Stress-Testing U.S. Electric Power Market Designs via Agent-Based Modeling

Leigh Tesfatsion
Professor of Econ, Math, and Electrical and Computer Engineering
Iowa State University, Ames, Iowa
http://www.econ.iastate.edu/tesfatsi/
tesfatsi@iastate.edu

Last Revised: 24 April 2009
Presentation Outline

* Complexity of large-scale institutions
* How might agent-based modeling enable pre-testing of institutional arrangements prior to implementation?
* Adventures in agent-based test-bed development for U.S. electric power markets

AMES = Agent-based Modeling of Electricity Systems

* Illustrative findings
Modern societies depend strongly on large-scale institutions for the production and distribution of critical goods and services such as energy, health care, education, & financial credit.

Institutional outcomes depend in complicated ways on:
- Rules governing participation, operation & oversight
- Structural restrictions on feasible actions
- Behavioral dispositions of human participants

To be useful and informative, institutional studies need to take proper account of all three elements.
Can Agent-Based Modeling (ABM) Help?

- ABM tools are designed to handle complex systems.
- ABM tools permits researchers to construct test beds in the form of computational virtual worlds.
- Starting from user-specified initial conditions, world events are driven entirely by agent interactions.
- Agents can range from structural and institutional entities with no cognitive function (e.g., transmission grids and market protocols) to sophisticated decision makers capable of communication and learning (e.g., electricity traders).
ABM and Institutional Design

Key Issue: Does a proposed or actual design ensure efficient, fair, and orderly social outcomes over time despite possible attempts by participants to “game” the design in accordance with their own objectives?

ABM Approach:
- Construct an *agent-based test bed* capturing salient aspects of the institutional design.
- *Introduce self-interested cognitive agents with learning capabilities.* Let the world evolve. Observe and evaluate the resulting outcomes.
Concrete Example:

AMES Wholesale Power Market Test Bed

Project Director: Leigh Tesfatsion (Prof. of Econ, Math, & ECpE, ISU)
Research Associate: Junjie Sun (Fin. Econ, OCC, U.S. Treasury, Wash, D.C.)
Research Assistant: Hongyan Li (PhD Cand, Elect. & Comp Eng (ECpE), ISU)

Other Project Participants: Qun Zhou & Nanpeng Yu (ECpE PhD Cand’s, ISU); Abhishek Somani & Huan Zhao (Econ PhD Cand’s, ISU)

Funded in part by the National Science Foundation, PNNL, and the ISU Electric Power Research Center (a power industry consortium)

AMES Market Package Homepage (Code/Manuals/Pubs):
www.econ.iastate.edu/tesfatsi/AMESMarketHome.htm
In April 2003 the U.S. Federal Energy Regulatory Commission (FERC) proposed that all U.S. wholesale power markets adopt a market design with particular core features.

As of 2009, over 50% of U.S. generation capacity now operates under some variant of FERC's wholesale power market design.
Core Features of FERC's Market Design

- Market to be managed by an *independent market operator* (no ownership stake)

- **Two-settlement system**: Concurrent operation of day-ahead (forward) & real-time (spot) markets

- Grid congestion managed via *Locational Marginal Pricing (LMP)*, the determination of a separate price at each grid location where power is injected or withdrawn

- Oversight & market power mitigation by outside agency

➞ Has led in practice to complicated systems difficult to analyze by standard analytical/statistical tools!
Our Project Goals

- Develop an agent-based test bed that captures core features of the FERC wholesale power market design.

- Use this test bed to systematically explore dynamic performance under the FERC market design, using Midwest (MISO) and New England (ISO-NE) as main case studies.

- Use this test bed to systematically explore new and/or modified market design features.

- Use this test bed to encourage ongoing communication among researchers and power industry stakeholders.
U.S. Wholesale Electric Power Transmission Grid
Regions Operating Under Some Version of FERC Design

Midwest (MISO) Real-Time Market Hub Prices and Fixed Demand: 2006

The graph shows the price of energy in dollars per MWh ($/MWh) and the corresponding demand in MW (megawatts) for each month from January to December 2006. The graph includes data for different hubs and areas, such as Cinergy Hub, Michigan Hub, Minnesota Hub, and WUMS Area.
Real-Time Market Prices for Power in MISO
April 25, 2006, at 19:55

Note this price, $156.35
Five Minutes Later...

