Learning Algorithm Illustrations: From Simple to Deep

Leigh Tesfatsion

Research Professor, and Professor Emerita of Economics, Mathematics, and Electrical & Computer Engineering

Iowa State University
Ames, IA 50011-1054

http://www2.econ.iastate.edu/tesfatsi/
tesfatsi@iastate.edu

Last Revised: 30 July 2020
References & Acknowledgement

Main References:

www2.econ.iastate.edu/classes/econ308/tesfatsion/learning.Econ308.pdf

http://www2.econ.iastate.edu/tesfatsi/aemind.htm

Important Acknowledgement:

Some of the slides below are adopted from the following great online slide presentations:

Andrew Barto, “Searching in the Right Space”
Bill Smart, “Reinforcement Learning: A User’s Guide”
Bill Tomlinson, “Biomorphic Computing”
Wendy Williams, “GA Tutorial”
Nicolas Galoppo von Borries, “Intro To ANNs”
1. Overview

2. Reactive Reinforcement Learning (RL)
 - Example 1: Deterministic reactive RL
 (e.g. Derivative-Follower)
 - Example 2: Stochastic reactive RL
 (e.g. Roth-Erev algorithms)

3. Belief-Based Learning
 - Example 1: Fictitious play
 - Example 2: Hybrid forms
 (e.g. Camerer/Ho EWA algorithm)
4. Anticipatory Learning
 (Example: Q-Learning)

5. Evolutionary Learning
 (Example: Genetic Algorithms - GAs)

6. Connectionist Learning
 (Example: Artificial Neural Nets - ANNs)
1. Overview

- So far, we have worked with given strategies for very simple one-stage and iterated (multi-stage) games.

- The strategies we have seen to date for iterated games have been *adaptive* in the following sense:

 - The action dictated by the strategy at any given time is conditioned on the current (information) state of the player.

- But this state conditioning is determined in advance of any actual game play.

 Example: TFT (start by cooperating, then do whatever your rival did in the previous stage).
Axelrod Tournament Demo
Basic Tournament by R. Axelrod; Demo developed by C. Cook
http://www2.econ.iastate.edu/tesfatsi/acedemos.htm

- User-specified strategies for playing a specified type of game (e.g. PD, Chicken, Stag Hunt) are pitted against one another in repeated round-robin play.

- **KEY ISSUE:**
 What types of strategies perform best over time?
 Will nasty or cooperative types prevail?
In the next part of the course we will investigate adaptive strategies for more complicated types of iterated MARKET games.

We will also investigate the possibility of LEARNING in iterated market games.

That is, we will want to permit one or more players to STRUCTURALLY MODIFY their strategies DURING successive game iterations based on sequentially observed events.
Overview...Continued

LEARNING means....for example:

- A player starts an iterated game with an initial strategy ("policy") \(\pi \) dictating an action \(a \) to be taken in each state \(s \):

 \[
 \text{State } S \rightarrow \text{Action } a
 \]

- But, after observing the payoff ("reward") \(r \) from using this state-action association, the player eventually decides to change this association:

 \[
 \text{State } S \rightarrow \text{Action } a^*
 \]
Caution: Intrinsic Ambiguity in the Distinction between Adaptation and Learning

- Suppose an agent is acting in accordance with a particular state-action association $s \rightarrow a$ in a general environment e.

- Suppose something happens (e changes to e^*) that convinces the agent to change this association to some other association $s \rightarrow a^*$.

- If the definition of “state” is expanded from s to (s,e), the associations $(s,e) \rightarrow a$ and $(s,e^*) \rightarrow a^*$ have not changed.
General Types of Learning

- **Unsupervised Learning**
 - Update structure based on intrinsic motivation (curiosity, enjoyment, moral duty, ...)

- **Reinforcement Learning (RL)**
 - Update structure in response to successive rewards attained through actions taken

- **Supervised Learning**
 - Update structure on basis of examples of desired (or required) state-action associations provided by an expert external supervisor
Reinforcement Learning (RL)

- Elements of traditional RL:

 - **Policy** π: Maps each state s to an action choice a
 - **Reward** r: Immediate value of state-action pairing
 - **Transition model** $T(s,a)=s'$: Maps current state-action pairing (s,a) to a next state s'
Elements of Traditional RL...

reward r ("utility", "score", "payoff", "penalty")

Basic Intuition: The tendency to take an action a in state s should be strengthened (reinforced) if it produces favorable results and weakened if it produces unfavorable results.
Agent and environment interact at discrete time steps: \(t = 0, 1, 2, \ldots \)
- Agent observes state at step \(t \): \(s_t \in S \)
- produces action at step \(t \): \(a_t \in A(s_t) \)
- gets resulting reward: \(r_{t+1} \in \mathcal{R} \)
- and resulting next state: \(s_{t+1} \)
States and rewards are modeled as external forces determining an agent’s choice of actions.
In Accord with Human Motivation?

