1. REAL-VALUED FUNCTIONS OF SEVERAL VARIABLES

1.1. Definition of a real-valued function of several variables. Suppose D is a set of n-tuples of real numbers \((x_1, x_2, x_3, \ldots, x_n)\). A real-valued function \(f\) on D is a rule that assigns a unique (single) real number

\[y = f(x_1, x_2, x_3, \ldots, x_n) \]

to each element in D. The set D is the function’s domain. The set of y-values taken on by \(f\) is the range of the function. The symbol \(y\) is the dependent variable of \(f\), and \(f\) is said to be a function of the n independent variables \(x_1\) to \(x_n\). We also call the \(x\)’s the function’s input variables and we call \(y\) the function’s output variable.

A real-valued function of two variables is just a function whose domain is \(\mathbb{R}^2\) and whose range is a subset of \(\mathbb{R}^1\), or the real numbers. If we view the domain D as column vectors in \(\mathbb{R}^n\), we sometimes write the function as

\[
f \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}
\]

1.2. Examples.

a: The volume of a right circular cylinder is a function of the radius and height, \(V = f(r, h)\) or \(V = \pi r^2 h\). A cylinder is represented in figure 1. The volume of the cylinder as a function of its radius and height is shown graphically in figure 2. Notice that the volume increases as both the radius and the height increase.

Figure 1. A Cylinder
Figure 2. The Volume of a Cylinder as a Function of Radius and Height

Figure 3. Cobb-Douglas Production Function $f(x_1, x_2) = 10x_1^{1/4}x_2^{1/2}$

b: The level of production from a given technology as a function of two inputs x_1 and x_2 is represented by $y = f(x_1, x_2)$. For example, a quadratic function might be $f(x_1, x_2) = 20x_1 + 16x_2 - 2x_1^2 - x_2^2$. A Cobb-Douglas function might be $f(x_1, x_2) = 10x_1^{1/4}x_2^{1/2}$. We can represent the Cobb-Douglas function with a graph in three dimensions as in figure 3.

1.3. **Interior and boundary points in the plane or \mathbb{R}^2.**

1.3.1. **Interior points of regions in the plane (\mathbb{R}^2).** A point (x_1^0, x_2^0) in a region B in the x_1-x_2 plane is an interior point of B if it is the center of a disk that lies entirely in B.

1.3.2. **Boundary points of regions in the plane (\mathbb{R}^2).** A point (x_0, y_0) is a boundary point of B if every disk centered at (x_0, y_0) contains points that lie outside of B as well as points that lie in B. (The boundary point itself needs to belong to B).

The interior points of a region, as a set, make up the interior of the region. The region’s boundary points make up its boundary.
1.3.3. Open and closed regions in the plane (\mathbb{R}^2). A region is **open** if it consists entirely of interior points. A region is **closed** if it contains all of its boundary points.

1.3.4. Bounded regions in the plane. A region in the plane is **bounded** if it lies inside a disk of fixed radius. A region is **unbounded** if it is not bounded.

Consider the region in the plane bounded by line segments in figure 4. Call this region the set B. The point a is an interior point because all points in a small disk centered at a lie within B. The point c is a boundary point because no matter how small the radius of the disk centered at c, it contains points both within and outside of B. The boundary of B consists of all points on the line segments defining B, and the interior of B consists of all points bounded by the line segments but which do not lie on them. The set B is a closed set.

Figure 4. Interior and Boundary Points of a Region in the Plane

Consider the region in the plane bounded by the dotted line in figure 5. Call this region B. The set consists all points within the dotted circle but does not include points on the circle. The point a is an interior point because all points in a small disk centered at a lie within B. The point c is a boundary point because no matter how small the radius of the disk centered at c, it contains points both within and outside of B. In this case the boundary point c is not contained in the set B. The boundary of B consists of all points on the circle defining B, and the interior of B consists of all points bounded by circle which do not lie on it. The set B is an open set.

Consider the region in the plane on and to the northeast of the curved line in figure 6. Call this region B. The point a is an interior point because all points in a small disk centered at a lie within B. The point c is
a boundary point because no matter how small the radius of the disk centered at \(c \), it contains points both within and outside of \(B \). The interior of \(B \) consists of all points to the northeast of the curved line in figure 6. The set \(B \) is an unbounded set. The set \(B \) is also a closed set.

1.4. Interior and boundary points in space or \(\mathbb{R}^3 \).

1.4.1. Interior points of regions in space (\(\mathbb{R}^3 \)). A point \((x_1^0, x_2^0, x_3^0)\) in a region \(D \) in space is an interior point of \(D \) if it is the center of a ball that lies entirely in \(D \).
1.4.2. **Boundary points of regions in space** \((R^3) \). A point \((x_0^1, x_0^2, x_0^3)\) is a boundary point of \(D \) if every sphere centered at \((x_0^1, x_0^2, x_0^3)\) encloses points that lie outside of \(D \) and well as points that lie in \(D \).

The **interior** of \(D \) is the set of interior point of \(D \). The boundary of \(D \) is the set of **boundary** points of \(D \).

1.4.3. **Open and closed regions in space** \((R^3) \). A region \(D \) is **open** if it consists entirely of interior points. A region is **closed** if it contains its entire boundary.

1.5. **Interior and boundary points in** \(R^n \). We can extend the idea of open and closed sets to \(R^n \). Let \(a = (a_1, a_2, \ldots, a_n) \) be a point in \(R^n \) and let \(r \) be a given positive number. The set of all points \(x \in R^n \) such that

\[
(\|x - a\| \cdot |x - a|)^{1/2} < r
\]

is called an open **ball** of radius \(r \) with center at \(a \). We call \((\|x - a\| \cdot |x - a|)^{1/2}\) the distance between the point \(x \) and the point \(a \). We denote this set by \(B(a;r) \). The ball \(B(a;r) \) consists of all points whose distance from \(a \) is less than \(r \). In \(R^1 \), this is an open interval with center at \(a \). In \(R^2 \), this is a circular disk with radius \(r \) and center at \(a \). In \(R^3 \), this is spherical solid with center at \(a \) and radius \(r \).

