
DECISION MAKING WITH UNCERTAINTY AND RISK AVERSION

1. INTRODUCTION

1.1. The underlying idea of decision making under uncertainty. We are inter-
ested in how a decision maker chooses among alternative courses of action when
the consequences of each action are not know at the time the choice is made. In-
dividuals may make different choices in a setting involving uncertainty than they
will in one where outcomes are known. These differences are usually attributed to
“risk preferences”

1.2. Underlying framework for the problem.
1. There are a number of outcomes for the decision problem. They are rep-

resented by a non-empty set of prizes or things that matter to the decision
maker which is denoted X.

2. There are consequences which are represented by a non-empty set C. Con-
sequences can be anything that has to do with the welfare of a decision
maker. C can be a probability space over a set of outcomes or an outcome.
One outcome might be you get a box with 3 oranges and 2 apples inside.
Another might be you get two Powerball tickets purchased 3 December.

3. Feasible acts are a non-empty set denoted by A0

4. The set of conceivable acts denoted by A contains the set of feasible acts.
For example there may be no available action that leads to wining the
lottery with certainty. This action is conceivable but not feasible.

5. A mapping from the elements of A0 to subsets of C. For example, choos-
ing to take curtain number 1 on ”Let’s Make a Deal” gives you some of
the prizes that are available that day. Ultimately each act will result in a
unique element of C, but which element occurs in not known a priori.

6. A state of nature is a function that assigns to every feasible act a conse-
quence from the set of consequences corresponding to this act. For exam-
ple, the consequences from raising the price of a product you sell might be
that profits increase, profits decrease, or profits remain the same. State of
nature ”one” might be that profits decrease. The set of all states of nature
is denoted by S.

7. Actions can be considered to be a mapping from the set of states to the set
of consequences.

8. Constant acts are those which give the same consequence in all states of
the world.

9. Risk is a situation in which the set of states is a singleton or all acts are
constants. Consequences in this framework consist of probability mea-
sures or lotteries on a set of outcomes. For example, if the set of states is a
singleton, an act represents the choosing a particular lottery or probability
measure on a set of outcomes. Consider a gambler who is faced with two
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possible slot machines to play. The first machine gives a payoff of $-1.00
with probability .9, a payoff of $4.00 with probability .05 and a payoff of
$100.00 with probability .05. The second machine gives a payoff of $-1.00
with probability .8, a payoff of $4.00 with probability .16, and $100.00 with
a probability of .04. The outcomes there are (-1.00, 4.00, 100.00). Each act
induces a different lottery on the outcomes. The state of the world, the
existence of the slot machines, and the associated lotteries, is a constant.

10. Uncertainty is a situation in which the set of consequences, C, coincides
with the set of outcomes, X. The set of acts, A, consists of all functions
from the set of states, S, to X. A preference relation on A is a primitive of
the model. In this set-up there are no objective probabilities ( probability
model), but subjective probabilities are developed as part of the decision
problem.

1.3. Preference relations. A preference relation is a binary relation, �, on A that
is

1. complete - for all a, b ε A either a � b or b � a
2. transitive - for all a,b,c ε A, a � b and b � c imply a �

1.4. Representing the preference relation. A real valued function U on A repre-
sents � is for all a, b εA, a � b iff U(a) � U(b). The function U is called the utility
function.

The most common way to represent preferences in such models is with a repre-
sentation functional that is the sum of the products of utilities and probabilities of
outcomes.

2. EXPECTED UTILITY THEORY (VON NEUMANN MORGENSTERN)

For the analysis in this section, assume the the set of consequences C is finite.

2.1. Lotteries.

2.1.1. Definition of a simple lottery. A simple lottery L is a list L = (p1, p2, . . . , pN)
with pn ≥ 0 for all n and ΣN

n=1 pn = 1 where pn is interpreted as the probability
of outcome n occurring. A simple lottery can be represented geometrically as a
point in an N or (N-1) dimensional simplex, ∆ = p ∈ RN

+ : p 1 + p2 + ... + pN =1.
Consider the simple lottery represented in figure 1.