Factors that energize a person to act and that direct his or her activity:

- **Extrinsic Motivation**: Being moved to act in hopes of receiving some external reward ($$, a prize, praise, etc.)

- **Intrinsic Motivation**: Being moved to act because it is perceived to be inherently desirable, enjoyable, moral, ...
A More Modern Extrinsic/Intrinsic View of Agent Action Choice

external state s_e

memory

RL policy

intrinsic state s_i

needs and preferences

beliefs

action $a = \pi(s_e, s_i)$
Intrinsic Motivation: Questions

- An activity is intrinsically motivated if an agent does it for its own sake rather than to receive specific rewards (or avoid specific penalties)
- Curiosity, exploration, moral duty, . . .
- Can a *computational learning system* be intrinsically motivated?
- Specifically, can a *computational RL agent* be intrinsically motivated?

(Cf. Work by Andrew Barto and Satinder Singh)
2. Reactive RL

Asks...

Given past events, what action should I take now?
Example 1: Deterministic Reactive RL

Derivative-Follower (DF) Adaptation
(Greenwald and Kephart, 1999)

- Originally developed as a simple way for computational agents to repeatedly modify a *scalar* decision d.

- The DF agent experiments with incremental increases or decreases in d of a given magnitude $\Delta d > 0$.

- An external reward is attained after each change in d.

- The DF agent continues to move d in the same direction (increases or decreases) until the reward level falls, at which point the direction of movement in d is reversed.

- Letting states $s = \Delta\text{reward}$ and actions $a = \pm \Delta d$, the associations $s \rightarrow a$ are in fact fixed in advance.
DF Adaptation:
A Simple Market Example

- Each day a firm produces b^* pounds of beans.
- On the first day the firm selects a unit price p^0 ($$'s per pound) at which to sell b^*.
- The firm then posts successively higher daily prices p for beans of the form $p^0+\Delta p$, $p^0+2\Delta p$, ... with $\Delta p > 0$ until profits are observed to fall.
- The firm then reverses course and starts to decrease p by step-size Δp. And so on...

Question: When will this work well (if ever)?
When will DF adaptation work well (if ever)?

- Suppose profits are a concave function of the price p.
But suppose profits are NOT a concave function of the price p?

- Can end up on the wrong peak!

Diagram:

- Profits vs. Bean Price p
- p^*: True max profit point
- p^0, $p^0 + \Delta p$: Points on the graph
- DF agent could end here

Math:

$$\pi$$
Or suppose a profit-seeking firm must set BOTH price AND quantity levels?

- Where to start, which direction to search in, and how far to search in this direction?

Diagram:

- Bean Price p
- Beans b

? ? ? ?
A profit-seeking firm should try to stay on or above its marginal production cost function MC.

KEY ISSUE: *Correlated* Δp and Δb choices needed to stay above MC & move in desirable directions.
Example 2: Stochastic Reactive RL

Roth-Erev Algorithms

- Developed by Alvin E. Roth and Ido Erev (Games & Econ Beh. 1995, AER 1998)

 - Based on observations of people’s behavior in iterated game play with multiple strategically interacting players in various game contexts

 - Two extensions found necessary relative to RL methods developed earlier by psychologists for individuals learning in fixed environments:
 - Need to “forget” rewards received in distant past
 - Need for “spillover” of reward attributions across actions in early game play to encourage experimentation and avoid premature fixation on a suboptimal chosen action.
Roth-Erev Algorithm: Outline

1. Initialize propensities q for choosing actions.
2. Generate action choice probabilities Prob from current action propensities q.
3. Choose an action a in accordance with current action choice probabilities Prob.
4. Update action propensity values q using the reward r received after the last chosen action a.
5. Repeat from step 2.
Roth-Erev Algorithm Structure

- Action choice a leads to a reward r, followed by updating of all action choice propensities q based on this reward, followed by a transformation of these propensities into action choice probabilities “Prob”.

