loop.  The two

negative influences cancel each other out and become positive overall.  In general, any

feedback loop with an even number of negative influences is positive, and any feedback

loop with an odd number of negative influences is negative.  An economy contains many

positive as well as negative feedback loops.  What matters most is that all the pertinent

loops affecting the system of interest be identified and their influences considered.

Now that we’re familiar with the idea, let’s see how digraphs can be used to gain

deeper insights into some economic complexities.  Our next example focuses on a

controversial issue in the global arena: the terms of trade between nations.  Appropriate

tariff and quota levels have been debated vigorously for decades, especially for

agricultural products.  During the nineties, for example, American newspapers were full

of criticism of Japan’s restrictive policy on beef imports from the United States.  There’s

little doubt that the Japanese do play by different rules when it comes to agricultural

goods.  In the case of beef, they try to protect their cattle farmers and promote the “home-

grown” product.  In today’s “borderless” world, however, it’s not that easy to figure out

what’s really in a nation’s best interest anyway.10  Who stands to gain most from

increased beef exports from the United States to Japan?  Let’s try to work through the

arguments, visualizing the relationships between the key factors raised in the form of a

digraph.

[Fig. 3.3 near here]

Conventional economic wisdom – like the Hecksher-Ohlin theory – attributes

international trade to underlying differences between countries.  The key idea is that each

country produces and exports goods that reflect that country’s comparative advantage

over other countries.  In determining the volume of beef exports from the U.S. to Japan,

for example, four variables seem to be important: consumption levels of comparable beef

in Japan (B), the size of Japan’s cattle herds (J), exports of American beef to Japan (A),

                                                          
10 For a penetrating insight into misleading trade statistics in the global economy, including an assertion that
the United States has no “foreign” trade as long as it’s buying in dollars, see Ohmae (1994, especially
Chapter 9).
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and the dollar/yen exchange rate (X).  We’ve depicted these causal linkages in Figure 3.3.

Having witnessed rising family incomes in Japan, the Americans reasoned that growing

demand for beef in Japan could be satisfied by expanding American beef shipments to

Japan.  This is indicated by the positive sign on the arrow from B to A.

While this reasoning seems sound, it really only scratches the surface.  In their

desperation to get American beef onto Japan’s dinner tables, the U.S. Government failed

to address some related issues of fundamental importance.  Firstly, is beef that’s grown in

America “American”?  For that matter, are the cattle raised in Japan really “Japanese”?

The answers may look obvious.  But they’re not obvious.  Why?  One complicating factor

is that Japanese cattle are raised almost entirely on American grain.  If more Japanese

beef is eaten in Japan, then more American grain will be consumed.  Although an

increase in the size of Japan’s herds may have a negative impact on imports of beef from

America, almost certainly it will have a positive impact on imports of “American” grain.

Furthermore, grain agriculture has much higher levels of productivity in the United States

than does cattle raising.  Thus the Americans are more likely to be able to win the grain

race.  Competition from the Australians and the Argentinians makes the beef race much

tougher.

Another complication is the issue of ownership.  Who owns the ranches, feedlots

and packing plants that make up the lion’s share of the beef industry in the United States?

Japanese importers like Zenchiku Ltd. own many of them, mainly because it’s easier for

the Japanese to invest in the U.S. industry than for Americans to invest in Japan.  They

and others will soon be shipping in more beef from the United States than Americans do

today.  Japanese owners can control all stages of cattle raising and handling to meet their

own market’s requirements.  They can also use Japanese know-how and repatriate profits

back to Japan.

As Paul Krugman suggests, whenever a Japanese firm buys an American firm, we

need to know whether that firm will be run differently, and if so, whether the U.S.

economy will be hurt or helped by the difference.11  It’s not at all clear in what sense the

                                                                                                                                                                            

11 See Krugman (1994b), Chapter 11.
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beef shipped by Zenchiku from the United States to Japan represents a net increase in

American exports.  Not only does growing Japanese ownership in the United States make

it difficult to answer the two earlier questions.  More importantly, it points to the growing

interdependencies between the Americans and the rest of the world.  Rising levels of

trade and foreign ownership mean that the U.S. economy is becoming increasingly

multinational and interdependent.  In other words, the US-led global economy is rapidly

becoming a strongly-interactive economy.