Each point in the simplex represents a particular lottery which yields conse-
quence x1 with probability p1 etc. When N = 3 it is convenient to use a two di-
mensional diagram in the form of an equilateral triangle with altitude equal to
one. This is convenient geometrically because the length of a side in this case is
equal to 2√

3
and the sum of the perpendiculars from any point to the three sides is

equal to 1. For example at a vertex (probability mass equal to one at that point) the
length to the opposite side is equal to the altitude of 1. Similarly a point at the cen-
ter of the triangle has length of 1/3 to each side. Or a point midway between two
endpoints along a side has length 1

2 to the other two sides. The two dimensional
representation of the lottery in figure 1 is contained in figure 2.
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FIGURE 1. Simplex Representing a Simple Lottery

2.1.2. Definition of a compound lottery. Given K simple lotteries Lk = (pk
1, p

k
2, ..., p

k
n), k =

1, ... K and probabilities αk ≥ 0 with Σ K
k=1 αk = 1 , the compound lottery (L1 ,

... , LK ; α1 , ... , αK) is the risky alternative that yields the simple lottery Lk with
probability αk for k = 1, ... , K.

2.1.3. Definition of a reduced lottery. For any compound lottery we can calculate a
corresponding reduced lottery as the simple lottery L = (p1 , p2, ... , pN) that gen-
erates the same ultimate distribution over outcomes. The probability of outcome
n in the reduced lottery is given by

pn = α1p
1
n + α2p

2
n + · · · + αKpK

n , n = 1, 2, · · · N (1)

Therefore the reduced lottery of any compound lottery can be obtained by vec-
tor addition. Specifically L = α1 L1 + ... + αK LK ∈ ∆. Thus compound lotteries lie
linearly in the simplex formed from the simple lotteries of which they are formed.

Consider as an example a case with 3 terminal consequences, C = {1,2 3}. Now
consider 5 lotteries described as follows:
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FIGURE 2. Triangle Representing a Simple Lottery

L1 = (1, 0, 0)

L2 = (.25, .375, .375)

L3 = (.75, .25, 0)

L4 = (.5, .125, .375)

L5 = (.5, .25, .25)

Now consider two compound lotteries. The first gives L1 with probability .25
and L5 with probability .75. This leads to a reduced lottery of (.625, .1875, .1875).
Consider then the compound lottery that gives L3 with probability .5 and L4 with
probability .5. This has reduced lottery equal to (.625, .1875, .1875). Thus the two
compound lotteries are equivalent.

2.2. Preferences over lotteries. We will assume that the set of alternatives to be
considered are the set of all simple lotteries over the outcomes C denoted by L. We
also assume there exists a binary preference relation on the set of such lotteries.

1. Continuity or Archimedean axiom

The preference relation � on the space of simple lotteries L is continu-
ous if for any (L, L’, L”) ∈ L, the sets
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{αε [0, 1] : αL + (1 − α)L′ � L”} ⊂ [0, 1]

{α ε [0, 1] : L” � α L + (1 − α)L′} ⊂ [0, 1] (2)

are closed.

As a possible counter example consider the following consequences
and simple lotteries.

C = ($1000, $10, Death)

L1 = (1, 0, 0)

L2 = (0, 1, 0)

L3 = (0, 0, 1)

Assume that L1 � L2 � L3. Then there is some compound lottery such
that α L1 + (1-α) L3 � L2.