Now $41.57, a 73% drop in price in 5 minutes!
Real-Time Market Prices for Power in MISO
September 5, 2006, 14:30
Complicated Organization of a Typical U.S. Wholesale Power Market Operating Under FERC Design

Current focus of our test-bed project = Two-settlement system under LMP.
AMES Market Test Bed: Target Features and Release History

- **Research/teaching/training-grade test bed** (2-500 pricing nodes)
- **Operational validity** ("simple but not too simple")
- Permits **dynamic** testing with **learning traders**
- Permits **intensive experimentation** with alternative scenarios
- **Free open-source Java implementation** (full access to code)
- **Flexible & modular** (easy to modify test bed features)
- **V2.02 released** (IEEE Power & Energy Soc. Gen Meeting, 2008)
- **V3.0 in progress**
AMES Market Test Bed: Flexible and Modular Architecture

- **Market protocols & AC transmission grid structure**
 - Graphical user interface (GUI) & modularized class structure permit easy experimentation with alternative parameter settings and alternative institutional/grid constraints

- **Learning representations for traders**
 - Java Reinforcement Learning Module (JReLM)
 - “Tool box” permitting experimentation with a wide variety of learning methods (Roth-Erev, Temp Diff/Q-learning,…)

- **Optimal power flow formulation**
 - Java DC Optimal Power Flow Module (DCOPFJ)
 - Permits experimentation with various DC OPF formulations

- **Output displays and dynamic test cases**
 - Customizable chart/table displays & 5-bus/30-bus test cases
AMES Market Test Bed Graphical User Interface (GUI)
Tool Bar and Menus for Data Input and Output Displays
AMES Architecture: Current Implementation
(based on business practices manuals for MISO/ISO-NE)

- **Traders**
 - GenCos (sellers)
 - LSEs (buyers)
 - GenCo learning abilities

- **Independent System Operator (ISO)**
 - System reliability assessments
 - Day-ahead scheduling via bid/offer based optimal power flow (OPF)
 - Real-time dispatch

- **Two-settlement system**
 - Day-ahead market (double auction, financial contracts)
 - Real-time market (settlement of differences)

- **AC transmission grid**
 - Generation Companies (GenCos) & Load-Serving Entities (LSEs) located at various transmission buses
 - Grid Congestion managed via Locational Marginal Pricing (LMP) determined by ISO via bid/offer-based OPF.
Activities of ISO During Each Operating Day D: Timing Adopted from Midwest ISO (MISO)

- **00:00**
 - Day-ahead market for day D+1 (ISO collects bids/offers from LSEs & GenCos)

- **11:00**
 - ISO evaluates demand bids and supply offers

- **16:00**
 - ISO solves D+1 DC OPF and posts D+1 dispatch and LMP schedule

- **23:00**
 - Day-ahead settlement
Day-Ahead Market Data Flow for AMES GenCos, LSEs, and ISO

- **GenCos**
 - Submit Supply Offers
 - Receive LMPs/Dispatch
 - Learn from Results & Update Supply Offers

- **LSEs**
 - Submit Demand Bids
 - Receive LMPs/Dispatch

- **ISO**
 - Day-Ahead Market
 - Clear Bids/Offers & Publish LMPs/Dispatch
Form of LSE Demand Bids

- Hourly demand bid for each LSE j

Fixed + Price-Sensitive Demand Bid

- **Fixed** demand bid $= p_{Lj}^F$ (MWs)
- **Price-sensitive** demand bid

 = Linear demand function for real power p_{Lj}^S (MWs) over a purchase capacity interval:

 $D_j(p_{Lj}^S) = c_j - 2d_j p_{Lj}^S$

 $0 \leq p_{Lj}^S \leq SLMax_j$
What do AMES GenCos Learn?

Hourly Supply Offers for the Day-Ahead Market

Supply offer for each GenCo $i = \text{reported}$ linear marginal cost function over a reported operating capacity interval for real power p_{Gi} (in MWs):

$$MC^R_i(p_{Gi}) = a^R_i + 2b^R_i p_{Gi}$$

$$Cap_i^L \leq p_{Gi} \leq Cap_i^RU$$

GenCos can strategically report higher-than-true marginal costs and/or lower-than-true true physical capacity.
GenCo i’s Action Domain
(Collection of possible reported marginal cost functions \(MC_i^R\) over possible reported operating capacity intervals)

\[
MC_i^R = a_i^R + 2 \cdot b_i^R \cdot p_{Gi}
\]

\[MC_i = a_i + 2 \cdot b_i \cdot p_{Gi}\]
Each GenCo maintains action choice propensities q, normalized to action choice probabilities Prob, to choose actions (supply offers). A good (bad) reward r_k for action a_k results in an increase (decrease) in both q_k and Prob_k.
DC Optimal Power Flow (OPF) Module for AMES(V2.02)

