INTRODUCTION TO MATRIX ALGEBRA

1. DEFINITION OF A MATRIX AND A VECTOR

1.1. Definition of a matrix. A matrix is a rectangular array of numbers arranged into rows and columns. It is written as

\[
\begin{pmatrix}
a_{11} & a_{12} & \ldots & a_{1n} \\
a_{21} & a_{22} & \ldots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \ldots & a_{mn}
\end{pmatrix}
\]

(1)

The above array is called an m by n (m x n) matrix since it has m rows and n columns. Typically upper-case letters are used to denote a matrix and lower case letters with subscripts the elements. The matrix A is also often denoted

\[A = \|a_{ij}\| \]

(2)

1.2. Definition of a vector. A vector is a n-tuple of numbers. In \(\mathbb{R}^2 \) a vector would be an ordered pair of numbers \(\{x, y\} \). In \(\mathbb{R}^3 \) a vector is a 3-tuple, i.e., \(\{x_1, x_2, x_3\} \). Similarly for \(\mathbb{R}^n \). Vectors are usually denoted by lower case letters such as a or b, or more formally \(\vec{a} \) or \(\vec{b} \).

1.3. Row and column vectors.

1.3.1. Row vector. A matrix with one row and n columns (1xn) is called a row vector. It is usually written \(\vec{x}' \) or

\[
\vec{x}' = (x_1, x_2, x_3, \ldots, x_n)
\]

(3)

The use of the prime ' symbol indicates we are writing the n-tuple horizontally as if it were the row of a matrix. Note that each row of a matrix is a row vector.

1.3.2. Column vector. A matrix with one column and n rows (nx1) is called a column vector. It is written as

\[
\vec{x} =
\begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
\vdots \\
x_n
\end{pmatrix}
\]

(4)

Note that each column of a matrix is a column vector. It is common to write the columns of a matrix as \(a_1, a_2, \ldots, a_n \) where each column vector \(a_j \) is of length m. As an example \(a_2 \) is given by

Date: August 27, 2004.
2. INTRODUCTION TO MATRIX ALGEBRA

\[\vec{a}_2 = \begin{pmatrix} a_{12} \\ a_{22} \\ a_{32} \\ \vdots \\ \vdots \\ a_{m2} \end{pmatrix} \] (5)

2. VARIOUS TYPES OF MATRICES AND VECTORS

2.1. Square matrices. A square matrix is a matrix with an equal number of rows and columns, i.e. \(m=n \).

2.2. Transpose of a matrix. The transpose of a matrix \(A \) is a matrix formed from \(A \) by interchanging rows and columns such that row \(i \) of \(A \) becomes column \(i \) of the transposed matrix. The transpose is denoted by \(A' \) or \(A^T \) and

\[A' = \|a_{ji}\| \text{ when } A = \|a_{ij}\| \] (6)

If \(a'_{ij} \) is the \(ij \)th element of \(A' \), then \(a'_{ij} = a_{ji} \). If the matrix \(A \) is given by

\[A = \begin{pmatrix} 3 & 2 & 5 & 7 \\ 1 & 4 & 6 & 3 \\ 5 & 10 & -2 & 0 \\ 1 & 1 & 15 & -2 \end{pmatrix} \] (7)

then \(A' \) is given by

\[A' = \begin{pmatrix} 3 & 1 & 5 & 1 \\ 2 & 4 & 10 & 1 \\ 5 & 6 & -2 & 15 \\ 7 & 3 & 0 & -2 \end{pmatrix} \] (8)

2.3. Symmetric matrix. A symmetric matrix is a square matrix \(A \) for which

\[A = A' \] (9)

An example of a symmetric matrix is

\[T = \begin{pmatrix} 3 & 1 & 5 & 1 \\ 1 & 4 & 10 & 1 \\ 5 & 10 & -2 & 15 \\ 1 & 1 & 15 & -2 \end{pmatrix} \] (10)

\[T' = \begin{pmatrix} 3 & 1 & 5 & 1 \\ 1 & 4 & 10 & 1 \\ 5 & 10 & -2 & 15 \\ 1 & 1 & 15 & -2 \end{pmatrix} \]
2.4. **Identity matrix.** The identity matrix of order \(n\) written \(I\) or \(I_n\), is a square matrix having ones along the main diagonal (the diagonal running from upper left to lower right and zeroes elsewhere).