2. Independence axiom

The preference relation � on the space of simple lotteries satisfies the
independence axiom if for all (L, L’, L”) ∈ L and α ∈ (0,1) we have

L � L′ ⇐⇒ αL + (1 − α)L′′ � αL′ + (1 − α)L′′ (3)

2.3. The expected utility function. The utility function U: L → R has an expected
utility form if there is an assignment of numbers (u1, u2, ... , uN) to the n outcomes
such that for every simple lottery L = (p1, p2, ... , pN) ∈ L, we have

U (L) = u1 p1 + u2 p2 + · · · + uN pN = Σnun pn (4)

A utility function U: L → R with the expected utility form is called a von
Neumann-Morgenstern (v.N-M) expected utility function. Note that if the lottery
Ln is the lottery that yields outcome n with certainty (pn =1) then U(Ln) = un . The
important result is that the utility function is linear in the probabilities.

2.4. Linearity and expected utility.

Proposition 1. A utility function U: L → R has an expected utility from iff it is linear,
that is iff it satisfies the property that

U
(
ΣK

k=1 αkLk

)
= ΣK

k=1 αkU (Lk) (5)

for any K lotteries Lk in L, k = 1, 2, . . . , K and probabilities (α1, . . . , αk) ≥ 0,
ΣK

k=1 αk = 1.

Proof. Suppose that U(·) satisfies equation 5. We can write any lottery L = (p1, . . . ,
pN) as a convex combination of the degenerate (certain) lotteries (L1, . . . , LN), that
is L = Σn pn Ln. We then have
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U (L) = U
(
ΣN

n=1 pn Ln
)

= ΣN
n=1 pn U (Ln)

= ΣN
n=1 pn un

(6)

To show the other way suppose that U has the expected utility form as in equa-
tion 4. Now consider any compound lottery (L1, . . . , LK ; α1, . . . , αK) where the
kth lottery has the form Lk = (pk

1, pk
2 , . . . , pN

k ). This compound lottery will have
a reduced lottery equivalent to it of the form L′ = Σkαk Lk . Given this we can
write the utility of this reduced lottery as

U (ΣK
k=1 αk Lk) = ΣN

n=1 un

(
Σkαk pk

n

)

= ΣK
k=1 αk

(
Σn un pk

n

)

= ΣK
k=1 αk U (Lk)

(7)

The expected utility property is a cardinal property of utility functions defined
on L. This form is preserved by increasing linear transformations as is noted in
Proposition 2.

�

Proposition 2. Suppose that U: L → R is a (v.N-M) expected utility function for the
preference relation � on L. Then Ũ L: → R is another (v.N-M) expected utility function
for � iff there are scalars β > 0 and γ such that Ũ (L)= βU(L)+γ for every L ∈ L.

2.5. The concentration on monetary outcomes. We will normally consider mone-
tary outcomes so that more is preferred to less and there are no issues of comparing
apples to oranges. In this context the number assigned to an outcome is just some
numerical function of money or wealth.

3. EXPECTED UTILITY WHEN THE OUTCOMES ARE CONTINUOUS

3.1. Notation.

1. x is a monetary outcome (continuous)
2. F: R → [0,1] is a cumulative density function (cdf) defining a lottery
3. F(x) is the probability that the realized payoff is less than x
4. f(t) is the density function associated with F if it exists
5. L is a lottery space which is the set of all distribution functions defined

on [a, +∞)

3.2. Properties of the cumulative density function F.

F (x) =
∫ x

−∞
f(t) dt (8)

For compound lotteries (L1, L2, ... LK , α1, . . . , αK) we have

F (x) = ΣK
k=1 αk Fk(x) (9)

3.3. Expected utility functions.
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3.3.1. Expected utility with discrete outcomes.

U (L) = ΣN
n=1 pnun

= p1 u1 + p2 u2 + . . . pN uN

(10)

where un is the utility associated with the nth outcome. This is sometimes called
the Bernoulli function or preference scaling function.

3.3.2. Expected utility with continuous outcomes.

U (F ) =
∫

u(x) dF (x) (11)

where u is the utility associated with the monetary outcome x. As before this is
called the Bernoulli or preference scaling function. Often we will write EU(F) for
U(F) or if F is dependent on a parameter “a” we will write EU(F(a)) or EU(a) where
EU(a) is the expected utility of action a which induces distribution on outcomes
denoted by F(a).

