Homework #2

1. The joint probability density function of random variables X and Y is given by:

$$f(x, y) = \begin{cases} \frac{1}{4}(2x + y) & 0 < x < 1, \ 0 < y < 2 \\ 0 & \text{otherwise} \end{cases}$$

Find the mean and variance of Y conditional on $X = \frac{1}{4}$.

2. This problem involves an extension, to the bi-variate case, of Jensen's inequality. A real-valued function of two real variables, $\phi(x, y) : \mathbb{R}^2 \to \mathbb{R}$, is strictly concave if

$$\phi(hx_1 + (1 - h)x_2, hy_1 + (1 - h)y_2) > h\phi(x_1, y_1) + (1 - h)\phi(x_2, y_2)$$

for all $(x_1, y_1) \neq (x_2, y_2) \in \mathbb{R}^2$ and for all $h \in (0, 1)$. For the case of differentiable $\phi(\cdot)$, strict concavity is equivalent to the following first-order derivative property:

$$\phi(x_2, y_2) < \phi(x_1, y_1) + \frac{\partial \phi}{\partial x}(x_1, y_1)(x_2 - x_1) + \frac{\partial \phi}{\partial y}(x_1, y_1)(y_2 - y_1)$$

for all $(x_1, y_1) \neq (x_2, y_2) \in \mathbb{R}^2$.

Write out a proof of the following claim. Let X and Y be continuous random variables with means μ_X and μ_Y respectively. Let $\phi(x, y) : \mathbb{R}^2 \to \mathbb{R}$ be differentiable and strictly concave. Then $E[\phi(X, Y)] < \phi(\mu_X, \mu_Y) = \phi(E[X], E[Y])$.

3. The joint probability density function of random variables X and Y is given by:

$$f(x, y) = \begin{cases} \frac{1}{2}\left(4xy + x + \frac{1}{2}\right) & 0 \leq x \leq 1, \ 0 \leq y \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

Define the function $\phi(x, y) = -(x^2 + xy + y^2)$.
a. Show that \(\varphi(\cdot) \) is strictly concave. (Hint: The easiest way to do this is to use a second-order derivative feature of differentiable strictly concave functions. In particular, a differentiable function \(\varphi : \mathbb{R}^2 \rightarrow \mathbb{R} \) is strictly concave if its Hessian matrix,

\[
\begin{bmatrix}
\frac{\partial^2 \varphi}{\partial x^2} & \frac{\partial^2 \varphi}{\partial x \partial y} \\
\frac{\partial^2 \varphi}{\partial x \partial y} & \frac{\partial^2 \varphi}{\partial y^2}
\end{bmatrix},
\]

is negative definite throughout \(\mathbb{R}^2 \). Moreover, a \(2 \times 2 \) matrix is negative definite if its diagonal elements are negative and its determinant is positive.)

b. Evaluate \(E[\varphi(X, Y)] \) and \(\varphi(E[X], E[Y]) \) for this case and show that the bi-variate version of Jensen's inequality is satisfied.

4. A random variable \(X \) is said to have the Weibull distribution with parameters \(\alpha > 0 \) and \(m > 0 \) if its density function is given by:

\[
f_X(x) = \begin{cases}
\frac{1}{\alpha} m x^{m-1} e^{-x^{\alpha}/\alpha} & x > 0 \\
0 & \text{otherwise}
\end{cases}
\]

Show that the random variable \(Y = X^m \) has the exponential distribution with parameter \(\alpha \). (Hint: Use the transformation of variable technique to find the probability density function for random variable \(Y \).)

5. a. For random variable \(X \) with mean \(\mu \), express the third moment about the mean, \(E[(X - \mu)^3] \), in terms of the first three moments about the origin.

b. For random variable \(X \sim N(\mu, \sigma^2) \), the moment generating function is given by:

\[
m(t) = \exp\left(\mu t + \frac{t^2 \sigma^2}{2} \right).
\]

Use the moment generating function to find the first three moments about the origin, then use the result of part a to find the third moment about the mean for \(X \sim N(\mu, \sigma^2) \).