[Fig. 3.4 near here]

Now let’s return to our main question: Will an increase in beef exports from the

United States to Japan be of net benefit to the U.S. economy?  The answer is far from

obvious.  Less obvious linkages and relationships need to be factored in when an issue

like this is debated.  What we’re seeing in Figure 3.4 is just a small sample of the full

range of economic interdependencies affecting beef exports between the two countries.

When a change occurs in one part of this interlinked economy, it can lead to myriads of

chain reactions elsewhere.  A handful of these responses are large and direct, but many

others are small and indirect.  Their “global” repercussions may be unpredictable.  Shades

of Schelling’s segregation model and Bak’s sandpile avalanches spring to mind.

Now let’s move on to the topic of random graphs.  A random graph is similar to

the graphs discussed earlier, except that the nodes are connected at random by a set of

links.  Although we know how the network graph looks at one point in time - i.e. which

pairs of nodes are already connected – we’ve no way of knowing which pair of

unconnected nodes may be connected at the next point in time.  This means that we’re

less concerned with the direction and strength of pairs of interactions (like those shown in

Figure 3.4), and more concerned with the overall pattern of connectivity that develops.12

This is the starting point for the toy problem we wish to discuss.  To give it a

physical interpretation, think of the nodes as "buttons" and the links as "threads."

                                                          
12 For a fuller discussion of the connectivity properties of random graphs, see Erdos and Renyi (1960) and
Kauffman (1993, 1995).
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Imagine that alot of buttons lie scattered on a wooden floor.  Choose any two buttons at

random, pick them up, and connect them with a thread.  After putting this pair down,

randomly choose two more buttons and do the same.  As you continue to do this, at first

you'll mostly pick up buttons that you haven’t threaded earlier.  Sooner or later, however,

you're likely to pick up a pair of buttons and find that you've already threaded one of

them.  When you thread that button again, you'll have linked together three buttons.  As

you go on choosing pairs of buttons randomly to link together with threads, you'll find

that some of the buttons soon become interconnected into larger clusters.  We’ve used a

random number generator to produce the pattern of linkages shown in Figure 3.5.

[Fig. 3.5 near here]

The interesting thing to note is that random graphs exhibit very regular statistical

behaviour as one tunes the ratio of threads to buttons.  Let’s denote this ratio by R.  Once

R passes the 0.5 mark, something seemingly magical occurs.  All of a sudden most of the

clusters become cross-connected into one giant structure!13  When this giant web forms,

the majority of buttons are directly or indirectly connected to each other.  As R

approaches one, virtually all remaining isolated buttons and small clusters become cross-

connected into the giant web.  Note how closely the situation resembles the sudden

transformation of a weakly-connected transportation network into a strongly-connected

one, by the addition of a "critical link" connecting key subnetworks; or the sudden

transformation of a weakly-connected social group into a strongly-connected one once

there's unanimous acnowledgment of a common accord.  It's the sandpile effect again!

This sudden and unexpected change in the size of the largest cluster, as R passes

0.5, is the signature of a nonlinear process we met in Chapter 1.  It resembles a phase

transition.  The size of the largest cluster of buttons increases slowly at first, then rapidly,

then slows again as the value of R increases further.  Had we used an infinite number of

buttons, then the size of the largest web would jump discontinuously from tiny to

enormous as R passed 0.5.  The steep part of the curve would become more vertical than
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it is in the figure.  This is typical of a phase transition, just like when separate water

molecules freeze to form a block of ice.

[Fig. 3.6 near here]

The point of this toy example is to highlight the nonlinear nature of transitions

from a weakly-interactive to a strongly-interactive system.  Technically speaking, an

isotropic random graph crosses a threshold when the system passes from “nearly

unconnected” to “nearly connected.”  Such threshold transitions are rampant in graph

theory.  Suddenly, many small clusters are cross-linked to form one large cluster.  But it's

also reminiscent of Bak’s sandpile experiment and Schelling’s segregation model.  A

state of self-organized criticality is reached once local interactions between individual

elements are replaced by global communication throughout the whole system.  Could this

be some kind of universal law when it comes to the dynamics of complex systems?