3.3.3. Properties of the function u(·).
1. increasing
2. continuous
3. bounded (or use restrictions on F)

4. RISK AVERSION

4.1. Definition of risk aversion in general. A decision-maker is a risk averter if
for any lottery F(·), the degenerate lottery that yields the amount

∫
x dF(x) with

certainty � F(·). If the decision maker is always (for any F) indifferent between
these two lotteries, we say he is risk neutral. Finally we say that the decision
maker is strictly risk neutral if indifference holds only when the two lotteries are
the same (F is degenerate).

4.2. Definition of risk aversion with a v.N-M utility function. A decision-maker
is a risk averter iff

∫
u(x) dF (x) ≤ u

(∫
x dF (x)

)
∀ F ( · ) (12)

This is called Jensen’s inequality and holds for all concave functions u(·). Strict
concavity or strict risk aversion means that the marginal utility of money is de-
creasing. Thus at any level of wealth the value of a dollar gain is smaller than the
utility of the absolute value of the same dollar loss.

4.3. Example of risk aversion.

1. States of nature

Consider two states of nature with p1 = p2 = 0.5.
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2. Preference scaling function

Consider the preference scaling function u( ) = -4 + .17x -.0003x2. For
this function, the following values are obtained

u(100) = 10

u(150) = 14.75

u(200) = 18

u(250) = 19.75

u(300) = 20

3. Lotteries

Consider a lottery where the outcomes are 100 and 300.

4. Expected Utility

U(L) = u(100)(.5) + u(300)(.5) = 10(.5) + 20(.5) = 15.

The expected value of the lottery is E(L) = 100(.5) + 300(.5) = 200. The
scaling function implies that u(200) = 18. So U(L) < u(E(L)). An individ-
ual who is risk neutral will have a linear utility function u. Consider the
shape of the preference scaling function in figure 3. Expected utility is
computed along the line connecting the points (100,10) and (300,20). The
utility of 200 is higher than the point along this line because u(x) is a con-
cave function.

FIGURE 3. Risk Averse Preference Scaling Function

50 100 150 200 250 300
x

10

12.5

15

18
20

22.5

uHxL
uHxL
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4.4. Certainty equivalent. For a given preference scaling function u(·) the cer-
tainty equivalent of F(·),denoted c(F,u), is the amount of money for which the indi-
viduals is indifferent between the gamble F(·) and the certain amount c(F,u); that
is

u(c(F, u)) =
∫

u(x) dF (x) (13)

For the example we need to find the level of x which has a utility level of 15
which is the expected utility of the lottery giving 100 with probability 0.5 and 300
with probability 0.5. Thus we compute u(?) = 15. Solving the equation for x we
obtain

u(x) = ax2 + bx + c

u0 = ax2 + bx + c

⇒ ax2 + bx + (c − u0) = 0

⇒ (−.0003)x2 + (.17)x + (−4 − 15) = 0

x =
−b ±

√
b2 − 4a(c − u0)

2a

=
−.17 ±

√
(.17)2 − 4(−.0003)(−19)

2(−.0003)

=
−.17 ±

√
.0289 − .0228

−.0006

=
−.17 ± .00781

−.0006

⇒ x = 153.162 or x = 413.51

(14)

In figure 4, the certainty equivalent is found by extended a line from the vertical
axis at the level of expected utility (15) to the preference scaling function and then
reading off the value on the horizontal axis or by extending a line from the point
on the expected utility line over to the preference scaling function.