1.5.1. **Interior points of sets in** \(R^n \). Let \(S \) be a subset of \(R^n \), and assume that the point \(a \) is an element of \(S \). Then \(a \) is called an **interior** point of \(S \) if there is an open \(n \)-ball with center at \(a \), all of whose points belong to \(S \).

1.5.2. **Open sets in** \(R^n \). A set \(S \) in \(R^n \) is called open if all its points are interior points.

1.5.3. **Closed sets in** \(R^n \). A set \(S \) in \(R^n \) is called closed if its complement \(R^n \setminus S \) is open.

Consider the region in space consisting of the doughnut or torus in figure 7. Call this region B in figure 8. The point \(a \) is an interior point because all points in a ball or sphere centered at \(a \) lie within \(B \) as shown in figure 9. The point \(c \) is not an interior point because a sphere centered at point \(c \) would contain points both inside and outside the doughnut.

Figure 7. A Subset of \(R^3 \)

1.6. **Graphs and level curves for functions with domain in** \(R^2 \).

1.6.1. **The graph of a function with domain in** \(R^2 \). The set of all points \(\{(x_1, x_2), f(x_1, x_2)\} \) in space \((R^3) \), for \((x_1, x_2)\) in the domain of \(f \), is called the **graph** of \(f \). The graph of \(f \) is also called the **surface** \(z = f(x_1, x_2) \). Consider the function

\[
z = f(x_1, x_2) = 100 - x_1^2 - x_2^2
\]

This function has a graph in \(R^3 \) because its domain is \(R^2 \). The graph of \(f(x_1, x_2) = 100 - x_1^2 - x_2^2 \) is shown in figure 10.
1.6.2. The level curve of a function with domain in \mathbb{R}^2. The set of points in the plane (\mathbb{R}^2) where a function $f(x_1, x_2)$ has a constant value $f(x_1, x_2) = c$ is called a level curve of f. One can think of a level curve like contour lines on a map. Points on the same curve or line represent the same height of the function. Level curves are created by intersecting a plane at a given height (or value of the function $f(x_1, x_2)$) with the graph of $f(x_1, x_2)$, noting the values of (x_1, x_2) where these intersections occur, and then plotting them in the x_1-x_2 plane. As an example, consider the function

$$z = f(x_1, x_2) = 100 - x_1^2 - x_2^2$$

from figure 10. In figure 11, we show both the graph of the function and a plane at function value of 30.

A series of level curves for $f(x_1, x_2) = 100 - x_1^2 - x_2^2$ at various valued of the function are contained in figure 12.
1.6.3. Second example of a function with domain in \mathbb{R}^2. Consider the function

$$ f(x_1, x_2) = 100 - x_1^2 - x_2^2 $$
FIGURE 12. Contour lines for the function \(f(x_1, x_2) = 100 - x_1^2 - x_2^2 \)

The graph of the function and a plane at \(z = 2 \) is depicted in figure 13. A level curve for the function when \(z = 2 \) is given in figure 14. A more general set of level curves is depicted in figure 15.

\[
z = f(x_1, x_2) = \frac{x_1^2 x_2^2}{(1 + x_1^2)(1 + x_2^2)}
\]

The graph of the function and a plane at \(z = 2 \) is depicted in figure 13. A level curve for the function when \(z = 2 \) is given in figure 14. A more general set of level curves is depicted in figure 15.

FIGURE 13. Graph of the function \(z = \frac{x_1^2 x_2^2}{(1 + x_1^2)(1 + x_2^2)} \)

1.6.4. Third example of a function with domain in \(\mathbb{R}^2 \). Consider the function

\[
z = f(x_1, x_2) = \frac{-x_1 x_2}{e^{x_1^2 + x_2^2}}
\]

The graph of the function is depicted in figure 16. A set of level curves is depicted in figure 17.
1.6.5. Functions with domain in \mathbb{R}^3. The set of points (x_1, x_2, x_3) in space where a function of three independent variables $f(x_1, x_2, x_3)$ has a constant value $f(x_1, x_2, x_3) = c$ is called a level surface of f. The set of all points $\{x_1, x_2, x_3, f(x_1, x_2, x_3)\}$ in space, for (x_1, x_2, x_3) in the domain of f, is called the graph of f. The graph of f is also called the surface $w = f(x_1, x_2, x_3)$. One example of the level set for a function with a domain in \mathbb{R}^3 is contained in figure 18 while a second example is shown in figure 19.

2. Limits

2.1. Definition of a limit for a real valued function with a domain in \mathbb{R}^2.

Definition 1 (Limit). We say that a function $f(x_1, x_2)$ approaches the limit L as (x_1, x_2) approaches (x_1^0, x_2^0), and write
Figure 16. Graph of the function \(f(x_1, x_2) = \frac{x_1 x_2}{e^{x_1^2} + x_2^2} \)

Figure 17. Levels curves for the function \(f(x_1, x_2) = \frac{x_1 x_2}{e^{x_1^2} + x_2^2} \)

\[
\lim_{(x_1, x_2) \to (x_1^0, x_2^0)} f(x_1, x_2) = L
\]

if, for every number \(\varepsilon > 0 \), there exists a corresponding number \(\delta > 0 \) such that for all \((x_1, x_2)\) in the domain of \(f \),

\[0 < \sqrt{(x_1 - x_1^0)^2 + (x_2 - x_2^0)^2} < \delta \Rightarrow |f(x_1, x_2) - L| < \varepsilon\]
Notice that \(|f(x_1, x_2) - L| \) is the distance between the numbers \(f(x_1, x_2) \) and \(L \), and \(\sqrt{(x_1 - x_1^0)^2 + (x_2 - x_2^0)^2} \) is the distance between the point \(\{x_1, x_2\} \) and the point \(\{x_1^0, x_2^0\} \). Thus definition 1 says that the distance between \(f(x_1, x_2) \) and \(L \) can be made arbitrarily small by making the distance between \(\{x_1, x_2\} \) and \(\{x_1^0, x_2^0\} \) sufficiently small (but not zero).

Figure 20 shows a the a rectangular neighborhood for a point in the \(x_1-x_2 \) plane and the corresponding portion of the surface. The minimum value that the function achieves over the plane in denoted “\(\text{min} \)” on the vertical axis, while the maximum value that the function achieves over the plane in denoted “\(\text{max} \)” on the vertical axis. The idea of a limit is that as we make the rectangle smaller and smaller, the difference between the “\(\text{min} \)” and “\(\text{max} \)” points will get smaller and smaller. Formally, we consider the distance of
points from a given point in the domain of the function (a disc in the case of \mathbb{R}^2), as the diameter of this disk approaches zero, the value of the function will approach a fixed number.

