
SIMPLE CONSTRAINED OPTIMIZATION

1. INTUITIVE INTRODUCTION TO CONSTRAINED OPTIMIZATION

Consider the following function which has a maximum at the origin.

y = f(x1, x2) = 49 − x2
1 − x2

2 (1)
The graph is contained in figure 1.

FIGURE 1. The function y = 49− x2
1 − x2
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The tangent plane to the graph at the origin is shown in figure 2. Now consider only values of x1 and x2

that satisfy the equation

x1 + 3x2 − 10 = 0 (2)
Above this line in the x1-x2 plane is an infinity of points. We can construct a plane above this line in R3.

This plane is shown in figure 3.
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FIGURE 2. Tangent plane to the function y = 49− x2
1 − x2
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Now consider maximizing the function y = 49 − x2
1 − x2

2 subject to the condition that the values of x1

and x2 chosen lie on the line x1 + 3x2 − 10 = 0. Graphically we want to pick points on the surface that
also lie on the plane above the line. Both the function and the plane on which we must pick the points are
shown in figure 4.

From inspection of the graph, it is clear that the maximum of the function that also lies in the plane is
less than the global maximum of the function. If we look at a closeup of the graph (Figure 5) in the vicinity
of what seems to be the constrained maximum, we can visually guess at corresponding values of x1 and x2.

The constrained maximum looks to be somewhere around x1 = 1 and x2 = 3. This of course is quite a
distance from the unconstrained maximum of (0, 0). As will be shown in section 2, the maximal value of
the function is at x1 = 1 and x2 = 3 as can be seen in figure 6.

We can also graph the level curves of the function and the constraint as in figure 7. Level curves are
indicated at values of 14, 21, 28, 35, 42 and 49. The constraint is the straight darker line in the figure.

It seems clear that the constrained maximum must be between the level curves for 35 and 42. Adding a
level curve for y = 39, we can see the optimum in figure 8.

Thus we have found a constrained maxima for the function using graphical methods. A few things seem
to characterize the extreme point.

1: The extreme point lies on the surface but above a point in x1-x2 space that satisfies the constraint.
2: At the constrained extreme point, the constraint and the level surfaces of the function are tangent.
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FIGURE 3. Points in R3 satisfying the equation x1 + 3x2 − 10 = 0
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2. FORMAL ANALYSIS OF CONSTRAINED OPTIMIZATION PROBLEMS

2.1. Formal setup of the constrained optimization problem. Consider the problem defined by

max
x1, x2

f(x1, x2) subject to g(x1, x2) = 0. (3)

where g(x1, x2) = 0 denotes a constraint on the values of x1 and x2.

2.2. Solution by substitution. One method that sometimes works is to solve the constraint equation for x1

in terms of x2 and then substitute in f(x1, x2). For the problem at hand this would yield

x1 + 3x2 − 10 = 0

⇒ x1 = 10 − 3x2

(4)

If we rewrite the function f using this substitution we obtain
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FIGURE 4. The function y = 49− x2
1 − x2

2 and the constraint x1 + 3x2 − 10 = 0
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FIGURE 5. Alternative view of y = 49− x2
1 − x2

2 and x1 + 3x2 − 10 = 0
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y = f(x1, x2) = 49 − x2
1 − x2

2

= 49 − (10 − 3x2)2 − x2
2

= 49 − (100 − 60x2 + 9x2
2) − x2

2

= − 51 + 60x2 − 10x2
2

(5)
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FIGURE 6. Maximum of y = 49 − x2
1 − x2

2 subject to x1 + 3x2 − 10 = 0
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Now we can maximize this function by taking the derivative with respect to x2, setting this equation
equal to zero, and then solving for x2 as follows

y =− 51 + 60x2 − 10x2
2

dy

dx2
= 60 − 20x2 = 0

⇒ 20x2 = 60
⇒ x2 = 3

(6)

Substituting in equation 4 we obtain

x1 = 10 − 3x2

= 10 − (3)(3)
= 10 − 9 = 1

(7)

We can check to see that this is maximum by looking at the second derivative of y in equation 6. This
will give

dy

dx2
= 60 − 20x2

d2y

dx2
2

= − 20
(8)
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FIGURE 7. Level curves of the function y = 49− x2
1 − x2

2 and constraint x1 + 3x2 − 10 = 0
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At the x2 = 3 this is negative, and so we have a maximum.