Note that if c(F,u) ≤
∫

x dF(x) for all F(·) then the decision maker is a risk averter.
This can be seen by noting that u(·) is nondecreasing and writing the following
expressions starting with the assumption that the certainty equivalent is less than
the expected return

c(F, u) ≤
∫

x dF (x), assumption

⇔ u(c(F, u)) ≤ u

(∫
x dF (x)

)
, u nondecreasing

⇔
∫

u(x) dF (x) ≤ u

(∫
x dF (x)

)
definition of c(F,u)

(15)
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FIGURE 4. Finding the Certainty Equivalent
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4.5. probability premium. For any fixed amount of money x and a positive num-
ber ε, the probability premium demoted by π(x,ε,u), is the excess in wining prob-
ability over fair odds that makes the individual indifferent between the certain
outcome x and a gamble between the two outcomes x+ε and x-ε. That is

u(x) =
(

1
2

+ π(x, ε, u)
)

u(x + ε) +
(

1
2

− π(x, ε, u)
)

u(x − ε) (16)

For any given x and ε we can compute π as follows:

u(x) =
(

1
2

+ π(x, ε, u)
)

u(x + ε) +
(

1
2

− π(x, ε, u)
)

u(x − ε)

=
1
2

[ u(x + ε) + u(x − ε) ] + π [ u(x + ε) − u(x − ε) ]

⇒ u(x) − 1
2

[ u(x + ε) + u(x − ε) ] = π [ u(x + ε) − u(x − ε) ]

⇒ π =
u(x) − 1

2 [ u(x + ε) + u(x − ε) ]
[ u(x + ε) − u(x − ε) ]

(17)

For the example given we can compute the probability premium needed to
make the decision maker indifferent between a certain outcome of 200 [u(200) =
18] and a gamble between 100 and 300 with respective utilities of 10 and 20. In this
case, ε = 100. This will give
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π =
u(x) − 1

2
[ u(x + ε) + u(x − ε) ]

[ u(x + ε) − u(x − ε) ]

=
u(200) − 1

2 [ u(300) + u(100) ]
[ u(300) − u(100) ]

=
18 − 1

2 [ 20 + 10 ]
[ 20 − 10 ]

=
18 − 15

[ 10]
=

3
10

(18)

Checking we obtain

u(x) =
(

1
2

+ π(x, ε, u)
)

u(x + ε) +
(

1
2

− π(x, ε, u)
)

u(x − ε)

u(200) =
(

1
2

+
3

10

)
u(300) +

(
1
2

− 3
10

)
u(100)

18 =
(

8
10

)
(20) +

(
2

10

)
(10)

18 = ( 16 + 2 ) = 18

(19)

We can examine this graphically in figure 5. Here, u(200) = 18, u(200-ε) = u(100)
= 10, and u(200+ε) = u(300) = 20. The line for the vertical axis at 18 over to the
expected utility line for the lottery for different probabilities for 200-ε and 200+ε
indicates that the probability must be more than one-half of the distance between
these two outcomes. The vertical line indicates that a lottery between 100 and 300
with an expected wealth level of 260 has a utility level of 18.

If the decision maker is risk neutral then u(x) = x and the probability premium
is given by

u(x) =
(

1
2

+ π(x, ε, u)
)

u(x + ε) +
(

1
2

− π(x, ε, u)
)

u(x − ε)

⇒ x =
(

1
2

+ π(x, ε, u)
)

(x + ε) +
(

1
2

− π(x, ε, u)
)

(x − ε)

⇒ x = x +
(

1
2

+ π(x, ε, u)
)

(x + ε) +
(

1
2

− π(x, ε, u)
)

(x − ε)

⇒ x = x + 2 π(x, ε, u) ε

⇒ 0 = 2 π(x, ε, u) ε

⇒ π(x, ε, u) = 0 if ε 6= 0

(20)

Now consider the utility function given by the straight line through the points
(100,10) and (300,20). This can be determined as follows where u(x∗) is a fixed
number based on the chosen value of x∗.
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FIGURE 5. Finding the Probability Premium
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20 − u(x∗) =
20 − 10

(300) − (100)
((300) − x)

[4pt]20 − u(x∗) =
10
200

(300− x)

5 − u(x∗) =
−1
20

x

u(x∗) =
1
20

x + 5

⇒ x = 20 (u(x∗) − 5)