Figure 20. Finding the Limiting Value for the Function $f(x_1, x_2) = 10x_1^{1/4}x_2^{1/2}$ as $\{x_1, x_2\} \to \{17, 17\}$

The definition of limit applies to boundary points (x_0^1, x_0^2) as well as interior points of the domain of f. The only requirement is that the point (x_1, x_2) remain in the domain at all times. It can be shown that

$$\lim_{(x_1, x_2) \to (x_0^1, x_0^2)} x_1 = x_0^1 \quad (1a)$$
$$\lim_{(x_1, x_2) \to (x_0^1, x_0^2)} x_2 = x_0^2 \quad (1b)$$
$$\lim_{(x_1, x_2) \to (x_0^1, x_0^2)} k = k \quad (1c)$$

For example in equation 1a, $f(x_1, x_2) = x_1$ and $L = x_0^1$. Suppose $\epsilon > 0$ is chosen and let $\delta = \epsilon$. Then using the definition of limit we see that

$$0 < \sqrt{(x_1 - x_0^1)^2 + (x_2 - x_0^2)^2} < \delta = \epsilon$$
$$\Rightarrow \sqrt{(x_1 - x_0^1)^2} < \epsilon$$
$$\Rightarrow |x_1 - x_0^1| < \epsilon, \quad \sqrt{a^2} = |a|$$
$$\Rightarrow |f(x_1, x_2) - x_0^1| < \epsilon, \quad x_1 = f(x_1, x_2)$$
That is
\[|(f(x_1, x_2) - x_1^0)| < \epsilon \quad \text{whenever} \quad 0 < \sqrt{(x_1 - x_1^0)^2 + (x_2 - x_2^0)^2} < \delta \]
So
\[\lim_{(x_1, x_2) \rightarrow (x_1^0, x_2^0)} f(x_1, x_2) = \lim_{(x_1, x_2) \rightarrow (x_1^0, x_2^0)} x_1 = x_1^0 \]

2.2. Properties of limits.

Theorem 1 (Properties of Limits of Functions with Domain in \mathbb{R}^2).

The following rules hold if L, M, and k are real numbers and

\[\lim_{(x_1, x_2) \rightarrow (x_1^0, x_2^0)} f(x_1, x_2) = L \]
\[\lim_{(x_1, x_2) \rightarrow (x_1^0, x_2^0)} g(x_1, x_2) = M \]
\[\lim_{(x_1, x_2) \rightarrow (x_1^0, x_2^0)} [f(x_1, x_2) + g(x_1, x_2)] = L + M \] \hspace{1cm} (2a)
\[\lim_{(x_1, x_2) \rightarrow (x_1^0, x_2^0)} [f(x_1, x_2) - g(x_1, x_2)] = L - M \] \hspace{1cm} (2b)
\[\lim_{(x_1, x_2) \rightarrow (x_1^0, x_2^0)} [f(x_1, x_2)g(x_1, x_2)] = LM \] \hspace{1cm} (2c)
\[\lim_{(x_1, x_2) \rightarrow (x_1^0, x_2^0)} [kf(x_1, x_2)] = kL \] \hspace{1cm} (2d)
\[\lim_{(x_1, x_2) \rightarrow (x_1^0, x_2^0)} \left[\frac{f(x_1, x_2)}{g(x_1, x_2)} \right] = \frac{L}{M}, \quad M \neq 0 \] \hspace{1cm} (2e)

If r and s are integers with no common factors, and $s \neq 0$ then
\[\lim_{(x_1, x_2) \rightarrow (x_1^0, x_2^0)} [f(x_1, x_2)]^{\frac{r}{s}} = L^{\frac{r}{s}} \quad \text{(provided } L^{\frac{r}{s}} \text{ is defined)} \] \hspace{1cm} (2f)

If s is an even number, then it is assumed that $L > 0$

3. Continuity

A function $f(x_1, x_2)$ is continuous at the point (x_1^0, x_2^0) if

1. f is defined at (x_1^0, x_2^0)
2. $\lim_{(x_1, x_2) \rightarrow (x_1^0, x_2^0)} f(x_1, x_2)$ exists
3. $\lim_{(x_1, x_2) \rightarrow (x_1^0, x_2^0)} f(x_1, x_2) = f(x_1^0, x_2^0)$

The intuitive meaning of continuity is that if the point (x_1, x_2) changes by a small amount, then the value of $f(x_1, x_2)$ changes by a small amount. The means that the surface that is the graph of a continuous function has no hole or break.

Sums, differences, products and quotients of continuous functions are continuous on their domains.
4. Definition of Partial Differentiation

Let \(f \) be a function with domain an open set in \(\mathbb{R}^n \) and range in \(\mathbb{R}^1 \), i.e. \(y = f(x_1, x_2, \ldots, x_n) \). Now define the partial derivative of \(f \) with respect to \(x_i \) as

\[
\frac{\partial f}{\partial x_i}(x) = f_i(x) = \lim_{h \to 0} \frac{f(x_1, x_2, \ldots x_i + h, \ldots, x_n) - f(x_1, x_2, \ldots, x_n)}{h}
\]

(3)

whenever the limit exists.

The slope of the curve \(z = f(x_1, x_2) \) at the point \((x_0^1, x_0^2, f(x_0^1, x_0^2))\) in the plane \(x_2 = x_0^2 \) is the value of the partial derivative of \(f \) with respect to \(x \) at \((x_0^1, x_0^2)\).

5. Using the Limit Concept to Compute a Partial Derivative

5.1. Procedure.

a: Add the vector \(h \) with zeros in all but one place to the vector \(x \) (\(h \neq 0 \)) and compute \(f(x+h) \).

b: Compute \(f(x) \)

c: Compute the change in the value function: \(f(x+h) - f(x) \).

d: For \(h \neq 0 \), form the quotient \(\frac{f(x+h) - f(x)}{h} \).

e: Simplify the fraction in d as much as possible. Whenever possible, cancel \(h \) from both the numerator and denominator.

f: \(f'(x) \) is the number that \(\frac{f(x+h) - f(x)}{h} \) approaches as \(h \) tends to zero.