While the method of substitution will work in many cases it breaks down in a number of situations.
For example if there is no explicit way to solve the constraint for one of the variables, there is no easy
way to make the substitution in f. In some situations, if we choose the wrong variable to solve out of the
constraint we may end up with a point that maximizes or minimizes f but does not satisfy the constraint.
And extending the method of substitution to multiple variables is often difficult. We thus turn to another
method due to Lagrange and make use of the fact that the level curves of the function and the constraint
are tangent to one another.

2.3. The method of Lagrange.

2.3.1. The Lagrangian. The solution to a constrained optimization problem is obtained by finding the critical
values of the Lagrangian function

L(x1, x2, λ) = f(x1, x2) − λ g(x1, x2) (9)

Notice that the gradient of L with respect to x1 and x2 will involve a set of derivatives that looks like this

∇L(x1, x2; λ ) =

( ∂f
∂x1

− λ ∂ g
∂ x1

∂f
∂x2

− λ ∂ g
∂ x2

)
(10)
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FIGURE 8. More level curves of the function y = 49− x2
1 − x2

2 and constraint x1 + 3x2 − 10 = 0
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2.3.2. Necessary first order conditions for an extreme point. The necessary conditions for an extremum of f(x1,
x2)with the equality constraints g(x1, x2) = 0 are

∇L(x∗1, x∗2, λ∗) = 0 (11)

This, of course implies that

∇L(x1, x2, λ) =




∂f
∂x1

− λ ∂ g
∂ x1

∂f
∂x2

− λ ∂ g
∂ x2

− g (x1, x2)


 =




0
0
0


 (12)

2.3.3. Simple example. For the example problem the Lagrangian is as follows

L(x1, x2, λ) = f(x1, x2) − λ g(x1, x2)

= 49 − x2
1 − x2

2 − λ (x1 + 3 x2 − 10)
(13)

Taking the partial derivatives with respect to x1, x2, and λ we obtain
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L(x1, x2, λ) = 49 − x2
1 − x2

2 − λ(x1 + 3 x2 − 10)

∂ L

∂ x1
= − 2x1 − λ = 0 (14a)

∂ L

∂ x2
= − 2x2 − 3 λ = 0 (14b)

∂ L

∂ λ
= − x1 − 3x2 + 10 = 0 (14c)

Equation 14a can be solved for λ yielding

∂ L

∂ x1
= − 2 x1 − λ = 0

⇒ 2 x1 = − λ

⇒ x1 =
−λ

2

(15)

Similarly equation 14b can be solved λ implying

∂ L

∂ x2
= − 2x2 − 3 λ = 0

⇒ 2x2 = − 3 λ

⇒ x2 =
−3 λ

2

(16)

Substituting equations 15 and 16 into equation 14c will allow us to solve for λ as follows

∂ L

∂λ
= − x1 − 3x2 + 10 = 0

⇒ −
(−λ

2

)
− (3)

(−3λ

2

)
=− 10

⇒
(

λ

2

)
+

(
9λ

2

)
= − 10

⇒ 10
2

λ =− 10

⇒ 5λ = − 10

⇒ λ = − 2

(17)

Now substituting in equations 15 and 16 for x1 and x2 we obtain
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x1 =
−λ

2
=

−(−2)
2

= 1

x2 =
−3λ

2
=

(−3) (−2)
2

=
6
2

= 3

(18)

Thus we obtain the same answer as with substitution.

2.4. Sufficient conditions for a constrained extremum problem. The sufficient conditions for the two vari-
able case with one constraint will be stated without proof at this time.

2.4.1. Sufficient conditions for a maximum.

det




∂2L(x∗, λ∗)
∂x1∂x1

∂2L(x∗, λ∗)
∂x1∂x2

∂g(x∗)
∂x1

∂2L(x∗, λ∗)
∂x2∂x1

∂2L(x∗, λ∗)
∂x2∂x2

∂g(x∗)
∂x2

∂g(x∗)
∂x1

∂g(x∗)
∂x2

0




> 0 (19)

2.4.2. Sufficient conditions for a minimum.

det




∂2L(x∗, λ∗)
∂x1∂x1

∂2L(x∗, λ∗)
∂x1∂x2

∂g(x∗)
∂x1

∂2L(x∗, λ∗)
∂x2∂x1

∂2L(x∗, λ∗)
∂x2∂x2

∂g(x∗)
∂x2

∂g(x∗)
∂x1

∂g(x∗)
∂x2

0




< 0 (20)