Perhaps it may apply to socio-economic systems?

The argument for universality is strengthened by insights into random behaviour

stemming from another field, known as percolation theory.  In a random medium like a

porous stone, large scale penetration of water depends on the proportion of passages

which are broad enough to allow water to pass along them.  We’ll call this proportion R.

By simulating the stone’s porous structure as a sequence of open and closed edges (or

connected and unconnected links) on a square grid, large-scale water penetration is seen

to be related to the existence of strongly (i.e. infinitely) connected clusters of open edges.

When R = 0.25, the connected clusters of open edges are isolated and rather small.  As R

increases, however, the sizes of clusters increases.  There’s a critical value of R at which

a “super cluster” forms, pervading the entire grid.  As we throw in more and more open

edges, suddenly we reach a threshold when large-scale connections emerge.

Just like the onset of self-organized criticality, the occurrence of a critical

phenomenon is central to the process of percolation.  One may surmise that the wetting of

a stone is only a “local effect” when R is small, but becomes a “global effect” when R

                                                                                                                                                                            
13 Erdos and Renyi (1960) were the first to demonstrate this rapid transition, in which a single gigantic
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reaches a critical value.  Drinkers of Pernod acknowledge such phase transitions.

Transparent Pernod is undisturbed by the addition of a small amount of water, but as

more water is added drop by drop, an instant suddenly arrives when the mixture becomes

cloudy.  Recent simulation studies of bond percolation have shown that the random value

of R at which such global paths appear is very close to 0.5.14  It’s the same ratio as the

one that emerged in our toy example of random graphs.  Is this a coincidence?  We think

not.

The physical theory of phase transitions and critical phenomena is well developed,

together with multidimensional scaling and power laws.  But what about phase transitions

in socio-economic life.  Do they apply to human behaviour? Consider what happens when

a bunch of urban residents meet frequently to discuss an issue of common interest.  As the

intensity of their interaction increases, clusters of "like-minded" residents begin to emerge

spontaneously.  Like-minded residents don't know in advance that they’re like-minded.

They don’t even know who their closest allies may be.  These kinships emerge

spontaneously during the meetings.  Such like-minded clusters may do more than simply

interact among themselves.  To pursue their common interests more widely, eventually

they may link up with other like-minded clusters; creating even larger clusters.  Sounds

familiar, doesn't it?  People behaving like buttons and threads or grains of sand!  It’s

precisely how the weak may grow strong.

In fact, the socialization processes by which performers enchant an audience,

politicians sway voters, or common interest groups gain support are analogous to the toy

problem of buttons and threads.  People form clusters (e.g. political parties, unions, clubs)

in order to pursue their joint interests.  These weakly-interactive clusters can gather

strength unexpectedly, especially with the help of a key catalyst or critical link.  The latter

can play a powerful role in the shaping of society as a whole.  Electoral outcomes can be

swayed spontaneously by charismatic or forceful agruments from one of the protagonists.

The collective outcomes can be quite different from those intended or expected at the

                                                                                                                                                                            
connected component emerges – linking most of the nodes!
14 For a comprehensive discussion of the mathematical aspects of percolation theory, see Stauffer (1985) or
Grimmett (1998).
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outset by some individuals.  Such unpredictable outcomes are further examples of

emergent behaviour.

As we'll learn in Chapter 6, traffic jams on city highways are another form of

emergent behaviour, springing from the collective interactions of a bunch of drivers on a

road network.  Once the critical flow density has been exceeded, smooth laminar flow

changes abruptly to stop-start waves.  Emergent phenomena can arise in many other

socio-economic situations.  Their common bond is that the population of interacting

individuals "spontaneously" develop collective properties that were neither intended nor

expected by individuals a priori.  Order through fluctations  again!