GenCos report hourly supply offers and LSEs report fixed & price-sensitive hourly demand bids to ISO for day-ahead market

Minimize

\[
\sum_{i=1}^{I} [a_i p_{Gi} + b_i p_{G_i}^2] - \sum_{j=1}^{J} [c_j p_{Lj}^S - d_j p_{Lj}^S]^2 + \pi \left[\sum_{km \in BR} [\delta_k - \delta_m]^2 \right]
\]

w.r.t. \(p_{Gi}, i = 1, ..., I; \ p_{Lj}^S, j = 1, ..., J; \ \delta_k, k = 1, ..., K \)

Subject to

\[
\sum_{i \in I_k} p_{Gi} - \sum_{j \in J_k} (p_{Lj}^F + p_{Lj}^S) - \sum_{km \in BR} B_{km} [\delta_k - \delta_m] = 0
\]

\[
|B_{km} [\delta_k - \delta_m]| \leq P_{km}^U
\]

\[
Cap_i^L \leq p_{Gi} \leq Cap_i^RU
\]

\[
0 \leq p_{Lj}^S \leq SLMax_j
\]

Fixed and price-sensitive demand bids for LSE j

GenCo-reported total avoidable costs

LSE gross buyer surplus

Shadow price for this bus k balance constraint gives LMP for bus k

Purchase capacity interval for GenCo i

Operating capacity interval for LSE j
Illustrative Experimental Findings Using AMES(2.02)

Focus: Dynamic LMP response and spatial LMP-GenCo supply offer correlations under a range of treatments:
- price-sensitivity of LSE demand bids [0 to 100%]
- learning capabilities [absent or present]
- supply-offer price cap [none (∞), high, moderate, low]
5-Bus Transmission Grid Test Case
(used in many ISO business practice/training manuals)

Five power sellers G1, …, G5 and three power buyers LSE1, LSE2, LSE3:
GenCo True Cost & Capacity Attributes

GenCo True Marginal Cost Functions

Price ($/MWh) vs Power (MWs)

- GenCo1
- GenCo2
- GenCo3
- GenCo4
- GenCo5
Benchmark Case:
No GenCo learning, 100% fixed demand, and no supply-offer price cap

Daily LSE Fixed Demand (Load) Profiles

17 = Peak demand hour
True Total Supply and Demand Curves for Hours 4 and 17 for the Benchmark Dynamic 5-Bus Test Case
Relative Demand-Bid Price Sensitivity Measure R from $R=0.0$ (0%) to $R=1.0$ (100%): Illustration for $R=0.33$

$$MPTD_j(H) = \text{Maximum potential total demand in hour } H \text{ for LSE } j$$

- Blue: $p^F_{lj}(H)$ = Fixed demand in hour H for LSE j
- Yellow: $SLMaxj(H)$ = Maximum potential price-sensitive demand in hour H for LSE j

$$R = \frac{SLMaxj(H)}{MPTD_j(H)} = \frac{20}{60} = \frac{10}{30} = 0.33 \text{ for Hours 00 & 01}$$
True total supply and demand curves for hours 4 and 17 with 20% potential price-sensitive demand (R=0.2)
Initial Learning Calibration Experiments: GenCo “Sweet Spot” Learning

(red ➔ highest net earnings)

<table>
<thead>
<tr>
<th></th>
<th>beta=100</th>
<th>beta=50</th>
<th>beta=10</th>
<th>beta=2</th>
<th>beta=1</th>
<th>beta=1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha=1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>alpha=1/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>alpha=1/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>alpha=1/10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>alpha=1/24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A heat-map depiction of average daily net earnings (Avg DNE) outcomes under alternative (α,β) VRE learning parameter combinations.
Lerner Index (LI): Measure of Market Power

- The LI for any GenCo i supplying a positive amount of power P_{Gi} is defined as follows:

$$LI_i(P_{Gi}) = \frac{[\text{LMP}_{k(i)} - \text{MC}_i(P_{Gi})]}{\text{LMP}_{k(i)}}$$

Given binding capacity constraint on GenCo i, can have $LI_i > 0$ without exercise of market power by GenCo i.

- Typically, LI measures are calculated on an hourly basis.