3. EXAMPLES OF CONSTRAINED OPTIMIZATION

3.1. Minimizing the cost of obtaining a fixed level of output.

3.1.1. Production function. Consider a production function given by

y = 20x1 − x2
1 + 15x2 − x2

2 (21)

3.1.2. Prices and constraint. Let the prices of x1 and x2 be 10 and 5 respectively. Then minimize the cost of
producing 55 units of output given these prices. The objective function is 10x1 + 5x2. The constraint is
20x1 − x2

1 + 15x2 − x2
2 = 55.
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3.1.3. Setting up the Lagrangian function and solving for the optimal values. The Lagrangian is given by

L = 10x1 + 5x2 − λ(20x1 − x2
1 + 15x2 − x2

2 − 55)

∂L

∂x1
= 10 − λ(20 − 2x1) = 0 (22a)

∂L

∂x2
= 5 − λ(15 − 2x2) = 0 (22b)

∂L

∂λ
= (−1)(20x1 − x2

1 + 15x2 − x2
2 − 55) = 0 (22c)

If we take the ratio of the first two first order conditions in equation 22 we obtain

10
5

= 2 =
20 − 2x1

15 − 2x2

⇒ 30 − 4x2 = 20 − 2x1

⇒ 10 − 4x2 = − 2x1

⇒ x1 = 2x2 − 5

(23)

Now plug this result into the negative of equation 22c to obtain

20(2x2 − 5) − (2x2 − 5)2 + 15x2 − x2
2 − 55 = 0 (24)

Multiplying out and solving for x2 will give

40x2 − 100 − (4x2
2 − 20x2 + 25) + 15x2 − x2

2 − 55 = 0

⇒ 40x2 − 100 − 4x2
2 + 20x2 − 25 + 15x2 − x2

2 − 55 = 0

⇒ − 5x2
2 + 75x2 − 180 = 0

⇒ 5x2
2 − 75x2 + 180 = 0

⇒ x2
2 − 15x2 + 36 = 0

(25)

Now solve this quadratic equation for x2 as follows

x2 =
15 ±

√
225 − 4(36)
2

=
15 ± √

81
2

= 3 or 12

(26)

Given that we know the objective is to minimize cost we would likely choose 3. Therefore,
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x1 = 2x2 − 5

= 1
(27)

For x2=12, x1 = 19. The minimum cost is obtained by substituting into the cost expression to obtain

C = 10(1) + 5(3) = 25 (28)

The Lagrangian multiplier λ can be obtained by substituting for x1 in equation 22a.

10 − λ(20 − 2(1)) = 0

→ λ =
10
18

=
5
9

= 0.55
(29)

3.1.4. Sufficient conditions. In order to check which pair of x values is a minimum and which is a maximum,
we need to form the bordered Hessian matrix. Remember that the Lagrangian for this problem is given by

L = 10x1 + 5x2 − λ(20x1 − x2
1 + 15x2 − x2

2 − 55) (30)

The relevant derivatives are

∂L(x1, x2, λ)
∂x1

= 10 − λ(20 − 2x1) (31a)

∂L(x1, x2, λ)
∂x2

= 5 − λ(15 − 2x2) (31b)

∂L(x1, x2, λ)
∂λ

= (−1)(20x1 − x2
1 + 15x2 − x2

2 − 55) (31c)

∂2L(x1, x2, λ)
∂x1∂x1

= 2λ,
∂2L(x1, x2, λ)

∂x2∂x1
= 0 (31d)

∂2L(x1, x2, λ)
∂x1∂x2

= 0,
∂2L(x1, x2, λ)

∂x2∂x2
= 2λ (31e)

∂g(x1, x2)
∂x1

= 20 − 2x1,
∂g(x1, x2)

∂x2
= 15 − 2x2 (31f)

This gives for the bordered Hessian matrix




2λ 0 20 − 2x1

0 2λ 15 − 2x2

20 − 2x1 15 − 2x2 0


 (32)

At the root x = (1,3), this gives
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10
9 0 18

0 10
9 9

18 9 0


 (33)

The determinant is

(
10
9

)(
10
9

)
(0) + (0)(9)(18) + (18)(0)(9) −

(
(18)

(
10
9

)
(18) + (0)(0)(0) +

(
10
9

)
(9)(9)

)

= 0 + 0 + 0 − (360 + 0 + 90)

= − 450

Given that this is negative, the values x1 = 1 and x2 = 3 then minimize cost.