\[
\begin{pmatrix}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1
\end{pmatrix}
\]

(11)

If we write \(I = \|\delta_{ij}\|\) then

\[
\delta_{ij} = \begin{cases}
1, & i = j \\
0, & i \neq j
\end{cases}
\]

(12)

The symbol \(\delta_{ij}\) is called the Kronecker delta. Note that for a system of \(n\) equations in \(n\) unknowns that has a unique solution, the coefficient matrix of the system after performing the appropriate number of row and column operations is an identity matrix.

2.5. **Scalar matrix.** For any scalar \(\lambda\), the square matrix

\[
S = \|\lambda \, \delta_{ij}\| = \lambda I
\]

(13)

is called a scalar matrix. An example is

\[
\begin{pmatrix}
3 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 3
\end{pmatrix}
\]

(14)

2.6. **Diagonal matrix.** A square matrix

\[
D = \|\lambda_i \, \delta_{ij}\|
\]

(15)

is called a diagonal matrix. Notice that \(\lambda_i\) varies with \(i\). An example is

\[
\begin{pmatrix}
13 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & -4 & 0 \\
0 & 0 & 0 & 56
\end{pmatrix}
\]

(16)

If a system of equations was written with this coefficient matrix, we could solve the system by solving each equation individually.

2.7. **Null or zero matrix.** The null or zero matrix is a matrix with each element being zero. It is denoted as \(0\).
2.8. **Upper triangular matrix.** A matrix with all elements below the main diagonal equal to zero is called an upper triangular matrix.

\[
A = \begin{pmatrix}
a_{11} & a_{12} & a_{13} & \ldots & a_{1n} \\
0 & a_{22} & a_{23} & \ldots & a_{2n} \\
0 & 0 & a_{33} & \ldots & a_{3n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & a_{nn} \\
\end{pmatrix}
\]

Specifically \(a_{ij} = 0 \) if \(i > j \) as long as \(i < m \) and \(j < n \).

2.9. **Lower triangular matrix.** A matrix with all elements above the main diagonal equal to zero is called a lower triangular matrix.

\[
A = \begin{pmatrix}
a_{11} & 0 & 0 & \ldots & 0 \\
a_{21} & a_{22} & 0 & \ldots & 0 \\
a_{31} & a_{32} & a_{33} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & a_{m3} & \ldots & a_{mn} \\
\end{pmatrix}
\]

Specifically \(a_{ij} = 0 \) if \(i < j \) as long as \(i < m \) and \(j < n \).

3. **A Note on Summation Notation**

3.1. **Single sums.**

3.1.1. *Definition of a single sum.*

\[\sum_{i=m}^{n} a_i = a_m + a_{m+1} + a_{m+2} + \ldots + a_n \]

3.1.2. *Properties of a single sum.*

\[\sum_{i=1}^{n} ka_i = k \sum_{i=1}^{n} a_i \]

\[\sum_{i=1}^{n} k = k + k + k + \ldots + k = nk \]

\[\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i \]
3.2. Double sums.

3.2.1. Definition of a double sum.

\[
\sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} = \sum_{j=1}^{m} a_{1j} + \sum_{j=1}^{m} a_{2j} + \ldots + \sum_{j=1}^{m} a_{nj}
\]

\[
= a_{11} + a_{12} + a_{13} + \ldots + a_{1m} \\
+ a_{21} + a_{22} + a_{23} + \ldots + a_{2m} \\
+ \ldots \\
+ \ldots \\
+ a_{n1} + a_{n2} + a_{n3} + \ldots + a_{nm}
\]

3.2.2. Properties of a double sum.

\[
(\sum_{j=1}^{n} a_{j}) (\sum_{i=1}^{n} a_{i}) = \sum_{i=1}^{n} a_{i}^2 + 2 \sum_{i<j} a_{i} a_{j}
\]

\[
= \sum_{i=1}^{n} a_{i}^2 + \sum_{i \neq j} a_{i} a_{j}
\]
4. Matrix operations