{A}Sheep and Explorers[/A}

Granted that strongly-interactive systems display self-organized criticality, an obvious

question arises.  Who triggers these phase transitions?  Who are the architects of strongly-

interactive socio-economic systems?  The answer’s pretty obvious.  We all are.  We, the

interactors.  But “we’ aren’t identical.  Quite the opposite in fact.  As we learnt in the

previous chapter, our expectations, decisions and experiences vary greatly, even under

identical circumstances.  Because we’re forced to reason inductively  in situations where

information is limited, and such reasoning is open-ended, our chosen behaviour usually

differs.

Inductive reasoning places different demands on us as thinking individuals than

the deductive metaphor.  We’re all constrained by our personal stock of know-ware and

the cognitive abilities within us.  Inductive reasoning involves pattern formation and

pattern recognition, often by intuition and creativity.  Clearly some people are more

intuitive or creative than others.  They’re better at seeking and discovering novel

solutions to problems.  They’re willing to experiment, adapt and instigate change.  Others

merely follow existing patterns, often resisting change under almost any circumstances.

It’s pretty clear that we don’t possess the same catalytic potential" to create novel

solutions or adapt to changing circumstances.  Like the spectrum of light, cognitive

equipment consists of a mixture of cognitive skills of varying intensities.  Some of us are
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strongly creative, others only weakly creative; some of us are strongly adaptive, others

only weakly adaptive.

For convenience, we'll classify all economic agents in terms of two extreme forms

of behaviour.  We’ll call those who actively search for new possibilities explorers and

those who prefer to remain with the status quo sheep.15  The abovementioned spectrum of

cognitive skills implies that we all possess sheep and explorer qualities, albeit in different

doses.  Pure explorers tend to be imaginative, creative, highly strung individuals who

constantly search for better solutions to the problems they face.  They’re more inclined to

reason inductively, to learn quickly and to adapt willingly to changing circumstances.

Sheep are more placid, patient and resigned than explorers.  Preferring to reason

deductively, they’re prone to choosing a well established pattern.  They mostly cling to

particular beliefs because they've worked well in the past.  Sheep are slow learners who

must accumulate a record of failure before discarding their favourite beliefs.

Success in the economic world, as in life itself, requires both these facets of

behaviour.  Yet the two traits are almost contradictory.  First, an ability to organize one's

behaviour so as to exploit the available information to the fullest extent possible.  In

short, sheep like to think deductively and act predictably.  Second, an ability to ignore the

available information to some extent and to "explore" beyond the boundaries of current

knowledge.  Explorers tend to think inductively and their decisions are unpredictable.

Both kinds of behaviour can be found in all walks of economic life.  For example, sheep

and explorer strategies have been observed among fishing fleets searching for profitable

fishing zones.  The only difference is one of nomenclature.  Nonequilibrium systems

scientists like Peter Allen, who’ve studied the behaviour of fishing fleets, call the sheep

"Cartesians" and the explorers "Stochasts".  As Allen notes, the first group makes good

use of information, but the second generates it!   At the root of all creative activity lies an

explorer, punctuating the restful equilibrium of the sheep with unexpected change.

                                                          
15 The terms “sheep” and “explorers” were suggested by the traffic planner, Anthony Downs (1961), to
explain how peak-hour traffic congestion causes some drivers to search actively for faster alternatives while
others stubbornly tolerate the long delays caused by congestion.  We’ll explore this issue more deeply in
Chapter 7.
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[Fig 3.7 near here]

Because they’re driven by a constant struggle between creative (explorers) and

conservative (sheep) forces, economies evolve in an unpredictable way.  Over short time

horizons, the deductive agent may outperform the inductive one.  Deductively optimal

behaviour can rule supreme in a world of stasis.  Sheep can strut about with confidence in

a frozen world which isn't doing anything or going anywhere.  But not in that dynamic

world of morphogenesis.  Invariably, sheep will be found lacking in the long run.

Unfortunately for them, the best performance doesn’t follow optimization principles.

Instead it amounts to an adaptive compromise.  Remember our findings from the Trader's

Dilemma game in the last chapter.  If the game’s played once only, the best strategy for

each trader is to defect (i.e. leave empty bags).  But a Nash equilibrium is only

imperturbable because it compels all traders to think and act rationally.  In the iterated

version of the game, however, the best strategy is to cooperate.  Emergent cooperation

evolves out of noncooperation in the long run.  Order for free again!