Now consider the other two roots, x1 = 19 and x2 = 12, λ = - 5
9 . The bordered Hessian is




2λ 0 20 − 2x1

0 2λ 15 − 2x2

20 − 2x1 15 − 2x2 0


 =




− 10
9 0 −18

0 − 10
9 −9

−18 −9 0


 (34)

This has determinant�
−10

9

��
−10

9

�
(0) + (0)(−9)(−18) + (−18)(0)(−9) −

�
(−18)

�
−10

9

�
(−18) + (0)(0)(0) +

�
−10

9

�
(−9)(−9)

�
= 0 + 0 + 0 − (−360 + 0 + −90)

= 450

Given that this is positive, the values x1 = 19 and x2 = 12 then maximize cost.

3.1.5. Graphical analysis. The objective function is a plane as shown in figure 9. It is clearly minimized in
the positive orthant at the point (0, 0). The level curves are shown in figure 10. If we plot these level curves
along with the value of the constraint we obtain a representation as in figure 11. The optimum looks to be
somewhere around 1 and 3. We can then refine the diagram as in figure 12.

3.2. Maximizing a utility function subject to a budget constraint.

3.2.1. The utility function. Consider a utility function given by

u = xα1
1 xα2

2 (35)

3.2.2. Prices, income and the budget constraint. Consider a general problem with prices w1 and w2 and income
level c0. The budget constraint is then

w1x1 + w2x2 = c0 (36)
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FIGURE 9. Plane in R3 representing the equation 10x1 + 5x2
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FIGURE 10. Level curves of 10x1 + 5x2
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3.2.3. Setting up the Lagrangian function and solving for the optimal values. To maximize utility subject to the
budget constraint we set up the Lagrangian problem

L = xα1
1 xα2

2 − λ [w1x1 + w2x2 − c0] (37)

The first order conditions are
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FIGURE 11. Level curves of 10x1 + 5x2 and production function constraint
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∂L

∂x1
= α1 xα1−1

1 xα2
2 − λ w1 = 0 (38a)

∂L

∂x2
= α2 xα1

1 xα2−1
2 − λ w2 = 0 (38b)

∂L

∂λ
= − w1x1 − w2x2 + c0 = 0 (38c)

Taking the ratio of the first and second equations in equation 38 we obtain

w1

w2
=

α1x2

α2x1
. (39)

We can now solve this equation for x2 as a function of x1 and prices. Doing so we obtain

x2 =
α2x1w1

α1w2
. (40)

Substituting in the cost equation (38c) we obtain
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FIGURE 12. Level curves of 10x1 + 5x2 and optimum input levels
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w1 x1 + w2 x2 = c0

⇒ w1 x1 + w2

[
α2 x1 w1

α1 w2

]
= c0

⇒ w1 x1 +
[
α2 w1 w2

α1 w2

]
x1 = c0

⇒ w1 x1 +
[
α2 w1

α1

]
x1 = c0

⇒ x1

[
w1 +

α2 w1

α1

]
= c0

⇒ x1 w1

[
1 +

α2

α1

]
= c0

⇒ x1 w1

[
α1 + α2

α1

]
= c0

⇒ x1 =
c0

w1

[
α1

α1 + α2

]

(41)
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We can now obtain x2 by substitution

x2 = x1

[
α2 w1

α1 w2

]

=
c0

w1

[
α1

α1 + α2

] [
α2 w1

α1 w2

]

=
c0

w2

[
α2

α1 + α2

]

(42)

The utility level is obtained by substituting x1 and x2 in the utility function

u = xα1
1 xα2

2

=
[

c0

w1

(
α1

α1 + α2

) ] α1
[

c0

w2

(
α2

α1 + α2

) ] α2

=
(

α1

α1 + α2

)α1
(

α2

α1 + α2

)α2
(

c0

w1

)α1
(

c0

w2

)α2

(43)

3.3. Numerical example of maximizing a utility function subject to a budget constraint.

3.3.1. The utility function. Consider a utility function given by

u = 10x
2/5
1 x

1/5
2 (44)

The utility function is shown in figure 13.

FIGURE 13. Utility Function
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3.3.2. Prices, income and the budget constraint. For this problem w1 = 8 and w2 =2 and the income level c0 =
96. The budget constraint is then

8 x1 + 2 x2 = 96 (45)
The utility function and the constraint are shown in figure 14. A set of level sets (indifference curves)

and the budget constraint are shown in figure 15.