1. Action Choice a_1
2. Action Choice a_2
3. Action Choice a_3

r

Choice Propensity q_1
Choice Propensity q_2
Choice Propensity q_3

Choice Probability Prob_1
Choice Probability Prob_2
Choice Probability Prob_3
Updating of Action Propensities

Parameters:
- $q_j(1)$ Initial propensity
- ε Experimentation
- ϕ Recency (forgetting)

Variables:
- a_j Current action choice
- q_j Propensity for action a_j
- a_k Last action chosen
- r_k Reward for action a_k
- t Current time step
- N Number of actions

\[
q_j(t + 1) = [1 - \phi]q_j(t) + E_j(\varepsilon, N, k, t)
\]

\[
E_j(\varepsilon, N, k, t) = \begin{cases}
 r_k(t)[1 - \varepsilon] & \text{if } j = k \\
 r_k(t)\frac{\varepsilon}{N-1} & \text{if } j \neq k
\end{cases}
\]
Example A: Probability of choosing action j at time t
 = Relative propensity for action j

\[
\text{Prob}_j(t) = \frac{q_j(t)}{\sum_{n=1}^{N} [q_n(t)]}
\]
Example B: Gibbs-Boltzmann Probability

- Handles negative propensity values $q_j(t)$
- $T = \text{Temperature ("cooling") parameter}$
- T affects dynamic shaping of Prob distributions

$$
Prob_j(t) = \frac{e^{q_j(t)/T}}{\sum_{n=1}^{N} e^{q_n(t)/T}}
$$
More on the Updating of Action Propensities - 1

- Specification of the initial propensity levels $q_j(0)$ for an agent’s feasible action choices a_j, $j = 1, \ldots, N$

- Initial propensity levels act as “aspiration levels”

- High initial propensity levels ➔ Agent is disappointed with the rewards resulting from his early chosen actions, which encourages continued experimentation.

- Low initial propensity levels ➔ Agent is happy with the rewards resulting from his early chosen actions, which encourages premature fixation on one of these actions
More on the Updating of Action Propensities - 2

- Might want to “forget” rewards r received in the distant past in time-changing environments:
 - Controlled by recency (forgetting) parameter ϕ lying between 0 and 1
 - As ϕ approaches 1, heaviest weight placed on most recently received rewards r
 - As ϕ approaches 0, approximately equal weight placed on all rewards r received to date
 (exactly equal weight when $\phi = 0$ and $\varepsilon = 0$)
Need for “spillover” of reward attributions across actions in early game play to encourage experimentation and to avoid premature fixation on a suboptimal chosen action a_k.

- Controlled by experimentation parameter ε lying between 0 and 1
- As ε increases, more “spillover” of reward resulting from chosen action a_k to other actions a_j, resulting in smaller divergence among propensities q_k and q_j
- As ε approaches 0, reward resulting from chosen action a_k is attributed only to a_k, implying only a_k’s propensity q_k is updated
Nicolaisen, Petrov and Tesfatsion (IEEE TEC, 2001) modified the response function E_j so propensity updating occurs even with zero-valued rewards r, as follows: Letting $a_j = \text{any feasible action choice}$ and $a_k = \text{currently chosen action}$,

$$E_j(\epsilon, N, k, t) = \begin{cases}
 r_k(t)[1 - \epsilon] & \text{if } j = k \\
 q_j(t) \frac{\epsilon}{N-1} & \text{if } j \neq k
\end{cases}$$

The NPT electricity traders typically achieved 90% or higher market efficiency using Modified Roth-Erev RL.
NPT* electricity traders typically achieved market efficiency levels $\geq 90\%$ using Modified Roth-Erev RL and much lower market efficiency levels (e.g. 20\%) using Original Roth-Erev RL.

Illustration: A Bean Firm in a Computational Market Economy

- Strategic learning agent
- Gains profit by producing and selling beans b, a perishable (nonstorable) good measured in lbs
- Adjusts bean production and price level in each trading period t using Modified Roth-Erev RL
 - Period t Action = Choice of supply offer of form $(Production Level b, Unit Price p)$
- Marginal cost of production = 2 per lb
- Production limit in each period t: 100 lbs
Bean Firm: Structural Conditions

- Action Domain AD: Set of N=10 feasible action choices
 \{ (b_1,p_1), \ldots, (b_N,p_N) \} = \{a_1,\ldots,a_{10}\}
Bean Firm Learning Method: Modified Roth-Erev RL – Step 1

- Initial propensity levels for actions a_1, \ldots, a_{10}:
 \[q_j(0) = 20, \quad j = 1, \ldots, 10 \]