5.2. Example. Let the function be

\[
f(x) = 2x_1^3(x_2^2 + 1)
\]

a: \(f(x+h) = 2(x_1 + h)^3(x_2^2 + 1) = 2(x_1^3 + 3x_1^2h + 3h^2x_1 + h^3)(x_2^2 + 1) \)

b: \(f(x) = 2x_1^3(x_2^2 + 1) \)

c: \(f(x+h) - f(x) = 2(3x_1^2h + 3h^2x_1 + h^3)(x_2^2 + 1) \)

d: \(\frac{f(x+h) - f(x)}{h} = 2(3x_1^2h + 3h^2x_1 + h^3)(x_2^2 + 1) \)

e: \(\frac{2(3x_1^2h + 3h^2x_1 + h^3)(x_2^2 + 1)}{h} = 2(3x_1^2 + 3hx_1 + h^2)(x_2^2 + 1) \)

f: As \(h \to 0 \), the expression goes to \(6x_1^2(x_2^2 + 1) \).

6. Calculating Partial Derivatives

6.1. The intuitive idea of computing a partial derivative. We calculate \(\frac{\partial f}{\partial x_1} \) by differentiating \(f \) with respect to \(x_1 \) in the usual way while treating \(x_2 \) as a constant. Similarly for other partial derivatives.

6.2. Example problems.

a.

\[
f(x_1, x_2) = x_1^2x_2 + 8x_1^2x_2^3 + x_1\ln(x_2)
\]

\[
\frac{\partial z}{\partial x_1} = 2x_1x_2 + 16x_1^3x_2 + \ln(x_2)
\]

\[
\frac{\partial z}{\partial x_2} = x_1^2 + 24x_1^2x_2^2 + \frac{x_1}{x_2}
\]
b.

\(f(x_1, x_2, x_3) = x_1 \sin(x_2 + 3x_3) \)

\[\frac{\partial f}{\partial x_1} = \sin(x_2 + 3x_3) \]
\[\frac{\partial f}{\partial x_2} = x_1 \cos(x_2 + 3x_3) \]
\[\frac{\partial f}{\partial x_3} = 3x_1 \cos(x_2 + 3x_3) \]

\[\frac{\partial f}{\partial x_1} = 5 + 14x_1 + 2x_2 + 3x_3 \]
\[\frac{\partial f}{\partial x_2} = 3 + 2x_1 + 10x_2 + 4x_3 \]
\[\frac{\partial f}{\partial x_3} = 2 + 3x_1 + 4x_2 + 4x_3 \]

c.

\(f(x_1, x_2, x_3) = 50 + 5x_1 + 3x_2 + 2x_3 + 7x_1^2 + 2x_1x_2 + 3x_1x_3 + 5x_2^2 + 4x_2x_3 + 2x_3^2 \)

7. Geometric Interpretation of Partial Derivatives

When the domain of a function is \(\mathbb{R}^2 \) and the graph of the function is in \(\mathbb{R}^3 \), a partial derivative with respect to one of the variables is the slope of a tangent line created when we intersect a vertical plane at a fixed level of the other variable with the surface \(\mathbb{R}^3 \). Consider the function

\[f(x_1, x_2) = 10x_1^{1/4} x_2^{1/2} \]

which is shown in figure 21 along with a vertical plane at \(x_2 = 10 \).

Now consider figure 22 which highlights the intersection of the vertical plane and the surface representing the function. This line is a graph of the function \(f(x_1, 10) = 10x_1^{1/4} \sqrt{10} \). Figure 23 shows this intersection line alone. The partial derivative of \(f(x_1, x_2) \) with respect to \(x_1 \) represents the slope of the tangent to this curve at a given point. Figure 24 shows the tangent to the curve representing the intersection of the vertical plane at \(x_2 = 10 \) and the surface, while figure 25 shows all of the graphs together.

Figure 26 shows the tangent to the curve representing the intersection of the vertical plane at \(x_1 = 1 \) and the surface \(f(x_1, x_2) = \frac{1}{4}(x_1 - 1)x_2 - (x_1 - 1)^2 - x_2^2 \). Figure 27 shows the tangent to the curve representing the intersection of the vertical plane at \(x_1 = 1 \) and the surface \(f(x_1, x_2) = (x_1 - 2)x_2 + x_2^2 + e^{x_1}x_2^2 \). Figure 28 shows tangents to the curve in both the \(x_1 \) and \(x_2 \) directions for the surface \(f(x_1, x_2) = 4e^{-x_1^2 - x_2^2} + x_2^2 \).

8. Tangent Lines and Planes for Functions with Domain in \(\mathbb{R}^2 \)

The equation for the plane that is tangent to the graph of \(y = f(x_1, x_2) \) at the point \(\{x_1^0, x_2^0, f(x_1^0, x_2^0)\} \) is

\[y = f(x_1^0, x_2^0) + \frac{\partial f(x_1^0, x_2^0)}{\partial x_1} (x_1 - x_1^0) + \frac{\partial f(x_1^0, x_2^0)}{\partial x_2} (x_2 - x_2^0) \quad (4) \]

Intuitively, this says we approximate the function \(f \) by its value at the point \(\{x_1^0, x_2^0\} \), then move away from it along the plane that is tangent to the surface at that point. This plane has slope \(\frac{\partial f(x_1^0, x_2^0)}{\partial x_1} \) in
Figure 21. Function \(f(x_1, x_2) = 10x_1^{1/4}x_2^{1/2} \) with Vertical Plane at \(x_2 = 10 \)

Figure 22. Intersection of function \(f(x_1, x_2) = 10x_1^{1/4}x_2^{1/2} \) and Vertical Plane at \(x_2 = 10 \)

the \(x_1 \) direction and slope \(\frac{\partial f(x_1^0, x_2^0)}{\partial x_2} \) in the \(x_2 \) direction. Equation 4 is also called a second order Taylor series approximation to the function \(f \) at the point \(\{x_1^0, x_2^0\} \).