4.1. Scalar multiplication (matrix). Given a matrix A and a scalar λ, the product of λ and A, written λA, is defined to be

$$\lambda A = \begin{pmatrix}
\lambda a_{11} & \lambda a_{12} & \ldots & \lambda a_{1n} \\
\lambda a_{21} & \lambda a_{22} & \ldots & \lambda a_{2n} \\
\vdots & \vdots & & \vdots \\
\lambda a_{m1} & \lambda a_{m2} & \ldots & \lambda a_{mn}
\end{pmatrix}$$ \hspace{1cm} (24)

4.2. Scalar multiplication (vector). Given a column vector \vec{a} and a scalar λ, the product of λ and \vec{a}, written $\lambda \vec{a}$, is defined to be

$$\lambda \vec{a} = \begin{pmatrix}
\lambda a_1 \\
\lambda a_2 \\
\vdots \\
\lambda a_m
\end{pmatrix}$$ \hspace{1cm} (25)

For the second column of a matrix we could write

$$\lambda \vec{a}_2 = \begin{pmatrix}
\lambda a_{12} \\
\lambda a_{22} \\
\vdots \\
\lambda a_{m2}
\end{pmatrix}$$ \hspace{1cm} (26)

4.3. Trace of a square matrix. The trace of a matrix is the sum of the diagonal elements and is denoted $\text{tr} A$. Consider the matrix C below.

$$C = \begin{pmatrix}
3 & 1 & 5 & 1 \\
1 & 4 & 10 & 1 \\
5 & 10 & -2 & 15 \\
1 & 15 & -2 & 1
\end{pmatrix}$$ \hspace{1cm} (27)

The trace of C is $[3 + 4 + -2 + -2] = 3$.

4.4. Addition of vectors. - The sum c of a vector a with m elements and a vector b having m elements is a vector with m elements and whose elements are given by

$$c_j = a_j + b_j \ \forall \ j$$ \hspace{1cm} (28)

This gives
\[\vec{c} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_m \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ \vdots \\ a_m + b_m \end{pmatrix} \] (29)

4.5. **Linear combinations of vectors.** If \(a\) and \(b\) are two \(n\)-vectors and \(s\) and \(t\) are two real numbers, \(tz + sb\) is said to be the linear combination of \(a\) and \(b\). In symbols we write,

\[t \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{pmatrix} + s \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix} = \begin{pmatrix} ta_1 + sb_1 \\ ta_2 + sb_2 \\ \vdots \\ ta_m + sb_m \end{pmatrix} \] (30)

Consider three vectors, each with two elements denoted. Call the vectors \(\vec{a}_1, \vec{a}_2\) and \(\vec{b}\). Call the elements of the first one \(a_{11}\) and \(a_{21}\), the elements of the second one \(a_{12}\) and \(a_{22}\) and the elements of \(\vec{b}, b_1\) and \(b_2\). Now consider two scalars denoted \(x_1\) and \(x_2\). Now multiply \(\vec{a}_1\) by \(x_1\) and \(\vec{a}_2\) by \(x_2\) and add the products. We obtain

\[x_1 \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix} + x_2 \begin{pmatrix} a_{12} \\ a_{22} \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 \\ a_{21}x_1 + a_{22}x_2 \end{pmatrix} \] (31)

If set this expression equal to \(\vec{b}\) we obtain

\[\begin{pmatrix} a_{11}x_1 + a_{12}x_2 \\ a_{21}x_1 + a_{22}x_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \] (32)

which is a linear system of 2 equations in 2 unknowns. We can write a general system of \(m\) equations in \(n\) unknowns as

\[x_1 \vec{a}_1 + x_2 \vec{a}_2 + \cdots + x_n \vec{a}_n = \vec{b} \] (33)

where \(x_i\) are a series of scalar unknowns and each \(a_j\) is a column of the A matrix of coefficients.