FIGURE 14. Utility Function and Constraint
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3.3.3. Setting up the Lagrangian function and solving for the optimal values. To maximize utility subject to the
budget constraint we set up the Lagrangian problem

L = 10x
2/5
1 x

1/5
2 − λ [ 8 x1 + 2 x2 − 96] (46)

The first order conditions are

∂L

∂x1
= 4x

−3/5
1 x

1/5
2 − 8λ = 0 (47a)

∂L

∂x2
= 2x

2/5
1 x

−4/5
2 − 2λ = 0 (47b)

∂L

∂λ
= − 8 x1 − 2 x2 + 96 = 0 (47c)

Taking the ratio of the first and second equations in equation 47 we obtain

4x
−3/5
1 x

1/5
2

2x
2/5
1 x

−4/5
2

=
8
2

= 4

⇒ 2x−1
1 x2 = 4

(48)
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FIGURE 15. Budget Constraint and Indifference Curves
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We can now solve this equation for x2 as a function of x1 and prices. Doing so we obtain

x2 = 2 x1 (49)

Substituting in the cost equation (47c) we obtain

8 x1 + 2 x2 = 96

⇒ 8 x1 + 2 [ 2 x1] = 96

⇒ 8 x1 + 4 x1 = 96

⇒ 12 x1 = 96

⇒ x1 = 8

(50)

We can now obtain x2 by substitution

x2 = 2 x1

= (2) (8) = 16
(51)

The utility level is obtained by substituting x1 and x2 in the utility function



SIMPLE CONSTRAINED OPTIMIZATION 19

u = 10x
2/5
1 x

1/5
2

= (10) (8)2/5 (16)1/5

= (2)(5)(23)2/5 (24)1/5

= (2)(5)(2)6/5 (2)4/5

= (2)(5)(2)10/5

= (2)(5)(22)

= (8)(5)

= 40

(52)

3.3.4. Sufficient conditions. In order to check if the x values we obtained lead to a maximum, we need to
form the bordered Hessian matrix. Remember that the Lagrangian for this problem is given by

L = 10x
2/5
1 x

1/5
2 − λ [ 8 x1 + 2 x2 − 96] (53)

The relevant derivatives are

∂L

∂x1
= 4x

−3/5
1 x

1/5
2 − 8λ (54a)

∂L

∂x2
= 2x

2/5
1 x

−4/5
2 − 2λ (54b)

∂L

∂λ
= − 8 x1 − 2 x2 + 96 (54c)

∂2L(x1, x2, λ)
∂x1∂x1

= − 12
5

x
−8/5
1 x

1/5
2 ,

∂2L(x1, x2, λ)
∂x2∂x1

=
4
5
x
−3/5
1 x

−4/5
2 (54d)

∂2L(x1, x2, λ)
∂x1∂x2

=
4
5
x
−3/5
1 x

−4/5
2 ,

∂2L(x1, x2, λ)
∂x2∂x2

= −8
5
x

2/5
1 x

−9/5
2 (54e)

∂g(x1, x2)
∂x1

= 8,
∂g(x1, x2)

∂x2
= 2 (54f)

This gives for the bordered Hessian matrix




− 12
5 x

−8/5
1 x

1/5
2

4
5x
−3/5
1 x

−4/5
2 8

4
5x
−3/5
1 x

−4/5
2 − 8

5x
2/5
1 x

−9/5
2 2

8 2 0


 (55)

At the root x = (8,16), this gives
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− 12
5 (8)−8/5(16)1/5 4

5 (8)−3/5(16)−4/5 8

4
5 (8)−3/5(16)−4/5 − 8

5 (8)2/5(16)−9/5 2

8 2 0


 =




− 3
20

1
40 8

1
40 − 1

40 2

8 2 0


 (56)

The determinant is�
− 3

20

��
− 1

40

�
(0) +

�
1

40

�
(2)(8) + (8)

�
1

40

�
(2) −

�
(8)

�
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�
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�
− 3
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�
(2)(2) +

�
1
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��
1
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�
(0)

�
= 0 +

2

5
+

2

5
−
�
−8

5
+ −3

5
+ 0

�
=

15

5

= 3

Given that this is positive, the values x1 = 8 and x2 = 16 maximize utility.