A tangent plane contains the tangent lines when we hold \(x_1 \) and \(x_2 \) respectively constant. If we hold \(x_2 \) constant at \(x_2^0 \), then equation 4 reduces to
Figure 23. The function \(f(x_1, 10) = 10x_1^{1/4}10^{1/2} \)

\[\begin{array}{c}
\end{array} \]

Figure 24. Tangent to the function \(f(x_1, x_2) = 10x_1^{1/4}x_2^{1/2} \) when \(x_2 \) is fixed at 10 and \(x_1 = 4 \)

\[\begin{array}{c}
\end{array} \]

\[y = f(x_1^0, x_2^0) + \frac{\partial f(x_1, x_2^0)}{\partial x_1} (x_1 - x_1^0) + \frac{\partial f(x_1^0, x_2)}{\partial x_2} (x_2^0 - x_2) \]

\[= f(x_1^0, x_2^0) + \frac{\partial f(x_1^0, x_2)}{\partial x_1} (x_1 - x_1^0) \]

(5)

which is just the equation for a tangent line when the domain of the function is R^1.
Figure 25. Tangent to the function \(f(x_1, x_2) = 10x_1^{1/4}x_2^{1/2} \) when \(x_2 \) is fixed at 10 and \(x_1 = 4 \)

Consider figure 24 where we hold \(x_2 \) constant at 10. This looks just like a tangent graph when the domain of the function is the real line. Then consider figure 29 where we hold \(x_1 \) constant at 4 and vary \(x_2 \). If we simplify this graph as with figure 24, we obtain a graph similar to a tangent graph when the domain of the function is the real line and the independent variable is \(x_2 \). This is shown in figure 30. If we rotate this graph as in figure 31, we can see clearly that it represents the value of \(f(x_1, x_2) \) as a function of \(x_2 \).

The plane tangent to the surface \(f(x_1, x_2) = 10x_1^{1/4}x_2^{1/2} \) at the point \(\{x_1=4, x_2=10\} \) is shown in figure 32. The plane tangent to the surface \(f(x_1, x_2) = (x_1 - 2)x_2 + x_2^2 + e^{x_1x_2} \) is shown in figure 33.

9. Higher order partial derivatives

9.1. Second order partial derivatives. When we differentiate a function \(f(x_1, x_2) \) twice, we produce its second order derivatives. These derivatives are usually denoted by

\[
\frac{\partial^2 f}{\partial x_1^2} \quad \text{or} \quad f_{x_1x_1} \quad \text{or} \quad f_{11} \\
\frac{\partial^2 f}{\partial x_2^2} \quad \text{or} \quad f_{x_2x_2} \quad \text{or} \quad f_{22} \\
\frac{\partial^2 f}{\partial x_1 \partial x_2} \quad \text{or} \quad f_{x_1x_2} \quad \text{or} \quad f_{12} \\
\frac{\partial^2 f}{\partial x_2 \partial x_1} \quad \text{or} \quad f_{x_2x_1} \quad \text{or} \quad f_{21} (6)
\]

The defining equations are

\[
\frac{\partial^2 f}{\partial x_1^2} = \frac{\partial}{\partial x_1} \frac{\partial f}{\partial x_1} \quad (7)
\]

\[
\frac{\partial^2 f}{\partial x_1 \partial x_2} = \frac{\partial}{\partial x_1} \frac{\partial f}{\partial x_2}
\]

Notice that the order in which the derivatives are taken, \(\frac{\partial^2 f}{\partial x_1 \partial x_2} \), means differentiate first with respect to \(x_2 \), then with respect to \(x_1 \).
FIGURE 26. Tangent to the function $f(x_1, x_2) = \frac{1}{2}(x_1 - 1)x_2 - (x_1 - 1)^2 - x_2^2$ when x_1 is fixed at 1 and $x_2 = \frac{1}{2}$.

Here are some example of first and second order partial derivatives.

a. Here is a function and the first and second order partial derivatives.
Figure 27. Tangent to the function \(f(x_1, x_2) = (x_1 - 2)x_2 + x_2^2 + e^{x_1}x_2 \) when \(x_1 \) is fixed at 1 and \(x_2 = \frac{1}{2} \).

\[
f(x, w) = 50x^2w + 3wx
\]

\[
\frac{\partial f}{\partial x} = 100xw + 3w
\]

\[
\frac{\partial f}{\partial w} = 50x^2 + 3x
\]

\[
\frac{\partial^2 f}{\partial x^2} = 100w
\]

\[
\frac{\partial^2 f}{\partial w \partial x} = 100x + 3
\]

\[
\frac{\partial^2 f}{\partial x \partial w} = 100x + 3
\]

\[
\frac{\partial^2 f}{\partial w^2} = 0
\]

b. Here is a function and the first and second order partial derivatives.
Figure 28. Tangents to the function $f(x_1, x_2) = 4e^{-\frac{x_1^2 + x_2^2}{6}} + \frac{x_2^2}{6}$ at \{0.5, 0.3\}

\[f(x_1, x_2, x_3) = 50 + 5x_1 + 3x_2 + 2x_3 + 7x_1^2 + 2x_1x_2 + 3x_1x_3 + 5x_2^2 + 4x_2x_3 + 2x_3^2 \]

\[
\frac{\partial f}{\partial x_1} = 5 + 14x_1 + 2x_2 + 3x_3 \\
\frac{\partial f}{\partial x_2} = 3 + 2x_1 + 10x_2 + 4x_3 \\
\frac{\partial f}{\partial x_3} = 2 + 3x_1 + 4x_2 + 4x_3 \\
\frac{\partial^2 f}{\partial x_1^2} = 14, \quad \frac{\partial^2 f}{\partial x_2 \partial x_1} = 2, \quad \frac{\partial^2 f}{\partial x_3 \partial x_1} = 3 \\
\frac{\partial^2 f}{\partial x_1 \partial x_2} = 2, \quad \frac{\partial^2 f}{\partial x_2^2} = 10, \quad \frac{\partial^2 f}{\partial x_3 \partial x_2} = 4 \\
\frac{\partial^2 f}{\partial x_1 \partial x_3} = 3, \quad \frac{\partial^2 f}{\partial x_2 \partial x_3} = 4, \quad \frac{\partial^2 f}{\partial x_3^2} = 4 \]
FIGURE 29. Tangent to the function $f(x_1, x_2) = 10x_1^{1/4}x_2^{1/2}$ when x_1 is fixed at 4 and $x_2 = 10$