- Initial probability distribution for choosing among the feasible actions a_1, \ldots, a_{10}:
 \[
 \text{Prob}_j(0) = \exp\left(\frac{q_j(0)}{T}\right) / \sum_{n=1}^{10} \exp\left(\frac{q_n(0)}{T}\right)
 \]

 \[
 = \frac{1}{10}, \quad j = 1, 2, \ldots, 10
 \]
Bean Firm Learning Method: Modified Roth-Erev RL – Step 2

- Recency (forgetting) parameter: $\phi = 0.04$

- Experimental (spillover) parameter: $\varepsilon = 0.96$

- Reward $r_k(t)$ in trade period $t \geq 0$ consists of profits (+ or -) resulting from chosen action $a_k(t) = (b_k(t), p_k(t))$ and actual bean sales $b(t)$:

$$r_k(t) = [p_k(t) \cdot b(t)] - [\$2 \cdot b_k(t)]$$

 - Actual revenues from sale of $b(t)$
 - Actual costs of producing $b_k(t)$
Bean Firm Learning Method: Modified Roth-Erev RL – Step 3

Updating of propensities after receipt of reward $r_k(t)$ in period $t \geq 0$:

$$q_j(t + 1) = [1 - \phi]q_j(t) + E_j(\epsilon, N, k, t)$$

$$E_j(\epsilon, N, k, t) = \begin{cases}
 r_k(t)[1 - \epsilon] & \text{if } j = k \\
 q_j(t)\frac{\epsilon}{N-1} & \text{if } j \neq k
\end{cases}$$
The probability of choosing an action j is an increasing function of its current propensity value, all else equal:

$$\text{Prob}_j(t) = \frac{e^{q_j(t)/T}}{\sum_{n=1}^{10} e^{q_n(t)/T}}$$

Probability of choosing action j at time t, for $j = 1,\ldots,10$
Illustrative Pseudo-Code Implementation of Action Choice in Accordance with Action Probabilities

for j = 1,...,10:
 \(p_j \) = probability of choosing action j (previous formula);

\[p = \text{Random.nextDouble}(); \] // uniformly distributed double value between 0.0 and 1.0 (Java). For NetLogo: “let p random-float 1.0”

\[\text{sum} = 0.0; \]

for j = 1,...,9:
 \[\text{sum} = \text{sum} + p_j; \] // form cdf assessment \(\text{sum} = [p_1 + ... + p_j] \)
 If \(p \leq \text{sum} \), return j; // returned j is index of action choice

return 10; // returns action choice 10 if no previous return activated

NOTE: Then \(p_j \cong \) probability that “return j” is activated, j = 1,...,10
JReLM: Java Reinforcement Learning Module
(Includes MRE Reinforcement Learning)
(Charles J. Gieseler, S05 Econ 308 Student, CS M.S. Thesis, 2005)
3. Belief-Based Learning

Asks ...

What *different* rewards might I have received in the past if I had acted differently?

And how can I use these *opportunity cost* assessments to help choose a better action now?
Belief-Based Learning ...

- In belief-based learning, the presence of other decision-making agents in the learning environment is explicitly considered.

- Variants of belief-based learning currently in use by economists include:
 - **Cournot (naïve) belief learning** – the belief that rivals will act today in the same way they acted in the immediate past
 - **Fictitious play** – the belief that rivals will act today in accordance with the historical frequencies of all their past action choices.
 - **Experience-weighted attraction learning** (Camerer/Ho 1999) – hybrid of reactive RL and fictitious play learning
Belief-Based Learning: Example 1
Fictitious Play Learning (FPL)

- An agent A assumes each other agent in its choice environment chooses its actions in accordance with an unknown but time-invariant “probability distribution function (PDF)”.

- Agent A estimates these PDFs based on the historical frequencies with which other agents have been observed to choose different actions.

- At each time t, Agent A chooses a “best response” action conditional on its current PDF estimates for other agents.
Concrete FPL Illustration: Matching Pennies Game

Player 2

<table>
<thead>
<tr>
<th></th>
<th>Heads</th>
<th>Tails</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heads</td>
<td>(1,-1)</td>
<td>(-1,1)</td>
</tr>
<tr>
<td>Tails</td>
<td>(-1,1)</td>
<td>(1,-1)</td>
</tr>
</tbody>
</table>

Player 1
The one-shot matching pennies game has NO Nash equilibrium in “pure strategies”.

That is, none of the four feasible action pairs (H,H), (H,T), (T,H), or (T,T) is a Nash equilibrium.

However, suppose Player 1 is choosing its actions H and T in accordance with a **mixed strategy**, i.e., a probability distribution function (PDF) over the action domain \{H,T\} of the form \([\text{Prob}^1(H), \text{Prob}^1(T)]\).