4.6. **Addition of matrices.** The sum \(C\) of a matrix \(A\) having \(m\) rows and \(n\) columns and a matrix \(B\) having \(m\) rows and \(n\) columns is a matrix having \(m\) rows and \(n\) columns whose elements are given by

\[c_{ij} = a_{ij} + b_{ij} \forall i, j \] (34)

This gives
\[C = \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mn} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{pmatrix} \] (35)

\[= \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{pmatrix} \] (36)

4.7. **Inner (dot) product of two vectors.** The inner (scalar or dot) product to two vectors \(u, v \) of length \(n \) is the scalar quantity denoted by

\[u \cdot v = \sum_{i=1}^{n} u_i v_i = u_1 v_1 + u_2 v_2 + \ldots + u_n v_n \] (38)

4.8. **Multiplication of matrices.** Given an \(m \times n \) matrix \(A \) and an \(n \times r \) matrix \(B \), the product \(AB \) is defined to be an \(m \times r \) matrix \(C \), whose elements are computed from the elements of \(A, B \) according to

\[c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}, \quad i = 1, \ldots, m, \quad j = 1, \ldots, r. \] (39)

In other words to obtain the \(ij \)th element of \(c \) we take the \(i \)th row of \(A \) and \(j \)th column of \(B \) and form the inner product. As an example consider the matrices below

\[A = \begin{pmatrix} 3 & 4 & 7 \\ 2 & 5 & 2 \\ 1 & 0 & 4 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 1 & 4 & 1 \end{pmatrix} \] (40)

The element \(c_{11} \) comes from multiplying the first row of \(A \) with the first column of \(B \) as follows:

\[c_{11} = \begin{pmatrix} 3 & 4 & 7 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = 3 + 8 + 7 = 18 \] (41)

Similarly the element \(c_{32} \) comes from multiplying the third row of \(A \) with the second column of \(B \) as follows:

\[c_{32} = \begin{pmatrix} 1 & 0 & 4 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 4 \end{pmatrix} = 0 + 0 + 16 = 16 \] (42)

Multiplying out the rest of the entries gives
\[C = \begin{pmatrix} 18 & 32 & 14 \\ 14 & 13 & 9 \\ 5 & 16 & 5 \end{pmatrix} \] (43)

4.9. **Some properties of matrix operations.** Let \(\alpha \) and \(\beta \) denote real numbers (scalars), \(\vec{a}, \vec{b}, \vec{c} \) denote \(n \)-vectors, and \(A, B, C \) denote matrices. The properties are conditional on the operations being defined for the case in point.

4.9.1. **Equality.**

Vectors: Two \(n \)-vectors \(\vec{a} \) and \(\vec{b} \) are said to be equal if all their corresponding components are equal. Equality is only possible for vectors of the same dimension.

Matrices: Two \(m \times n \) matrices \(A \) and \(B \) are said to be equal if all their corresponding components are equal. Equality is only possible for matrices of the same dimension.

4.9.2. **Multiplication by a scalar.**

\[a: (\alpha + \beta)A = \alpha A + \beta A \]
\[b: \alpha(A + B) = \alpha A + \alpha B \]
\[c: \alpha(\beta A) = (\alpha \beta)A \]

Note that \(A \) and \(B \) above can be replaced by \(a \) and \(b \) as in (1)(\(a) = a \)

4.9.3. **Addition.**

\[a: \vec{a} + \vec{b} = \vec{b} + \vec{a} \]
\[b: \vec{a} + 0 = \vec{a} \]
\[c: (\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c}) \]
\[d: \vec{a} + (-\vec{a}) = 0 \]
\[e: A + B = B + A \]
\[f: A + (B + C) = (A + B) + C \]
\[g: A + 0 = 0 + A = A \]
\[h: A + (-A) = 0 \]

4.9.4. **Multiplication.**

\[a: \vec{a} \vec{b} = \vec{b} \vec{a} \]
\[b: AB \neq BA \]
\[c: A(BC) = (AB)C \]
\[d: \alpha(\vec{b} + \vec{c}) = \alpha \vec{b} + \alpha \vec{c} \]
\[e: A(B + C) = AB + AC \]
\[f: (B + C)A = BA + CA \]
\[g: (\alpha \vec{a}) \vec{b} = \vec{a}(\alpha \vec{b}) = \alpha (\vec{a} \vec{b}) \]
\[h: \vec{a} \cdot \vec{a} > 0 \Leftrightarrow \vec{a} \neq 0 \]
\[i: \vec{a} \cdot 0 = 0 \cdot \vec{a} = 0 \]
\[j: A0 = 0A = 0 \]
\[k: AI = IA = A \]