FIGURE 30. Tangent to the function $f(4, x_2) = 10\sqrt{2}x_2^{1/2}$ when $x_2 = 10$

c. Here is another function and the first and second order partial derivatives.
Figure 31. Rotated graph of tangent to the function \(f(4, x_2) = 10\sqrt{2}x_2^{1/2} \) when \(x_2 = 10 \)

Figure 32. Plane tangent to the function \(f(x_1, x_2) = 10x_1^{1/4}x_2^{1/2} \) at the point \(x_1 = 4 \) and \(x_2 = 10 \)

\[
f(x_1, x_2, x_3) = 50x_1^{0.2}x_2^{0.3}x_3^{0.4}
\]

\[
\frac{\partial f}{\partial x_1} = 10x_1^{-0.8}x_2^{0.3}x_3^{0.4}
\]

\[
\frac{\partial f}{\partial x_2} = 15x_1^{0.2}x_2^{-0.7}x_3^{0.4}
\]

\[
\frac{\partial f}{\partial x_3} = 20x_1^{0.2}x_2^{0.3}x_3^{-0.6}
\]

\[
\frac{\partial^2 f}{\partial x_1^2} = -8x_1^{-1.8}x_2^{0.3}x_3^{0.4} ,
\frac{\partial^2 f}{\partial x_2^2} = 3x_1^{-0.8}x_2^{-0.7}x_3^{0.4} ,
\frac{\partial^2 f}{\partial x_3^2} = 4x_1^{-0.8}x_2^{0.3}x_3^{-0.6}
\]

\[
\frac{\partial^2 f}{\partial x_1 \partial x_2} = 3x_1^{-0.8}x_2^{-0.7}x_3^{0.4} ,
\frac{\partial^2 f}{\partial x_1 \partial x_3} = 4x_1^{-0.8}x_2^{0.3}x_3^{-0.6}
\]

\[
\frac{\partial^2 f}{\partial x_2 \partial x_3} = 6x_1^{0.2}x_2^{-0.7}x_3^{-0.6} ,
\frac{\partial^2 f}{\partial x_3^3} = -12x_1^{0.2}x_2^{0.3}x_3^{-1.6}
\]
Figure 33. Plane tangent to the function \(f(x_1, x_2) = (x_1 - 2)x_2 + x_2^2 + e^{x_1 x_2} \) when \(x_1 = 1 \) and \(x_2 = \frac{1}{2} \).

9.2. Young’s theorem. As should be obvious from the examples, \(\frac{\partial^2 f}{\partial x_2 \partial x_1} = \frac{\partial^2 f}{\partial x_1 \partial x_2} \). This is more generally stated as Young’s theorem. If \(f(x_1, x_2, \ldots, x_n) \) and its partial derivatives \(f_1, f_2, \ldots, f_11, f_12, \) are defined throughout an open region containing a point \((x_1^0, x_2^0, x_3^0, \ldots, x_n^0)\) and are all continuous at \((x_1^0, x_2^0, x_3^0, \ldots, x_n^0)\) then \(\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i} \).

9.3. Higher order derivatives. We can compute higher order partial derivatives just as we computed higher order derivatives by simply differentiating again. Here is an example. Consider the function

\[
f(x_1, x_2) = 10x_1^{1/4} x_2^{1/2}
\]

The first order partial derivatives are

\[
\frac{\partial f}{\partial x_1} = \frac{5}{2} x_1^{-3/4} x_2^{1/2}
\]
\[
\frac{\partial f}{\partial x_2} = 5x_1^{1/4} x_2^{-1/2}
\]

The second order partial derivatives are

\[
\frac{\partial^2 f}{\partial x_1^2} = -\frac{15}{8} x_1^{-7/4} x_2^{1/2}
\]
\[
\frac{\partial^2 f}{\partial x_2 \partial x_1} = \frac{5}{4} x_1^{-3/4} x_2^{-1/2}
\]
\[
\frac{\partial^2 f}{\partial x_1 \partial x_2} = \frac{5}{4} x_1^{-3/4} x_2^{-1/2}
\]
\[
\frac{\partial^2 f}{\partial x_2^2} = -\frac{5}{2} x_1^{1/4} x_2^{-3/2}
\]

The third order partial derivatives are
10. Definition of the Gradient and Hessian of a Function of \(n \) Variables

10.1. Gradient of \(f \). The gradient of a function of \(n \) variables \(f(x_1, x_2, \ldots, x_n) \) is defined as follows.

\[
\nabla f(x) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \ldots, \frac{\partial f}{\partial x_n} \right)
\]

(8)

10.2. Hessian matrix of \(f \). The Hessian matrix of a function of \(n \) variables \(f(x_1, x_2, \ldots, x_n) \) is as is the \(n \times n \) matrix of second order partial derivatives. It is symmetric due to Young’s theorem and looks as follows

\[
\nabla^2 f(x) = \begin{bmatrix}
\frac{\partial^2 f}{\partial x_i \partial x_j}
\end{bmatrix}
\]

(9)

\(i, j = 1, 2, \ldots, n \)

11. Evaluating the Double Integral

11.1. Definitions. Consider a closed and bounded set in \(\mathbb{R}^2 \) denoted by \(Q \). We will assume that \(Q \) is a basic region. A basic region is a connected set in which the total boundary consists of a finite number of continuous arcs of the form \(x_2 = \phi(x_1), x_1 = \psi(x_2) \). Let \(f \) be a real-valued function \(f \) that is continuous on \(Q \). We want to define the double integral

\[
\frac{\partial^2 f}{\partial x_1^2} = \frac{105}{32} x_1^{-11/4} x_2^{1/2}
\]

\[
\frac{\partial^2 f}{\partial x_2 \partial x_1 \partial x_1} = -\frac{15}{16} x_1^{-7/4} x_2^{-1/2}
\]

\[
\frac{\partial^2 f}{\partial x_1 \partial x_2 \partial x_1} = -\frac{15}{16} x_1^{-7/4} x_2^{-1/2}
\]

\[
\frac{\partial^2 f}{\partial x_2 \partial x_2 \partial x_1} = -\frac{5}{8} x_1^{-3/4} x_2^{-3/2}
\]

\[
\frac{\partial^2 f}{\partial x_1 \partial x_2 \partial x_2} = -\frac{5}{8} x_1^{-3/4} x_2^{-3/2}
\]

\[
\frac{\partial^2 f}{\partial x_2^2} = \frac{15}{4} x_1^{1/4} x_2^{-5/2}
\]
\[\iint_Q f(x_1, x_2) \, dx_1 dx_2 \]