And the long run is where our main interest lies.  To the extent that the real “laws”

of economics exist at all, the key point to remember is that they can’t be fully understood

by studying economic change within a time-frame which is short compared with the

economy's overall evolution.  It’s remarkable that the fallacy of a simple supply-demand

equilibrium has persisted for so long.  In the medium to long run, supply and demand

functions cannot be specified in isolation of one another.  They’re not independent

functions of price.  Each depends crucially on chance events in history - like the way in

which fads start, rumours spread, and choices reinforce one another.  Supply and demand

affect each each other, as well as being subject to common factors like the media.

If we look at the key economic agents who control technology in the world of

morphogenesis, such fallacies become more transparent.  Once again, sheep and explorers

can be found under different names.  This time they're called imitators and innovators.

Innovation is the domain of creative explorers.  Whenever their exploratory search

uncovers an area where positive feedbacks outweigh negative ones, then new growth-

inducing development can occur.  It’s only when we wish to rationalize about what’s
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happening that we insist there must have been some "pent-up" demand which justified the

supply.  We allow ourselves to slide back into the world of stasis.  There’s really no static

hill to climb.  The economic landscape’s too complex for that.  It's heaving and deforming

incessantly because it's formed by the interacting agents themselves.  All the agents are

coevolving continuously, learning-by-interacting.  Some are innovative explorers, others

are imitative sheep.  Once we admit even to just the presence of innovative or imitative

mechanisms, then the potential demand for something becomes a dynamic variable which

itself depends on the unfolding of events.

A small, growing band of economists have begun to treat technological change as

an evolutionary process.  Work carried out by Richard Nelson, Sidney Winter, and others

has emphasized the role of innovations and analysed conditions under which firms should

invest in innovations or imitate others.  Some firms invest huge sums in innovation,

thereby climbing up the the learning curve of a technological trajectory.  Others simply

copy the innovator.  IBM invested in innovation; Compaq cloned, selling IBM imitations.

Sheep follow explorers, just as long periods of relative stasis follow short periods of

morphogenesis.

Research into technological evolution sometimes ignores the fact that evolution is

actually coevolution.16  As we've said already, agents change their minds when they

interact with other agents.  Explorers are constantly learning-by-interacting.  So are

technologies.  They live in the niches afforded by other technologies.  For example, the

arrival of the automobile technology put the smithy's hammer out of business.  But it also

spawned new markets for traffic lights, gas stations, motels and drive-in food chains.

We're all hustling our wares, creating and destroying niches for one another.  Many of the

goods and services in our economy are intermediate goods and services; they’re used in

the creation of other goods and services that are finally consumed by households.

                                                          
16 Richard Nelson, Sidney Winter, Stuart Metcalfe, Giovanni Dosi, Gerry Silverberg and others have
developed an interesting class of evolutionary models in which technology and the structure of industry are
said to coevolve; see, for example, Nelson and Winter (1982).  This process leads to productivity growth
which is a statistical property of the system as a whole.  The technological notion of coevolution described
in their work complements the behavioural one discussed in this book.
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Searching for new possibilities among this vast web of goods and services is

essentially a stochastic activity.  Multiple possibilities abound, but few choices or

solutions are uniquely superior.  New ideas, products, or methods are mostly

recombinations of old ones.  Schumpeter recognized that recombination is a valid way of

defining economic development.  He argued that the the carrying out of new

combinations meant the different employment of the economic system’s existing supplies

of productive means, which may provide another definition of economic development.17

In the chapters to follow, we’ll look at several examples of how and when the

recombination of old ideas takes place, what’s recombined, and what’s actually created.

How do we, as economic agents, trade off economic necessity against the

elements of chance?  Should we behave like low-risk sheep or dare to enter the domain of

the high-rolling explorers?  Putting it in more explicit economic terms, how do we decide

between the certain prospect of earning modest profits now as against the uncertain

prospect of earning far higher profits in an unknown future?  Once again, this parallels

the Traders' Dilemma game played once against the iterated version played many times.