Then Player 2 can calculate a “best response” mixed strategy \([\text{Prob}^2(H),\text{Prob}^2(T)]\) to Player 1’s mixed strategy that maximizes Player 2’s **expected** payoff.
Concrete FPL Illustration: Matching Pennies...Continued (2)

Player 2 is said to engage in *Fictitious Play Learning (FLP)* in the matching pennies game if the following conditions hold:

- The game is played in successive periods $t=1, 2, \ldots$, and Player 2 in each period $t > 1$ knows the actions that have been chosen by Player 1 in all past periods.

- In each period $t > 1$, Player 2 forms an estimate of the mixed strategy (PDF) it thinks is being used by Player 1 based on the frequencies with which Player 1 has been observed to choose H and T in past game plays.

- In each period $t > 1$, Player 2 chooses a “best response” mixed strategy for its own action choice conditional on its current estimate for the mixed strategy being used by Player 1.
EXAMPLE: Suppose Player 1 has selected H and T with the following frequencies over the past ten periods $t = 1, \ldots, 10$
- Action H: 5 times
- Action T: 5 times

Then Player 2’s current ($t=11$) estimate for the mixed strategy (PDF) being used by Player 1 to choose an action is
- $\text{Prob}^1(H) = 5/10 = 1/2$
- $\text{Prob}^1(T) = 5/10 = 1/2$

Player 2’s best response to the estimated PDF $(1/2, 1/2)$ for Player 1 is the mixed strategy $\text{Prob}^2(H) = 1/2$, $\text{Prob}^2(T) = 1/2$.

NOTE: It can be shown that this pair of mixed strategies is the unique Nash equilibrium for the one-shot matching pennies game.
Open Issues for FPL

- Calculation of estimated PDFs (frequencies) for the action choices of other players is straightforward if all past action choices are observed.
- But how, practically, to calculate a “best response” PDF (mixed strategy) in each time period, given realistic time and cost constraints?
- And what happens if other players are NOT using time-invariant PDFs to choose their action choices?

- Reactive RL assumes agents only consider actual past rewards, ignoring foregone rewards that might have been obtained had different actions been taken (opportunity costs).
- FPL assumes agents form opportunity cost estimates to select best-response mixed strategies.
- EWA is a hybrid form that combines Reactive RL and FPL.
The EWA Algorithm assumes propensities ("attractions") and probabilities ("logit responses") for (mixed) strategy choices are sequentially generated as follows:

\[
N(t) = \rho N(t-1) + 1, \quad N \text{ is experience weight}, \quad \rho \text{ is a discount factor}
\]

\[
A^j_i(t) = \frac{\phi N(t-1) A^j_i(t-1) + \left[\delta + (1-\delta)I(s^j_i, s_i(t)) \right] \pi_i(s^j_i, s_{-i}(t))}{N(t)},
\]

\(A^j_i(t)\) is \(i\)'s attraction for strategy \(j\) at time \(t\), \(\phi\) is a decay rate,

\(I(s^j_i, s_i(t))\) is an indicator function = 1 if chosen strategy \(s_i(t) = s^j_i\),

0 otherwise. \(\pi_i(s^j_i, s_{-i}(t))\) is the payoff from playing \(j\) at time \(t\).

\(\delta\) is the weight on hypothetical payoffs and \(1 - \delta\) is the weight on actual payoffs. Logit response:

\[
P^j_i(t+1) = \exp[\lambda A^j_i(t)] / \sum_{k=1}^m \exp[\lambda A^k_i(t)].
\]

\(\delta = 0, \ N(0) = 1\), reinforcement learning; \(\delta = 1\), weighted fictitious play.
4. Anticipatory Learning

Asks...

If I take this action now, what might happen in the future?
Key AL Concept: Value Function

Let the optimum total reward that can be obtained by an agent starting at time t in some state s' be denoted by

$$V_t(s')$$
Value Function Illustration

Value function V_t gives $V_t(s') = 20$ if the decision tree ends at $[t+3]$.