4.9.5. **Transposes.**

\[a: (A')' = A \]
\[b: (ABC)' = C' B' A' \]
\[c: (A + B)' = A' + B' \]
4.9.6. Properties of the trace.

a: trace (I) = n
b: trace (ABC) = trace (CAB) = trace (BCA)
c: trace (A + B) = trace (A) + trace (B)
d: tr(AB) = tr(BA) if both AB and BA are defined
e: tr(kA) = ktr(A) where k is a scalar

4.10. Idempotent matrices. A matrix is called idempotent if

\[A^2 = A \]

(44)

For example the identity matrix is idempotent. Consider the matrix M below.

\[
M = \begin{pmatrix}
0.8 & -0.2 & -0.2 & -0.2 & -0.2 \\
-0.2 & 0.8 & -0.2 & -0.2 & -0.2 \\
-0.2 & -0.2 & 0.8 & -0.2 & -0.2 \\
-0.2 & -0.2 & -0.2 & 0.8 & -0.2 \\
-0.2 & -0.2 & -0.2 & -0.2 & 0.8 \\
\end{pmatrix}
\]

(45)

We can verify that it is idempotent by carrying out the multiplication.

\[
M M = \begin{pmatrix}
0.8 & -0.2 & -0.2 & -0.2 & -0.2 \\
-0.2 & 0.8 & -0.2 & -0.2 & -0.2 \\
-0.2 & -0.2 & 0.8 & -0.2 & -0.2 \\
-0.2 & -0.2 & -0.2 & 0.8 & -0.2 \\
-0.2 & -0.2 & -0.2 & -0.2 & 0.8 \\
\end{pmatrix} \begin{pmatrix}
0.8 & -0.2 & -0.2 & -0.2 & -0.2 \\
-0.2 & 0.8 & -0.2 & -0.2 & -0.2 \\
-0.2 & -0.2 & 0.8 & -0.2 & -0.2 \\
-0.2 & -0.2 & -0.2 & 0.8 & -0.2 \\
-0.2 & -0.2 & -0.2 & -0.2 & 0.8 \\
\end{pmatrix}
\]

(46)

Consider the multiplication of the first row and first column

\[
\begin{pmatrix}
0.8 & -0.2 & -0.2 & -0.2 & -0.2 \\
-0.2 & 0.8 & -0.2 & -0.2 & -0.2 \\
-0.2 & -0.2 & 0.8 & -0.2 & -0.2 \\
-0.2 & -0.2 & -0.2 & 0.8 & -0.2 \\
-0.2 & -0.2 & -0.2 & -0.2 & 0.8 \\
\end{pmatrix} \begin{pmatrix}
0.8 \\
-0.2 \\
-0.2 \\
-0.2 \\
-0.2 \\
\end{pmatrix} = 0.64 + 0.4 + 0.4 + 0.4 + 0.4 = 0.8
\]

(47)

Or consider the multiplication of the first row and second column

\[
\begin{pmatrix}
0.8 & -0.2 & -0.2 & -0.2 & -0.2 \\
-0.2 & 0.8 & -0.2 & -0.2 & -0.2 \\
-0.2 & -0.2 & 0.8 & -0.2 & -0.2 \\
-0.2 & -0.2 & -0.2 & 0.8 & -0.2 \\
-0.2 & -0.2 & -0.2 & -0.2 & 0.8 \\
\end{pmatrix} \begin{pmatrix}
-0.2 \\
0.8 \\
-0.2 \\
-0.2 \\
-0.2 \\
\end{pmatrix} = -0.16 + 0.16 + 0.4 + 0.4 + 0.4 = -0.2
\]

(48)

Note that if A is idempotent, tr(A) = rank of A.