Solutions: Problem Set #1

(1) The following table gives the joint probability distribution \(p(X, Y) \) of random variables \(X \) and \(Y \).

<table>
<thead>
<tr>
<th>Y</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.02</td>
<td>.04</td>
<td>.08</td>
</tr>
<tr>
<td>2</td>
<td>.03</td>
<td>.18</td>
<td>.04</td>
</tr>
<tr>
<td>3</td>
<td>.04</td>
<td>.04</td>
<td>.08</td>
</tr>
<tr>
<td>4</td>
<td>.09</td>
<td>.18</td>
<td>.18</td>
</tr>
</tbody>
</table>

Determine the following:

(a) Do the entries of the table satisfy the conditions for a bivariate density function?

ANSWER: Yes, since all the entries are non-negative, and they sum to unity (one).

(b) The marginal (or unconditional) probability distributions of \(X \) and \(Y \). [Note: These will be a collection of probabilities: the probabilities associated with the 3 values of \(X \) and the probabilities associated with the 4 values of \(Y \).] **ANSWER**

\[
\begin{align*}
\Pr(X = 1) &= .18, \quad \Pr(X = 2) = .44, \quad \Pr(X = 3) = .38 \\
\Pr(Y = 1) &= .14, \quad \Pr(Y = 2) = .25, \quad \Pr(Y = 3) = .16, \quad \Pr(Y = 4) = .45.
\end{align*}
\]

(c) The conditional probability distributions \(p(X|Y = 3) \) and \(p(Y|X = 1) \). (Note: The first conditional probability distribution is the collection of three numbers, \(\Pr(X = 1|Y = 3), \Pr(X = 2|Y = 3), \Pr(X = 3|Y = 3) \).)

ANSWER: Applying our formulas for calculating a conditional from a joint:

\[
\begin{align*}
\Pr(X = 1|Y = 3) &= .04/.16 = 1/4, \quad \Pr(X = 2|y = 3) = .04/.16 = 1/4,
\end{align*}
\]
and

\[\Pr(X = 3|Y = 3) = .08/.16 = 1/2. \]

As for the remaining conditional

\[\Pr(Y = 1|X = 1) = .02/.18 = 1/9, \quad \Pr(Y = 2|X = 1) = .03/.18 = 1/6 \]

and

\[\Pr(Y = 3|X = 1) = .04/.18 = 2/9, \quad \Pr(Y = 4|X = 1) = .09/.18 = 1/2. \]

(2) Using straightforward manipulations of the conditional probability (see, e.g., Down’s Syndrome example):

\[
\Pr(D = 1|S = 0) = \frac{\Pr(S = 0|D = 1)\Pr(D = 1)}{\Pr(S = 0)} = \frac{\Pr(S = 0|D = 1)\Pr(D = 1)}{\Pr(S = 0, D = 1) + \Pr(S = 0, D = 0)} = \frac{\Pr(S = 0|D = 1)\Pr(D = 1)}{\Pr(S = 0|D = 1)\Pr(D = 1) + \Pr(S = 0|D = 0)\Pr(D = 0)}.
\]

The second line simply notes that the marginal probability can be obtained by summing over all of the corresponding joint probabilities.

Based on what is given in the problem, \(\Pr(S = 1|D = 1) = .5 \), and therefore \(\Pr(S = 0|D = 1) = .5 \), since these two numbers have to add up to one. Similarly, \(\Pr(D = 1) = .2 \) and thus \(\Pr(D = 0) = .8 \). Finally, \(\Pr(S = 0|D = 0) = 1 \), since if the father does not have the disease, the son cannot have the disease either.

Putting these numbers into the expression above gives

\[\Pr(D = 1|S = 0) = .5(.2)/[.5(.2) + 1(.8)] = 1/9. \]

Extra Credit
Using similar manipulations, we obtain
\[
\Pr(D = 1|S_1 = 0, S_2 = 0) = \frac{\Pr(S_1 = 0, S_2 = 0|D = 1)\Pr(D = 1)}{\Pr(S_1 = 0, S_2 = 0)}.
\]

What is given in the problem is that the outcome of each son is independent given the disease status of the father. Thus,

\[
\Pr(S_1 = 0, S_2 = 0|D = 1) = \Pr(S_1 = 0|D = 1)\Pr(S_2 = 0|D = 1).
\]

We thus substitute this into the numerator of our expression above, and continue to simplify the denominator, to obtain

\[
\Pr(D = 1|S_1 = 0, S_2 = 0) = \frac{\Pr(S_1 = 0|D = 1)\Pr(S_2 = 0|D = 1)\Pr(D = 1)}{\Pr(S_1 = 0, S_2 = 0, D = 1) + \Pr(S_1 = 0, S_2 = 0, D = 0)}
\]

which simplifies to

\[
\Pr(S_1 = 0|D = 1)\Pr(S_2 = 0|D = 1)\Pr(D = 1)
\]

\[
\frac{\Pr(S_1 = 0|D = 1)\Pr(S_2 = 0|D = 1)\Pr(D = 1)}{\Pr(S_1 = 0|D = 1)\Pr(S_2 = 0|D = 1)\Pr(D = 1) + \Pr(S_1 = 0|D = 0)\Pr(S_2 = 0|D = 0)\Pr(D = 0)}
\]

\[
\frac{.5(.5)(.2)}{.5(.5)(.2) + (1)(1)(.8)},
\]

which equals .059.