(21)

Equation 21 gives the value of x that will lead to the same utility as the target
level along the straight line representing a lottery between outcomes x∗ + ε and
x∗ − ε. In general this is given by

u(x∗ + ε) − u(x∗) =
u(x∗ + ε) − u(x∗ − ε)
(x∗ + ε) − (x∗ − ε)

((x∗ + ε) − x)

u(x∗ + ε) − u(x∗) =
u(x∗ + ε) − u(x∗ − ε)

2ε
((x∗ + ε) − x)

u(x∗) = u(x∗ + ε) −
u(x∗ + ε) − u(x∗ − ε)

2ε
((x∗ + ε) − x)

⇒ x = (x∗ + ε) − 2ε(u(x∗ + ε) − u(x∗))
u(x∗ + ε) − u(x∗ − ε)

(22)

We can compute π in a slightly different way by setting u(200) = 18 equal to
average of the upper and lower utilities
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u(x) =
(

1
2

+ π(x, ε, u)
)

u(x + ε) +
(

1
2

− π(x, ε, u)
)

u(x − ε)

u(200) = 18 =
(

1
2

+ π(x, ε, u)
)

u(300) +
(

1
2

− π(x, ε, u)
)

u(100)

18 =
1
2

(u(300) + u(100)) + π(x, ε, u) (u(300)− u(100))

18 =
1
2

(30) + π(x, ε, u) (10)

3 = π(x, ε, u) (10)

⇒ π(x, ε, u) =
3
10

(23)

The point on the x axis associated with this probability level is

u(x∗) =
1
20

x + 5

x = 20 (u(x∗) − 5)

x = 20(18− 5)

= 260

(24)

4.6. Equivalent characterizations of risk aversion. Suppose the decision maker is
an expected utility maximizer with a Bernoulli utility (preference scaling) function
u(·) on amounts of money. Then the following are equivalent:

1. The decision maker is risk averse
2. u(·) is concave (u”(x) ≤ )
3. c(F,u) ≤

∫
xdF(x) for all F(·)

4. π(x,ε,u) ≥ 0 for all x, ε

4.7. Risk Aversion Example. Suppose an investor can choose between two assets.
Asset one has a random return of z per unit invested and asset two has a certain
return of x per unit invested. Assume that the investor allocates α dollars to the
first asset and β dollars to the second asset where α + β = wealth (w). Given any
particular random return the portfolio pays αz + βx. The utility maximization
problem can be written as follows

max
α,β ≥0

∫
u(αz + βx) dF (z)

s.t. α + β = w

(25)

If we substitute for β from the constraint we obtain



14 DECISION MAKING WITH UNCERTAINTY AND RISK AVERSION

max
∫

u(wx + α(z − x)) dF (z)

s.t. 0 ≤ α ≤ w or

max
∫

u(wx + α(z − x)) dF (z)

s.t. α ≥ 0

(w − α) ≥ 0

(26)

This is a nonlinear programming problem with two constraints on the decision
variable α. The associated Lagrangian is

L =
∫

u(wx + α(z − x)) dF (z) + λ1α + λ2(w − α) (27)

The first order conditions are

∫
u′ (wx + α(z − x)) (z − x) dF (z) + λ1 − λ2 = 0

λ1 α = 0

λ2 (w − α) = 0

λ1, λ2 ≥ 0

(28)

If α > 0 then λ1 = 0 and we have that

∫
u′ (wx + α(z − x))(z − x) dF (z) = λ2 ≥ 0 (29)

because λ2 ≥ 0. If α < w then λ2 = 0 and we have that

∫
u′ (wx + α(z − x))(z − x) dF (z) = −λ1 ≤ 0 (30)

For this function to be a maximum we need to check the second order condi-
tions . If the objective function is concave and the constraints are also concave this
stationary point will be a maximum. The objective function is concave because u
is concave. This is obvious from differentiation

∫
u′′(wx + α(z − x))(z − x)2 dF (z) ≤ 0 (31)

The constraints are linear and therefore concave.