(10)

Geometrically we can think of the double integral as the volume of the solid that is bounded below by Q and above by \(f(x_1, x_2) \). To define the integral we enclose Q by a rectangle R with sides parallel to the coordinate axis. We extend \(f \) to all of R by setting \(f \) equal to zero outside of Q. This extended function, which we continue to call \(f \), is bounded on R, and is continuous on all of R except possibly at the boundary of Q. In such a case \(f \) is integrable on R, that is, there exists a unique number \(I \) such that

\[L_f(P) \leq I \leq U_f(P) \]

(11)

for all partitions \(P \) of R. We define \(L_f(P) \) and \(U_f(P) \) based on nonoverlapping rectangles that partition R.

If we partition \(x_1 \) into \(m \) sections and \(x_2 \) into \(n \) sections then we have \(m \times n \) nonoverlapping rectangles \(R^{ij} \).

\[R^{ij} : x_1^{i-1} \leq x_1 \leq x_1^i, \quad x_2^{j-1} \leq x_2 \leq x_2^j \]

(12)

where \(1 \leq i \leq m, \ 1 \leq j \leq n \). For each rectangle, \(R^{ij} \), \(f \) takes on a maximum value and minimum value. It will take a zero value for points in a given rectangle that are outside of Q. We know it takes on a maximum and minimum value because \(f \) is continuous and \(R^{ij} \) is closed and bounded. We will denote the maximum value that \(f \) takes on \(R^{ij} \) by \(M^{ij} \) and the minimum value that \(f \) takes on \(R^{ij} \) by \(m^{ij} \). We then compute area of the rectangular cube \((B^{ij}) \) with the rectangle \(R^{ij} \) as its base and \(M^{ij} \) as its height as

\[Area(B^{ij}) = M^{ij} \times Area(R^{ij}) = M^{ij} (x_1^i - x_1^{i-1}) (x_2^j - x_2^{j-1}) = M^{ij} \Delta x_1^i \Delta x_2^j \]

(13)

We then compute \(U_f(P) \) as

\[U_f(P) = \sum_{i=1}^{m} \sum_{j=1}^{n} M^{ij} \Delta x_1^i \Delta x_2^j \]

(14)

and then compute \(L_f(P) \) as

\[L_f(P) = \sum_{i=1}^{m} \sum_{j=1}^{n} m^{ij} \Delta x_1^i \Delta x_2^j \]

(15)

Note that

\[\iint_Q 1 \, dx_1 dx_2 = \iint_Q dx_1 dx_2 \]

(16)

gives the volume of solid of constant height 1 erected over Q or

\[\text{area of Q} = \iint_Q dx_1 dx_2 \]

(17)
11.2. Properties.

(a) Linearity

\[\iint_{Q} [\alpha f(x_1, x_2) + \beta g(x_1, x_2)] \, dx_1 \, dx_2 = \alpha \iint_{Q} f(x_1, x_2) \, dx_1 \, dx_2 + \beta \iint_{Q} g(x_1, x_2) \, dx_1 \, dx_2 \]

(18)

(b) Order

if \(f \geq 0 \) on \(Q \) then \(\iint_{Q} f(x_1, x_2) \, dx_1 \, dx_2 \geq 0 \)

if \(f \leq g \) on \(Q \) then \(\iint_{Q} f(x_1, x_2) \, dx_1 \, dx_2 \leq \iint_{Q} g(x_1, x_2) \, dx_1 \, dx_2 \)

(19)

(c) Additivity

If \(Q \) is broken up into a finite number of non-overlapping basic regions \(Q_1, Q_2, \ldots, Q_n \), then

\[\iint_{Q} f(x_1, x_2) \, dx_1 \, dx_2 = \iint_{Q_1} f(x_1, x_2) \, dx_1 \, dx_2 + \iint_{Q_2} f(x_1, x_2) \, dx_1 \, dx_2 + \cdots + \iint_{Q_n} f(x_1, x_2) \, dx_1 \, dx_2 \]

(20)

(d) Mean Value Theorem

If \(f \) and \(g \) are continuous functions of a basic region and if \(g \) is non-negative on \(Q \), then there exists a point \((x_0^1, x_0^2) \) in \(Q \) for which

\[\iint_{Q} f(x_1, x_2) g(x_1, x_2) \, dx_1 \, dx_2 = f(x_0^1, x_0^2) \iint_{Q} g(x_1, x_2) \, dx_1 \, dx_2 \]

(21)

For the case of \(g(x_0^1, x_0^2) = 1 \), we obtain

\[\iint_{Q} f(x_1, x_2) \, dx_1 \, dx_2 = f(x_0^1, x_0^2) \iint_{Q} \, dx_1 \, dx_2 \]

\[= f(x_0^1, x_0^2) \times \text{area of } Q \]

(22)

11.3. Evaluation of double integrals by repeated integrals. Difficulty in evaluating a double integral

\[\iint_{Q} f(x_1, x_2) \, dx_1 \, dx_2 \]

can come from two sources: the integrand \(f \) or from the base region \(Q \). In the section we consider a technique for evaluating double integrals of continuous functions of over regions of types we call Type I and Type II.

11.3.1. Type I Regions. The projection of \(Q \) onto the \(x_1 \) axis is a closed interval \([a,b]\) and \(Q \) consists of all points \((x_1, x_2)\) with

\[a \leq b \text{ and } \phi_1(x_1) \leq x_2 \leq \phi_2(x_1) \]

Consider figure 34 which describe a regions of Type I.