(Total reward = Sum of all intermediate rewards r)
Key Idea: Recursive Relationship Among Value Functions

- Suppose I’m currently in state s' at time t.
- Suppose I take an action a', get a reward $r' = R(s',a')$, and transit to a new state $s'' = T(s',a')$.
- Then the best I can do starting from time $t+1$ is
 \[
 V_{t+1}(s'')
 \]
- Consequently, the best I can do starting from time t is
 \[
 V_t(s') = \max_a [R(s',a) + V_{t+1}(T(s',a))]
 \]
More Formally Stated:
Richard Bellman’s Famous Principle of Optimality
(Dynamic Programming, 1950s)

- Let t denote the “current time” and let $S = \{s,s’,…\}$ denote the collection of all possible states of the world at time t.
- For each state s in S, let $A(s) = \{a,a’,…\}$ denote the collection of all feasible actions that an agent can take in state s at time t.
- For each state s in S, let W denote the collection of all possible total rewards w an agent can attain over current and future times $t,…,T_{\text{Max}}$.
- Let the **value function** $V_t:S\rightarrow W$ be defined as follows: For each s in S, $V_t(s)$ gives the optimum total reward w in W that can be attained by the agent over current and future times $t,…,T_{\text{Max}}$ starting in state s at time t.
Principle of Optimality...Continued

- Let π^* denote the **optimal policy function** giving the optimal action a' as a function $a' = \pi^*(t,s')$ of the current time t and state s'.
- Let T denote the **transition function** that determines the next state s'' as a function $s'' = T(s',a')$ of the current state s' and the current action choice a'.
- Let R denote the **intermediate return function** that determines the immediate reward r'' as a function $r'' = R(s',a')$ of the current state s' and current action choice a''.
- Then for each state s' in S:

 $V_t(s') = R(s',\pi^*(t,s')) + V_{t+1}(T(s',\pi^*(t,s')))$

 $= \max_a [R(s',a) + V_{t+1}(T(s',a))]$
Practical Difficulties

- How practically to compute the optimal policy function π^*?
- What if the transition function T is not known? And what if state transitions depend on actions chosen by MANY agents, not just by me?
- What if the return function R is not known?
- How practically to compute the value function V?
One Approach: Replace V-values by Q-values

- Suppose the final time TMax is infinite and suppose that \(\pi^*, T, R, \) and \(V \) are independent of time \(t \) (strong assumption)
- For each \(s \) in \(S \) and each \(a \) in \(A(s) \), define
 \[
 Q^*(s,a) = [R(s,a) + V(T(s,a))]
 \]
- If these \(Q^* \)-values can be learned, the optimal policy function \(\pi^* \) can be found without knowing the \(T, R, \) and \(V \) functions, as follows: For any \(s' \) in \(S \),
 \[
 \pi^*(s') = \text{action } a' \text{ that maximizes } Q^*(s',a) \text{ over } a \text{ in } A(s')
 \]
- But will \(\pi^* \) result in good action choices if state/reward outcomes in fact depend on actions of multiple agents?
Q-Learning in More Detail (Watkins 1989; see also criterion filtering, www.econ.iastate.edu/tesfatsi/cfhome.htm)

For any state s, any action a^* that maximizes $Q^*(s,a)$ is called an **optimal action**:

$$a^* = \text{[optimal action in state } s\text{]} = \arg\max_{a} Q^*(s,a)$$

Let $Q(s,a) = \text{current estimate of } Q^*(s,a)$
Q-Learning ...

Q-learning in its simplest form iteratively determines estimates $Q(s,a)$ for $Q^*(s,a)$ conditional on a user-specified learning rate α ($0 \leq \alpha \leq 1$).

- Q-learning avoids direct calculation of T, R, V
- The Q-value estimates $Q(s,a)$ are stored in a table
- The Q-value estimates are updated after each new observation is obtained.
- The Q-value estimates depend on observation history but not directly on the particular method used to generate action choices.
Basic Q-Learning Algorithm

1. Initialize $Q(s,a)$ to a random value for each state s in S and each action a in $A(s)$.
2. Observe actual state s'.
3. Pick an action a' in $A(s')$ and implement it.
4. Observe next state s'' and next reward r''.
5. Update $Q(s',a')$ value as follows:
 $$Q(s',a') \leftarrow [1 - a]Q(s',a') + a [r'' + \max_a Q(s'',a)]$$
6. Loop back to step 2.
Does not need a probability model for either learning or performance evaluation

\[
Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha \left[r + \max_b Q(s', b) \right]
\]
Picking Actions for Q-Learning

- Just as in reactive RL, an agent might want to pick “optimal” actions most of the time but also do some exploration.
 - An agent can exploit its current information state s to choose a “greedy” action a in $A(s)$ that currently appears to be optimal.
 - But the agent might also choose an action for exploratory purposes, to learn more about its choice environment.
 - Exploring might permit the agent to learn a better policy $\pi: s \rightarrow a(s)$ for determining future action choices.
 - This is called the exploration/exploitation problem
Picking Actions for Q-Learning ...