Now consider the case if the risky asset has an expected return greater than x.
That is

∫
zdF (z) > x. Now consider the possibility of α = 0 as the solution to this

problem. If α = 0 we obtain
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∫
u′ (wx)(z − x) dF (z) + λ1 − λ2 = 0

λ1 α = 0

λ2 (w − α) = 0

λ1, λ2 ≥ 0

(32)

We can rewrite the integral in equation 32 as follows

∫
u′ (wx)(z − x) dF (z) + λ1 − λ2 = u′ (wx)

(∫
z dF (z) − x

∫
dF (z)

)
+ λ1 − λ2

= u′ (wx)
(∫

z dF (z) − x

)
+ λ1 − λ2

(33)
Because the expression in brackets is positive by the assumption we have that

a positive number
[
(u′(wx)

(∫
z dF (z) − x

∫
dF (z)

)]
+ λ1 − λ2 is equal to zero.

Because both λ’s are positive this implies that
[
(u′(wx)

(∫
z dF (z) − x

∫
dF (z)

)]

= -λ1 + λ2. But if α < w then λ2 = 0. Because λ1 ≥ 0 we have a contradiction. Thus
α 6= 0. So a risk averse investor will always invest some money in the risky asset
if it has a higher return than the safe asset.
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5. MEASUREMENT OF RISK AVERSION

5.1. Arrow-Pratt coefficient of absolute risk aversion. Given a twice differen-
tiable preference scaling function u(·) for money, the Arrow-Pratt coefficient of
absolute risk aversion at the point x is defined as

rA(x) = −u′′(x)
u′ (x)

(34)

With risk neutrality, u is linear and u” = 0. Thus rA measures the curvature of
the preference scaling function. The use of u’ in the denominator makes it invari-
ant to positive linear transformations. Consider figure 6 where u1(·) is less curved
than u2(·). It is obvious that the certainty equivalent is less for the more curved
function.

FIGURE 6. Finding the Certainty Equivalent
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The coefficient of risk aversion can also be related to the probability premium
by differentiating the defining identity (equation 16 twice with respect to ε and
then evaluating at ε = 0. Taking the first derivative will give

u(x) =

(
1

2
+ π(x, ε, u)

)
u(x + ε) +

(
1

2
− π(x, ε, u)

)
u(x − ε)

0 =

(
dπ(x, ε,u)

dε

)
u(x + ε) +

(
1

2
+ π(x, ε,u)

)
u′(x + ε) +

(
−dπ(x, ε, u)

dε

)
u(x − ε) −

(
1

2
− π(x, ε, u)

)
u′(x − ε)

=π′u(x + ε) +
1

2
u′(x + ε) + πu′(x + ε) − π′u(x − ε) − 1

2
u′(x − ε) + πu′(x − ε)

(35)
Differentiating again will give
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0 = π′u(x + ε) +
1
2

u′(x + ε) + πu′(x + ε) − π′u(x − ε) − 1
2

u′(x − ε) + πu′(x − ε)

= π′′u(x + ε) + π′u′(x + ε) +
1
2

u′′(x + ε) + π′u′(x + ε) + πu′′(x + ε)

− π′′u(x − ε) + π′u′(x − ε) +
1
2

u′′(x − ε) + π′u′(x − ε) − πu′′(x − ε)
(36)

Now evaluate at ε = 0 to obtain

0 = π′′u(x) + π′u′(x) +
1
2

u′′(x) + π′u′(x) + πu′′(x)

− π′′u(x) + π′u′(x) +
1
2

u′′(x) + π′u′(x) − πu′′(x)

= 4π′u′(x) + u′′(x)

⇒ −u′′(x)
u′(x)

= 4π′(0)

(37)

Continuing will give rA (x) = 4π´(0). Note that the utility function can be ob-
tained from rA (·) by integrating twice. The two constants are irrelevant since the
Bernoulli utility function is only identified up to linear transformations.