For a region of Type I, we compute the double integral iteratively as
Figure 34. Region of Type I

\[
\begin{align*}
\int \int_{Q} f(x_1, x_2) dx_1 dx_2 &= \int_{a}^{b} \left(\int_{\phi_1(x_1)}^{\phi_2(x_1)} f(x_1, x_2) dx_2 \right) dx_1 \\
&= \int_{a}^{b} \left(\int_{\phi_1(x_1)}^{\phi_2(x_1)} f(x_1, x_2) dx_2 \right) dx_1
\end{align*}
\] (23)

We first calculate

\[
\int_{\phi_1(x_1)}^{\phi_2(x_1)} f(x_1, x_2) dx_2
\] (24)

by integrating \(f(x_1, x_2)\) with respect to \(x_2\) from \(x_2 = \phi_1(x_1)\) to \(x_2 = \phi_2(x_1)\). The resulting expression is a function of \(x_1\) alone, which we then integrate with respect to \(x_1\) from \(x_1 = a\) to \(x_1 = b\).

11.3.2. Type II Regions. The projection of \(Q\) onto the \(x_2\) axis is a closed interval \([c, d]\) and \(Q\) consists of all points \((x_1, x_2)\) with

\[c \leq d \text{ and } \psi_1(x_2) \leq x_1 \leq \psi_2(x_2)\]

Consider figure 35 which describe a regions of Type II. For a region of Type II, we compute the double integral iteratively as

\[
\int \int_{Q} f(x_1, x_2) dx_1 dx_2 = \int_{c}^{d} \left(\int_{\psi_1(x_2)}^{\psi_2(x_2)} f(x_1, x_2) dx_1 \right) dx_2
\] (25)

We first calculate
by integrating $f(x_1, x_2)$ with respect to x_1 from $x_1 = \psi_1(x_2)$ to $x_1 = \psi_2(x_2)$. The resulting expression is a function of x_2 alone, which we then integrate with respect to x_2 from $x_2 = c$ to $x_2 = d$.

11.4. Examples.

11.4.1. Evaluation over a rectangle. Consider the following integral

$$\int_Q f(x_1, x_2)dx_1dx_2 = \int_{x_1^1}^{x_1^2} \int_{x_2^1}^{x_2^2} x_1^2x_2^2 dx_2dx_1$$

First evaluate

$$\int_{x_1^1}^{x_1^2} x_1^2x_2^2 dx_2$$

This will give
\[\int_1^2 x_1^2 x_2 \, dx_2 = \left(\frac{1}{2} x_1^2 x_2^2 \right) \Big|_1^2 = \frac{1}{2} x_1^2 x_2^2 \bigg|_1^2 - \frac{1}{2} x_1^2 \bigg|_1^2 = [2 x_1^2] - \left[\frac{1}{2} x_1^2 \right] \]
\[= \frac{3}{2} x_1^2 \]
\]

Now integrate this function from 0 to 3 as follows

\[\int_0^3 \frac{3}{2} x_1^2 \, dx_1 = \left(\frac{x_1^3}{2} \right) \bigg|_0^3 = \left[\frac{27}{2} \right] - \left[0 \right] \]
\[= \frac{27}{2} \]
\]

Now consider the following integral

\[\iint_Q f(x_1, x_2) \, dx_1 \, dx_2 = \int_1^2 \int_0^3 x_1^2 x_2 \, dx_1 \, dx_2 \]
\]

First evaluate

\[\int_0^3 x_1^2 x_2 \, dx_1 \]
\]

This will give

\[\int_0^3 x_1^2 x_2 \, dx_1 = \left(\frac{1}{3} x_1^3 x_2 \right) \bigg|_0^3 = \left[\frac{1}{3} \cdot 3^3 x_2 \right] - \left[\frac{1}{3} \cdot 0^3 x_2 \right] \]
\[= [9 x_2] - 0 \]
\[= 9 x_2 \]
\]

Now integrate this function from 1 to 2 as follows
\[
\int_1^2 9x_2 \, dx_2 = \left(\frac{9x_2^3}{2} \right)_{1}^{2} \\
= \left[\frac{36}{2} \right] - \left[\frac{9}{2} \right] \\
= \frac{27}{2}
\]

(34)

11.4.2. Evaluation over a general region 1. Consider the following integral

\[
\int_{Q} f(x_1, x_2) \, dx_1 \, dx_2 = \int_{-1}^{1} \int_{2x_1^2}^{x_1^2+1} (x_1 + 2x_2) \, dx_2 \, dx_1
\]

(35)

First evaluate

\[
\int_{2x_1^2}^{x_1^2+1} (x_1 + 2x_2) \, dx_2
\]

(36)

This will give

\[
\int_{2x_1^2}^{x_1^2+1} (x_1 + 2x_2) \, dx_2 = (x_1x_2 + x_2^2) \bigg|_{2x_1^2}^{x_1^2+1}
\]

\[
= (x_1(x_1^2 + 1) + (x_1^2 + 1)^2) - (x_1(2x_1^2) + (2x_1^2)^2)
\]

\[
= (x_1^3 + x_1 + x_1^4 + 2x_1^2 + 1) - (2x_1^3 + 4x_1^4)
\]

\[
= -3x_1^4 + x_1^3 + 2x_1^2 + x_1 + 1
\]

(37)

Now integrate this function from -1 to 1 as follows

\[
\int_{-1}^{1} (-3x_1^4 - x_1^3 + 2x_1^2 + x_1 + 1) \, dx_1
\]

\[
= \left(\frac{3x_1^5}{5} - \frac{x_1^4}{4} + \frac{2x_1^3}{3} + \frac{x_1^2}{2} + x_1 \right)_{-1}^{1}
\]

\[
= \left(\frac{3}{5} - \frac{1}{4} + \frac{2}{3} + \frac{1}{2} + 1 \right) - \left(\frac{3}{5} - \frac{1}{4} + \frac{-2}{3} + \frac{1}{2} - 1 \right)
\]

\[
= \left(\frac{36}{60} - \frac{15}{60} + \frac{40}{60} + \frac{30}{60} + \frac{60}{60} \right) - \left(\frac{-36}{60} - \frac{15}{60} + \frac{-40}{60} + \frac{30}{60} - \frac{60}{60} \right)
\]

\[
= \frac{-72}{60} + \frac{80}{60} + \frac{120}{60}
\]

\[
= \frac{128}{60}
\]

\[
= \frac{32}{15}
\]

(38)

Consider a graph of the function in equation 35 in figure 36
Figure 36. Integral as area under a curve over a region