Problem Set #2

(1) Stock and Watson, 2.2

(2) Stock and Watson, 2.8

(3) Stock and Watson, 2.10

(4) Show that
\[\text{Cov}(aX + b, cY + d) = ac\text{Cov}(X, Y) \]
for any two random variables X and Y, and constants a, b, c and d.

(Hint: Use the formula for the covariance in your class notes. A similar derivation is also provided in the appendix of Chapter 2.)

(5) Show that $\text{Var}(aX + Y) = a^2\text{Var}(X) + 2a\text{Cov}(X, Y) + \text{Var}(Y)$ for any two random variables X and Y, and constants a and b.

(6) Consider the following two estimators of a parameter θ, and let n denote the sample size:
(a)
\[\hat{\theta} = \theta + (1/n) \]
(b)
\[\hat{\theta} = \begin{cases}
\theta + n & \text{With probability .5} \\
\theta - n & \text{With probability .5}
\end{cases} \]

Are these estimators biased or unbiased? Are they consistent or inconsistent?.