5.2. Example with Constant Absolute Risk Aversion (CARA). Let the preference
scaling function be given by u(x) = -e−kx, k > 0. This is known as the negative
exponential utility function. For this function, u’(x) = ke−kx and u’(x) = -k2ekx and
rA(x,u) = k for all x. Similarly we can obtain for rA(x) = k that

rA(x) = − u′′(x)
u′(x)

⇒ k = − u′′(x)
u′(x)

⇒ d(log u′(x))
dx

= − k

⇒ log u′(x) = − kx + ln c

⇒ u′(x) = e−kx+log c = e−kxelog c = ce−kx

⇒ u(x) =
−c

k
e−kx + b

= − ae−kx + b

(38)

5.3. Relative risk aversion. The coefficient of relative risk aversion for a given
Bernoulli utility function is given by

rR(x, u) = −x u′′(x)
u′(x)

(39)
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5.3.1. Log utility functions. The log utility function is given by

u(x) = β log x + γ, β > 0 (40)

The coefficient of relative risk aversion for the log utility function is obtained
by differentiating equation 40 with respect to x.

u′(x) =
β

x

u′′(x) = − β

x2

⇒ rR(x) =
−x

(
− β

x2

)

(
β
x

) = 1

(41)

5.3.2. Power utility functions. The power utility function is given by

u(x) = βx1−ρ + γ, β > 0, ρ 6= 1 (42)

The power utility function collapses to the log utility function as ρ → 1. The
coefficient of relative risk aversion for the power utility function is obtained by
differentiating equation 42 with respect to x.

u′(x) = (1 − ρ) βx−ρ

u′′(x) = (−ρ)(1 − ρ)βx−ρ−1

⇒ rR(x) =
(−x) (−ρ)(1 − ρ)βx−ρ−1

(1 − ρ) βx−ρ
= ρ

(43)

Notice that the coefficient of relative risk aversion is constant for both of these
utility functions, i.e., it does not depend on wealth.

6. RISK AVERSION AS A FUNCTION OF WEALTH

6.1. Definition of Decreasing Absolute Risk Aversion (DARA). The preference
scaling function u(·) exhibits decreasing absolute risk (DARA) aversion if rA(x) is
a decreasing function of x. Individuals with DARA take more risk as they become
wealthier.

Proposition 3. The following properties are equivalent:

1. The Bernoulli utility or preference scaling function exhibits decreasing absolute
risk aversion.

2. Whenever x2 < x1, u2(z) = u(x2+z) is a concave transformation of u1(z) = u(x1

+ z).
3. For any risk F(z), the certainty equivalent of the lottery formed by adding risk

z to wealth level x, given by the amount cx at which u(cx) =
∫

u(x+z)dF(z), is
such that (x-cx) is decreasing in x. That is, the higher x is, the less the individual
is willing to pay to get rid of the risk.

4. The probability premium π(x,ε,u) is decreasing in x.
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6.2. Definition of Decreasing Relative Risk Aversion (DRRA). The preference
scaling function u(·) exhibits decreasing relative risk(DRRA) aversion if rR(x) is
a decreasing function of x. Individuals with DRRA become less risk averse with
respect to gambles that are proportional to wealth as wealth increases. A person
with decreasing relative risk aversion will also exhibit decreasing absolute risk
aversion. The converse is not necessarily true.

Proposition 4. The following properties are equivalent:
1. The Bernoulli utility function exhibits decreasing relative risk aversion, i.e. rR(x,u)

is decreasing in x.
2. Whenever x2 < x1, ũ2(t) = u(tx2) is a concave transformation of ũ1(t) = u(tx1).
3. Given any risk F(t) on t > 0, the certainty equivalent c̄x defined by u(c̄x) =∫

u(tx) dF (t) is such that x
c̄x

is decreasing in x.