- LI is commonly used as a measure of Market Power, defined for a GenCo as ability to affect market price in its own favor.
Average LMP and LI Levels as Demand-Bid Price Sensitivity Varies from R=0.0 (0%) to R=1.0 (100%), With & Without GenCo Learning.

Avg LMP (locational marginal price) | Avg LI (Lerner Index)

Graphs showing the relationship between R and Avg LMP and Avg LI with and without learning.
No-Learning Vs. Learning Outcomes for a Typical Run

No learning

Learning
LMP Results with Price-Sensitive Demand Bids
(no supply-offer price cap, with/without GenCo learning)

🌟 BOTTOM LINE:

Even with 100% price-sensitive demand bids (R=1), average prices are much higher under GenCo learning!

🌟 NEEDED:

Active demand-side bidding from LSEs reflecting better integration of wholesale/retail markets

Countervailing power (active supply AND demand offers at wholesale level) could result in more competitive pricing.
Average LMP Under Varied Supply-Offer Price Caps (with 100% fixed demand and with GenCo Learning)

Avg LMP (locational marginal price)

NOTE: LMPs include $1000/MWh reserve price for hours in which offered supply is insufficient to meet demand (i.e., an “inadequacy event” occurs).
Avg LMP Volatility/Spiking Under Supply-Offer Price Caps (with 100% fixed demand and with GenCo learning)
Results for Varied Supply-Offer Price Caps
(with 100% fixed demand and with GenCo learning)

BOTTOM LINE:

Supply-offer price caps can lead to *increased* LMP volatility/spiking and inadequacy events \((S<D)\), especially around peak demand hours, even though Average LMP declines!
Daily LSE Fixed Demand (Load) Profiles:
Four Selected Hours for Cross-Correlation Studies

- Peak H17
- Shoulder H11
- Shoulder H20
- Off-peak H04
5-Bus Transmission Grid:

Largest GenCo = G5; Next Largest GenCo = G3
Correlations among GenCo-Reported MC and Bus LMPs with 100% fixed demand and GenCo learning
Correlations among GenCo-Reported MC and Bus LMPs with 100% price-sensitive demand and GenCo learning
Correlations among Bus LMPs with 100% fixed demand and GenCo learning
Correlations among Bus LMPs with 100% price-sensitive demand and GenCo learning
MISO LMP Correlations between MidAmerican Energy Region and Neighboring Regions

TABLE XXI
LMP Correlations Between the MidAmerican Energy (MEC) Balancing Authority and Neighboring Balancing Authorities for the MISO Day-Ahead and Real-Time Markets

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MEC-ALTW, MECB</td>
<td>0.998</td>
<td>0.997</td>
<td>0.999</td>
<td>1.000</td>
<td>0.984</td>
<td>0.971</td>
<td>0.974</td>
<td>1.000</td>
</tr>
<tr>
<td>MEC-MPW</td>
<td>0.996</td>
<td>0.994</td>
<td>0.998</td>
<td>1.000</td>
<td>0.986</td>
<td>0.970</td>
<td>0.974</td>
<td>1.000</td>
</tr>
<tr>
<td>MEC-OPPD</td>
<td>1.000</td>
<td>1.000</td>
<td>0.999</td>
<td>1.000</td>
<td>0.986</td>
<td>0.970</td>
<td>0.974</td>
<td>1.000</td>
</tr>
<tr>
<td>MEC-SSPD</td>
<td>0.998</td>
<td>0.998</td>
<td>0.995</td>
<td>0.998</td>
<td>0.985</td>
<td>0.970</td>
<td>0.974</td>
<td>1.000</td>
</tr>
</tbody>
</table>
Conclusions

* **Restructured wholesale power markets** are complex large-scale institutions encompassing physical constraints, administered rules of operation, and strategic human participants.

* **Agent-based test beds** permit the systematic dynamic study of such institutions through intensive computational experiments.

* For increased empirical validity, test beds should be **iteratively developed** with ongoing input from actual market participants.

* To increase usefulness for research/teaching/training and to aid knowledge accumulation, these test beds should be **open source**.
On-Line Resources

- **AMES Market Package Homepage** (Code/Manuals/Pubs)
 www.econ.iastate.edu/tesfatsi/AMESMarketHome.htm

- **Agent-Based Electricity Market Research**
 www.econ.iastate.edu/tesfatsi/aelectric.htm

- **Open Source Software for Electricity Market Research, Teaching, and Training**
 www.econ.iastate.edu/tesfatsi/ElectricOSS.htm