Perhaps the outcome of the iterated game can provide a clue to the answer.  Over the

longer term, not only do we search for novel solutions, but also for longlasting

cooperative strategies with those agents whose custom we learn to value most.  To soften

the impacts of an uncertain trading environment, for example, merchants seek to develop

bilateral trading agreements with their principal trading partners.  These long-term

agreements are designed to hedge against the volatility of a series of once-off transactions

with different partners.  Wherever the continuity of shipment and quality are important,

supplier loyalty is likely to prevail.

There’s another important reason for seeking bilateral trading agreements.  Our

choice of preferred partners is based on personal experience - what we’ve learnt about our

potential trading partners.  Once we’ve spent time and money identifying suitable

partners, bilateral agreements enable us to "lock-in" the benefits of what we’ve learnt.

Mutual advantages accrue to the partners.  Our cooperative network grows.  Learning-by-

interacting proves to be an adaptive process out of which a desire for cooperation

                                                          
17 See Schumpeter (1934).
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emerges.  We can capitalize jointly on what we’ve learnt.  And capitalizing on what

we’ve learnt is the key attribute of an explorer.  In the next section, we'll look at an

example of how we do capitalize on what we’ve learnt.  Whether consciously or

unconsciously, each of us behave like sheep or explorers in our everyday activities.

{A}Are You an Inductive Graph Theorist?{/A}

Most people use graph theory in their daily lives without ever realizing it.  I don't mean

that they're unsuspecting designers of signed digraphs, like the waste disposal system and

the beef story we discussed earlier.18  Instead, people use a much simpler kind of graph

theory as they move about conducting their daily business.  We all travel on networks of

various kinds.   For example, the London Underground Map (see Figure 3.8 below) is a

network graph used by millions of commuters each year.19  Although it only shows the

rail connections between stations, that information assists Londoners to make informed

decisions about the journeys they can make.  For example, if the stations of embarkation

and disembarkation are on the same Line, then the journey can be made without changing

trains.  Alternative routes can also be compared in terms of the number of intermediate

stops between points of embarkation and disembarkation.

The London Underground System has several hundred stations.  There are literally

millions of possible ways of travelling between them all.  It looks like a very big

combinatorial headache for most commuters.  Despite the network’s apparent complexity,

the above map and a few simple rules are sufficient to allow most commuters to select

reasonable routes at a glance.  Let's see how it works.

[Fig. 3.8 near here]

                                                          
18 Perhaps one should not rule out this idea too quickly.  Signed digraphs may be a natural way of
attempting to simplify a complex set of relationships into manageable components.  Such links and arrows
may play a basic part in the “mental modelling” of human beings.  For a discussion of  the role of links,
arrows and networks in human thought, see Johnson (1995).

19 I am grateful to Jeff Johnson, a systems scientist at the Open University in Milton Keynes, for pointing
this fact out to me; see Johnson (1995), pages 26-28.
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Suppose that you, the reader, want to use the Loop for the very first time. You

wish to catch a train from Victoria (near the bottom left of the map) to Notting Hill Gate

(at the left centre).  First you must search the map for routes or sequences of stations

which will allow you to do this.  You find two that seem feasible.  One sequence is

Victoria - Sloane Square - South Kensington - Gloucester Road - High Street Kensington

- Notting Hill Gate.  The other is Victoria - Green Park - Bond Street - Marble Arch -

Lancaster Gate - Queensway - Notting Hill Gate.

Choosing between these two possibilities turns out to be a relatively simple task.

You opt for the Sloane Square route for one of three reasons.  First, you can make the

whole journey on one line without changing trains.  You'll simply get on a westbound

Circle Line train at Victoria and duly arrive at Notting Hill Gate.  If you took the second

route, you'd need to change trains twice - at Green Park and again at Bond Street.

Second, there are only four intervening stations on the first route compared to five on the

second route.  Third, you’ve been told that trains on the Circle Line are invariably more

frequent than those on the Victoria and Jubilee Lines.

Because the problem is well-defined, you’re able to deduce the optimal solution.

Moreover, you feel confident about your choice.  You have all the information you need

to make an objectively rational decision.  And you’re absolutely correct!  Most London

commuters do take the Circle Line train to reach Notting Hill Gate from Victoria.