- **e-Greedy Approach**
 - Given state s, choose an action a in A(s) with the highest value Q(s,a) with probability 1-e and explore (pick a random action) with probability e

- **Gibbs-Boltzmann (soft-max) approach**
 - Given state s, pick action a in A(s) with probability

\[
P(a | s) = \frac{e^{\frac{Q(s,a)}{\tau}}}{\sum_{a'} e^{\frac{Q(s,a')}{\tau}}} \quad \text{where } \tau = \text{“temperature”}
\]
5. Evolutionary Learning

Asks...

Given all the actions that have been taken to date by myself (and possibly by others), together with observations on the rewards that have resulted, what **NEW** actions might I devise to try to do better?
Evolutionary Learning Algorithms

EXAMPLES...

- Genetic Algorithm (GA) – John Holland 1970s
- Genetic Programming (GP) – John Koza 1990s
- Evolutionary Strategy (ES) – Rechenberg 1970s
- Evolutionary Program (EP) ... Etc.

Basic Idea: Devise learning algorithms for complex environments that mimic effective adaptive and evolutionary processes found in nature.
Evolutionary Processes in Nature: Mitosis vs. Meiosis

- **Mitosis**: one cell becomes two cells with the same DNA (cloning)
- **Meiosis**: one cell becomes four cells with one strand each (basis for sexual reproduction)

Replication as in Axelrod Evolutionary Tournament

Permits “Genetic Evolution”!
Crossover (Recombination)

- Meiosis -> production of germ cells
- Parts of two chromosomes get swapped.
- Also called recombination
Mutation

- Occasional misfiring of the replication process.
- Almost always harmful.
- However, on occasion, it results in a “fitter” entity.
Differential Survival

Once there is variability (through sexual reproduction, crossover, & mutation) in a population, the environment culls some members of the population while others survive.

This process is termed *Natural Selection*.
Evolutionary Learning Algorithm Example:
Genetic Algorithms (GAs)

- Directed search algorithm based on the mechanics of biological evolution
- Developed by John Holland, University of Michigan (1970’s)

- Original Goal:
 To use adaptive and evolutionary processes found in natural systems as a metaphor for the design of effective search algorithms suitable for complex environments
Basic Steps of a Simple GA

Step 0: Construct/configure an initial population of members (agents, strategies, candidate solutions to a problem, ...).

Step 1: Evaluate the “fitness” of each member of the current population, and discard least fit members.

Step 2: Apply “genetic operations” (e.g. mutation, recombination,...) to the remaining (parent) population to generate a new (child) population to replace discarded least-fit population members.

Step 3: Loop back to Step 1 and repeat.
The GA Cycle of Reproduction

reproduction → children → modification

population → parents

evaluation → modified children

discard

deleted members

evaluated children
What Might “Fitness” Mean?

EXAMPLES....

❖ The ability to solve a particular type of problem (e.g. a particular form of math problem)

❖ The ability to repeatedly perform some task (e.g., facial recognition)

❖ The ability to survive and prosper in some real or computational environment
EXAMPLE: Bit-String Representation (String of 0’s & 1’s)

- Population Members = PD Game Strategies
- One Possible Strategy \(S \)
 - State = (My last play, Rival’s last play)
 - Two Possible Actions: Cooperate=1, Defect=0
 - Four Possible States: 1=(1,1), 2=(1,0), 3=(0,1), 4=(0,0)
 - Strategy \(S = \text{TFT} \):
 - Start by choosing Action 1
 - If State 1, then choose Action 1
 - If State 2, then choose Action 0
 - IF State 3, then choose Action 1
 - IF State 4, then choose Action 0

- Bit-string representation of Strategy \(S \): \((1 | 1 | 0 | 1 | 0)\)
Crossover (Recombination)

Crossover is a potentially critical feature of GAs:

- It can greatly accelerate search early in the evolution of a population.
- It can lead to discovery and retention of effective combinations (blocks, schemas,...) of $S \rightarrow A$ associations.
Mutation of Population Members

Example: String Mutations

Before: \((1\ 0\ 1\ 1\ 0\ 0) \)
After: \((1\ 0\ 1\ 0\ 0\ 0) \)

Before: \((1.38\ -69.4\ 326.44\ 0.1) \)
After: \((1.38\ -67.5\ 326.44\ 0.1) \)

- Causes local or global movement in search space
- Can restore lost information to the population
Issues for GA Practitioners

- **Basic implementation issues**
 - Representation of population members
 - Population size, mutation rate, ...
 - Selection, deletion policies
 - Crossover, mutation operators

- **Termination criteria**
 - When is a solution good enough?

