Lectures 15 and 16

The Foreign Exchange Market
Foreign Exchange Rates

Canadian dollar

British pound

Japanese yen

Euro
The Foreign Exchange Market

Definitions:
1. Spot exchange rate
2. Forward exchange rate
3. Appreciation
4. Depreciation

Currency appreciates, country’s goods prices ↑ abroad and foreign goods prices ↓ in that country
The Foreign Exchange Market

1. Makes domestic businesses less competitive
2. Benefits domestic consumers

FX traded in over-the-counter market

1. Trade is in bank deposits denominated in different currencies
Law of One Price

Example: American steel $100 per ton, Japanese steel 10,000 yen per ton

If $E = 50$ yen/$ then prices are:

<table>
<thead>
<tr>
<th></th>
<th>American Steel</th>
<th>Japanese Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>In U.S.</td>
<td>$100</td>
<td>$200</td>
</tr>
<tr>
<td>In Japan</td>
<td>5000 yen</td>
<td>10,000 yen</td>
</tr>
</tbody>
</table>
Law of One Price

If $E = 100$ yen/$ then prices are:

<table>
<thead>
<tr>
<th></th>
<th>American Steel</th>
<th>Japanese Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>In U.S.</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>In Japan</td>
<td>10,000 yen</td>
<td>10,000 yen</td>
</tr>
</tbody>
</table>

Law of one price $\Rightarrow E = 100$ yen/$
Purchasing Power Parity (PPP)

PPP \Rightarrow Domestic price level \uparrow 10%, domestic currency \downarrow 10%

1. Application of law of one price to price levels
2. Works in long run, not short run

Problems with PPP
1. All goods not identical in both countries: Toyota vs Chevy
2. Many goods and services are not traded: e.g. haircuts
Factors Affecting E in Long Run

Basic Principle: If factor increases demand for domestic goods relative to foreign goods, $E \uparrow$

Summary

<table>
<thead>
<tr>
<th>Factor</th>
<th>Change in Factor</th>
<th>Response of the Exchange Rate, E^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic price level†</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>Trade barriers†</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Import demand</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>Export demand</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Productivity†</td>
<td>↑</td>
<td>↑</td>
</tr>
</tbody>
</table>

*Units of foreign currency per dollar: ↑ indicates domestic currency appreciation; ↓, depreciation. †Relative to other countries.

Note: Only increases (↑) in the factors are shown; the effects of decreases in the variables on the exchange rate are the opposite of those indicated in the “Response” column.
Expected Returns and Interest Parity

<table>
<thead>
<tr>
<th></th>
<th>Francois</th>
<th>AI</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ Deposits</td>
<td>(i^D + \frac{(E^e_{t+1} - E_t)}{E_t})</td>
<td>(i^D)</td>
</tr>
<tr>
<td>Euro Deposits</td>
<td>(i^F)</td>
<td>(i^F - \frac{(E^e_{t+1} - E_t)}{E_t})</td>
</tr>
<tr>
<td>Relative (R^e)</td>
<td>(i^D - i^F + \frac{(E^e_{t+1} - E_t)}{E_t})</td>
<td>(i^D - i^F + \frac{(E^e_{t+1} - E_t)}{E_t})</td>
</tr>
</tbody>
</table>

Interest Parity Condition:

$ and Euro deposits perfect substitutes

\[i^D = i^F - \frac{(E^e_{t+1} - E_t)}{E_t} \]

Example: if \(i^D = 10\% \) and expected appreciation of $,
\(\frac{(E^e_{t+1} - E_t)}{E_t}, = 5\% \) \(\Rightarrow i^F = 15\% \)
Deriving R^F Curve

Assume $i^F = 10\%$, $E^e_{t+1} = 1$ euro/$

Point

A: $E_t = 0.95$, $R^F = .10 - (1 - 0.95)/0.95 = .048 = 4.8\%$

B: $E_t = 1.00$, $R^F = .10 - (1 - 1.0)/1.0 = .100 = 10.0\%$

C: $E_t = 1.05$, $R^F = .10 - (1 - 1.05)/1.05 = .148 = 14.8\%$

R^F curve connects these points and is upward sloping because when E_t is higher, expected appreciation of F higher, $R^F \uparrow$

Deriving R^D Curve

Points B, D, E, $R^D = 10\%$: so curve is vertical

Equilibrium

\[R^D = R^F \text{ at } E^* \]

If $E_t > E^*$, $R^F > R^D$, sell $\$, $E_t \downarrow$

If $E_t < E^*$, $R^F < R^D$, buy $\$, $E_t \uparrow$
Equilibrium in the Foreign Exchange Market

![Diagram showing the equilibrium exchange rate (Et) in the foreign exchange market. The diagram includes points A, B, C, and D, and lines R^D and R^F representing demand and supply. The exchange rate is measured in euros per dollar (euros/$) on the vertical axis, and the expected return in $ terms on the horizontal axis. The equilibrium exchange rate, Et^*, is marked at 1.00.]
Shifts in R^F

R^F curve shifts right when

1. $i^F \uparrow$: because $R^F \uparrow$ at each E_t
2. $E^{e}_{t+1} \downarrow$: because expected appreciation of $F \uparrow$ at each E_t and $R^F \uparrow$

Occurs $E^{e}_{t+1} \downarrow$ i^F:
1) Domestic $P \uparrow$,
2) Trade Barriers \downarrow
3) Imports \uparrow,
4) Exports \downarrow,
5) Productivity \downarrow
R^D shifts right when

1. $i^D \uparrow$; because $R^D \uparrow$

 at each E_t

Assumes that domestic π^e unchanged, so domestic real rate \uparrow
Factors that Shift R^F and R^D
Response to \(i \uparrow \) Because \(\pi^e \uparrow \)

1. \(\pi^e \uparrow, E_{t+1}^e \downarrow \), expected appreciation of \(F \uparrow \),
 \(R^F \) shifts out to right
2. \(i^D \uparrow, R^D \) shifts to right

However because \(\pi^e \uparrow > i^D \uparrow \), real rate \(\downarrow \), \(E_{t+1}^e \downarrow \) more than \(i^D \uparrow \) ⇒
\(R^F \) out > \(R^D \) out and \(E_t \downarrow \)
Response to $M^s \uparrow$

1. $M^s \uparrow$, $P \uparrow$, $E^e_{t+1} \downarrow$, expected appreciation of $F \uparrow$, R^F shifts right
2. $M^s \uparrow$, $i^D \downarrow$, R^D shifts left
 Go to point 2 and $E_t \downarrow$
3. In the long run, i^D returns to old level, R^D shifts back, go to point 3 and get Exchange Rate Overshooting

![Graph showing exchange rate dynamics](image)
Why Exchange Rate Volatility?

1. Expectations of Ee_{t+1} fluctuate
2. Exchange rate overshooting
The Dollar and Interest Rates

1. Value of $ and real rates rise and fall together, as theory predicts

2. No association between $ and nominal rates: $ falls in late 70s as nominal rate rises