Commuters have no need to resort to intuition or fancy guesswork.  The problem is

simple enough to be solved by deduction.

 Now suppose that you’ve been making the journey from Victoria to Notting Hill

Gate on a daily basis for several months.  In fact, you’ve been using the Loop for some

other journeys as well, most of them on a single line.  From these commuting

experiences, gradually you’ve formed a picture of the Loop system in your mind.  Let’s

call it a “mental model.”  It’s your own mental impression of how the Loop operates in

time terms – trip times, delay times, line frequencies, etc.  Of course, this model’s only a

crude, partial approximation to reality.  It may even be flawed.  But it’s helped you to

select routes for several months now and you’ve been satisfied with the resulting travel
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times. You begin to wonder if the commuting life of a London Loop traveller is always so

simple!

I’m willing to bet that your mental model turns out to be rule-based.20  By this I

mean that your mental representation of the Loop system is formed and altered by the

application of condition-action rules, which take the general form, IF (condition 1,

condition 2, ...... condition n), THEN (action).  In choosing between alternative route

possibilities, for example, experience has taught you that an important rule to observe is:

IF you can make your whole journey on one line

THEN choose that line.

Another rule, which you may apply, is:

IF trains run more frequently on one line

THEN choose that line.

A third rule, which may form part of your mental model, is:

IF one route has fewer intervening stations

THEN choose that route.

Undoubtedly, your mental model will consist of more than just a set of IF/THEN

rules.  For example, experience may have taught you to apply the above rules in a

different order on weekdays to weekends.  The key point is that you’re reasonably happy

with the net result.  Travel times experienced have fallen within your expectations.  You

                                                          
20 Rule-based mental models are central to the dynamic analysis of problem solving and induction described
by Holland, Holyoak, Nisbett and Thagard (1986).  The reader is directed to this source for a
comprehensive discussion of the kind of inductive behaviour described in this book.  This is not to imply
that a rule-based approach to artificial intelligence is likely to succeed.  To build a device that even
approaches real intelligence would require a rule-based program far larger than anything that could be
managed in a human’s lifetime.
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feel confident that you understand how the Loop system operates and that you can

estimate travel times, albeit roughly.

Then, one day, you find the need to commute between a pair of stations that you

haven’t tried before.  You must get from Baker Street to St. James's Park.  Searching the

map for feasible routes, you find a direct link (westbound) between these two stations on

the Circle Line, with eleven intervening stations.  There’s a second route that goes via

Victoria, Green Park and Bond Street, with only three intervening stations on this route.

But you'll have to change trains at two of them (Victoria and Green Park).  There's a third

route via Victoria, Green Park, Oxford Circus and Regent's Park.  This time there are four

intervening stations, but again you'll have to change trains at two of them (Victoria and

Oxford Circus).

If you apply your usual mental model, the direct route via the Circle Line is the

obvious choice.  But will it be the quickest?  Suddenly you realize that you’re facing a

more complicated decision problem.  Diabolically, you lack some key information.

You’ve no way of knowing what the likely delays will be if you choose either of the

indirect routes.  How long will you have to wait when you change trains?  The two

indirect routes certainly look much shorter on the map, because there’s only a few

intervening stations.  Should you relinquish familiar determinism (the direct approach)

and test the elements of chance (unknown waiting times)?  In other words, should you

behave as a sheep or as an explorer?

The truth of the matter is that you simply don’t have sufficient information to

make a rational choice between these alternatives?  Having never travelled on the Loop

between St. James’s Park and Baker Street before, you’re forced to rely on intuition and

an ounce of luck.  But once you’ve made this journey several times, you can begin to

form a more accurate picture of the relative merits of each alternative.  If you’re an

explorer at heart, you’ll test all three routes.  Only by trying out the two indirect routes

can you hope to estimate the relative frequency of trains on different lines and the average

delays incurred by changing trains.  Sheep tend to resist this kind of experimentation.

They favour the certainty of familiarity, i.e. the direct option.  By way of contrast,

explorers tend to learn incessantly from their own experiments.  Gradually they begin to
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form a more accurate impression of the typical behavioural patterns of the Loop System.