- **Fitness Function Specification**
 - “Solution” depends heavily on the fitness function (specification of “fitness” often the hardest part)
Types of GA Applications

<table>
<thead>
<tr>
<th>Domain</th>
<th>Application Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>gas pipeline, pole balancing, missile evasion, pursuit</td>
</tr>
<tr>
<td>Design</td>
<td>semiconductor layout, aircraft design, keyboard configuration, communication networks</td>
</tr>
<tr>
<td>Scheduling</td>
<td>manufacturing, facility scheduling, resource allocation</td>
</tr>
<tr>
<td>Robotics</td>
<td>trajectory planning</td>
</tr>
<tr>
<td>Machine Learning</td>
<td>designing neural networks, improving classification algorithms, classifier systems</td>
</tr>
<tr>
<td>Signal Processing</td>
<td>filter design</td>
</tr>
<tr>
<td>Game Playing</td>
<td>poker, checkers, prisoner’s dilemma</td>
</tr>
<tr>
<td>Combinatorial Optimization</td>
<td>set covering, travelling salesman, routing, bin packing, graph colouring and partitioning</td>
</tr>
</tbody>
</table>
6. Connectionist Learning

Asks...

Does the learning of state-act associations $s \rightarrow a$ ("if s, then a") require a centralized information processor, or can it proceed through some form of decentralized information processor?

And can the appropriate specification of the conditioning states s be learned along with the appropriate specification of the associations $s \rightarrow a$?
Connectionist Learning Example

Artificial Neural Networks (ANNs):

Decentralized information processing paradigm inspired by biological nervous systems, such as the human brain
Neuron: A many-inputs/one-output unit forming basis of human central nervous system

- Output can be *excited* or *not excited*

- Incoming signals from other neurons determine if the neuron shall *excite* ("fire")

- Output subject to attenuation in the *synapses* (small gaps) that separate a neuron from other neurons at the juncture of its axon with their dendrites
Connections Among Neurons
Structure of ANNs

- Collection of interconnected processing units working together

- **Structure** = (1) Unit configuration (numbers of input units, hidden units, and output units); (2) Unit connections; & (3) Connection weights

- Structure can be updated via unsupervised learning, RL, or supervised learning
Example: Feedforward ANN
(No recurrent loops)

Output units \(O_i \)

Weights \(W_{j,i} \)

Hidden units \(a_j \)

Weights \(W_{k,j} \)

Input units \(I_k \)

Note: Here only one hidden layer is depicted. In general, a feedforward ANN can include multiple hidden layers, thus permitting deeper learning.
Example: The hidden unit depicted below calculates a weighted sum x of inputs I_j and compares it to a threshold T. If x is higher than the threshold T, the output S is set to 1, otherwise to -1.
ANN Supervised Learning
(Learn from a set of examples via error-correction)

Training Examples = Desired Input-Output Associations

Error = [Desired Output − Actual Output]
ANN Supervised Learning via “Back Propagation”

- Desired input-output associations provided by supervisor through training examples

- Error = Difference between desired and actual output for any given input

- Weights updated relative to error size

- Start by calculating output layer error and weight correction, then “propagate back” through previous layers
Example: “Adaline” Learning Rule

Widrow and Hoff, 1960

\[y = w^T x \]

\[z = \text{desired output} \]

\[\Delta w_i = \alpha [z - y] x_i \]

\[x_1 \]
\[x_2 \]
\[\vdots \]
\[x_n \]

input pattern

\[w_1 \]
\[w_2 \]
\[w_n \]

adjust weights

actual output
Illustrative ANN Applications

- **Prediction:** Learning from past experience
 - pick the best stocks in the market
 - predict weather
 - identify people with cancer risk

- **Classification**
 - Image processing
 - Predict bankruptcy for credit card companies
 - Risk assessment
ANN Applications...Continued

- **Recognition**
 - *Pattern recognition: SNOOPE* (bomb detector in U.S. airports)
 - *Character recognition*
 - *Handwriting recognition (processing checks)*

- **Data Association**
 - *Identify scanned characters AND detect if scanner is working properly*
ANN Applications...Continued

- **Data Conceptualization**
 - *infer grouping relationships*
 - e.g. extract from a database the names of those most likely to buy a particular product.

- **Data Filtering**
 - *e.g. take the noise out of a telephone signal*

- **Planning**
 - *Evolve “best” decisions for unknown environments*
 - *Evolve “best” decisions for highly complex environments*
 - *Evolve “best” decisions given highly noisy input data*