Then they adapt and change routes accordingly.

 In summary, explorers are adept at learning-by-circulating.  They believe in

testing and updating their own mental models of the Loop System on a regular basis.

This means judging how well their favoured rules work when applied to the reality of

their day-to-day experiences.  They also compare these experiences with their prior

expectations.  If this experimentation suggests that their mental model may be inaccurate,

then they discard some of their old rules and add some new ones in order to improve it..

Then they repeat the experiments.  Testing, adapting, testing, adapting.  This is the way of

an inductive explorer.  And this is how to travel on the road to know-ware.



TABLE 1.1:
Two Economic Worlds - The Simple and the Complex

_________________________________________________

NECESSITY CHANCE
_________________________________________________

Stasis Morphogenesis
Resource-Based Knowledge-Based
Unique Outcome Multiple Outcomes
Equilibrium Path-Dependent
Mechanistic Organic
Predictable Unpredictable
Diminishing Returns Increasing Returns
Convex Nonconvex
Easy to Model Difficult to Model

_________________________________________________

A SIMPLE WORLD A COMPLEX WORLD
_________________________________________________



TABLE 2.1:
Information and Knowledge

__________________________________________________________________

Characteristic Information Knowledge
__________________________________________________________________

Source External Internal
Nature Weakly-interactive  Strongly-interactive
Primary exchange mode Interface           Face-to-face
Learning rate Fast Slow
Usefulness Temporary Longlasting
Exchange process Simple Complex
Unit of measurement Quantitative        Qualitative

(e.g. bits) (e.g. deep)
__________________________________________________________________



TABLE 4.1
Population Growth in Europe

_________________________________________________________

Date       European    Margin of
     Population    Error (%)

_________________________________________________________

 200 48 35
 500 36 30
 800 32 30
1000 39 20
1300 75 20
1500 76 10
1700 102  8

_________________________________________________________



TABLE 4.2:
The Ten Largest Cities in Europe by Population, 1000-1400

_________________________________________________________

1000 1100 1200 1300 1400
_________________________________________________________

Cordova Constantinople Constantinople Paris Paris
Constantinople Fez Palermo Granada Bruges
Seville Seville Seville Constantinople Milan
Palermo Palermo Paris Venice Venice
Kiev Cordova Venice Genoa Genoa
Venice Granada Cordova Milan Granada
Thessalonika Venice Granada Sarai Prague
Ratisbon Kiev Milan Seville Constantinople
Amalfi Salerno Cologne Florence Rouen
Rome Milan London Cologne Seville
_________________________________________________________



Table 5.1: Changes in Rank of Selected American Cities, 1810-1910
______________________________________________________

----------------Rank in-----------------
City 1810 1860  1910
______________________________________________________

New York   1     1     1
Philadelphia   2    2    3
Baltimore   3     3    7
Boston   4     4    5
New Orleans   6     5   14
Cincinatti 42    6   13
St. Louis   -     7    4
Chicago   -     8    2
Buffalo   -     9   10
Louisville   -    10   22
Albany  17   11   44
Washington  12  12   16
San Francisco   -    13   11
Providence   8    14   21
Pittsburgh  28   15    8
Rochester   -  16   23
Detroit   -  17    9
Milwaukee   -  18    12
Cleveland   -  19    6
Charleston   4    20   77
________________________________________________



Table 5.2:  Similarities Between CAs and Socio-Economic Dynamics
________________________________________________________________

Cellular Automata Socio-Economic Dynamics
________________________________________________________________

Basic elements Cells are the basic units Individual agents are the
or “atoms” of a CA basic units of an economy

Possible states Cells assume one of a Agents form mental models
set of alternative states which enable them to make

choices from alternatives

Interdependence The state of a cell affects The choices made by agents
the state of its closest affect the choices made by
neighbors other agents

Applications Modeling the emergence Important tasks include:
and tasks of order, macro outcomes understanding the emergence

explained by micro rules, of order, macro to micro
and the path dependence relationships, and economic
of dynamic processes dynamics

________________________________________________________________
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