
PRODUCTION FUNCTIONS

1. ALTERNATIVE REPRESENTATIONS OF TECHNOLOGY

The technology that is available to a firm can be represented in a variety of
ways. The most general are those based on correspondences and sets.

1.1. Technology Sets. The technology set for a given production process is de-
fined as

T = {(x, y) : x ∈ Rn
+, y ∈ Rm :

+ x can produce y}
where x is a vector of inputs and y is a vector of outputs. The set consists of

those combinations of x and y such that y can be produced from the given x.

1.2. The Output Correspondence and the Output Set.

1.2.1. Definitions. It is often convenient to define a production correspondence and
the associated output set.

1: The output correspondence P, maps inputs x ∈Rn
+ into subsets of outputs,

i.e., P: Rn
+ → 2Rm

+ . A correspondence is different from a function in that a
given domain is mapped into a set as compared to a single real variable
(or number) as in a function.

2: The output set for a given technology, P(x), is the set of all output vectors
y ∈ Rm

+ that are obtainable from the input vector x ∈ Rn
+. P(x) is then the

set of all output vectors y ∈ Rm
+ that are obtainable from the input vector

x ∈Rn
+ . We often write P(x) for both the set based on a particular value of

x, and the rule (correspondence) that assigns a set to each vector x.

1.2.2. Relationship between P(x) and T(x,y).

P (x) = (y : (x, y ) ∈ T )

1.2.3. Properties of P(x).
P.1a: Inaction and No Free Lunch. 0 ∈ P(x) ∀ x ∈ Rn

+ .
P.1b: y 6∈ P(0), y > 0.
P.2: Input Disposability. ∀ x ∈ Rn

+ , P(x) ⊆ P(θx), θ ≥ 1.
P.2.S: Strong Input Disposability. ∀ x, x’ ∈ Rn

+ , x’ ≥ x ⇒ P(x) ⊆ P(x’).
P.3: Output Disposability. ∀ x ∈ Rn

+ , y ∈ P(x) and 0 ≤ λ ≤ 1 ⇒ λy ∈ P(x).
P.3.S: Strong Output Disposability. ∀ x ∈ Rn

+ , y ∈ P(x) ⇒ y’ ∈ P(x), 0 ≤ y’ ≤
y.

P.4: Boundedness. P(x) is bounded for all x ∈ Rn
+ .

P.5: T is a closed set P: Rn
+ → 2Rm

+ is a closed correspondence, i.e., if [x` →
x0, y` → y0 and y` ∈ P(x`), ∀ `] then y0 ∈ P(x0).

P.6: Attainability. If y ∈ P(x), y ≥ 0 and x ≥ 0, then ∀ θ ≥ 0, ∃ λθ ≥ 0 such
that θy ∈ P(λθx).
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P.7: P(x) is convex
P(x) is a convex set for all x ∈ Rn

+ . This is equivalent to the correspon-
dence V:<n

+ → 2<
m
+ being quasiconcave.

P.8: P is quasi-concave.
The correspondence P is quasi-concave on Rn

+ which means ∀ x, x’ ∈
Rn

+ , 0 ≤ θ ≤ 1, P(x) ∩ P(x’) ⊆ P(θx + (1-θ)x’). This is equivalent to V(y)
being a convex set.

P.9: Convexity of T. P is concave on Rn
+ which means ∀ x, x’ ∈ Rn

+ , 0 ≤ θ ≤
1, θP(x)+(1-θ)P(x’) ⊆ P(θx + (1-θ)x’)

1.3. The Input Correspondence and Input (Requirement) Set.

1.3.1. Definitions. Rather than representing a firm’s technology with the technol-
ogy set T or the production set P(x), it is often convenient to define an input corre-
spondence and the associated input requirement set.

1: The input correspondence maps outputs y ∈ Rm
+ into subsets of inputs,

V: Rm
+ → 2Rn

+ . A correspondence is different from a function in that a
given domain is mapped into a set as compared to a single real variable
(or number) as in a function.

2: The input requirement set V(y) of a given technology is the set of all com-
binations of the various inputs x ∈ Rn

+ that will produce at least the level
of output y ∈ Rm

+ . V(y) is then the set of all input vectors x ∈ Rn
+ that

will produce the output vector y ∈ Rm
+ . We often write V(y) for both the

set based on a particular value of y, and the rule (correspondence) that
assigns a set to each vector y.

1.3.2. Relationship between V(y) and T(x,y).

V (y) = (x : (x, y) ∈ T )

1.4. Relationships between Representations: V(y), P(x) and T(x,y). The technol-
ogy set can be written in terms of either the input or output correspondence.

T = {(x, y) : x ∈ Rn
+, y ∈ Rm

+ , such that x will produce y} (1a)

T = {(x, y) ∈ Rn+m
+ : y ∈ P (x), x ∈ Rn

+} (1b)

T = {(x, y) ∈ Rn+m
+ : x ∈ V (y), y ∈ Rm

+} (1c)

We can summarize the relationships between the input correspondence, the
output correspondence, and the production possibilities set in the following propo-
sition.

Proposition 1. y ∈ P(x) ⇔ x ∈ V(y) ⇔ (x,y) ∈ T

2. PRODUCTION FUNCTIONS

2.1. Definition of a Production Function. To this point we have described the
firm’s technology in terms of a technology set T(x,y), the input requirement set
V(y) or the output set P(x). For many purposes it is useful to represent the re-
lationship between inputs and outputs using a mathematical function that maps
vectors of inputs into a single measure of output. In the case where there is a single
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output it is sometimes useful to represent the technology of the firm with a math-
ematical function that gives the maximum output attainable from a given vector
of inputs. This function is called a production function and is defined as

f (x) = max
y

[y : (x, y) ∈ T ]

= max
y

[y : x ∈ V (y)]

= max
y ∈ P (x)

[y]

(2)

Once the optimization is carried out we have a numerically valued function of
the form

y = f (x1, x2 , . . . , xn) (3)

Graphically we can represent the production function in two dimensions as in
figure 1.

FIGURE 1. Production Function
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In the case where there is one output, one can also think of the production func-
tion as the boundary of P(x), i.e., f(x) = Eff P(x).

2.2. Existence and the Induced Production Correspondence. Does the produc-
tion function exist. If it exists, is the output correspondence induced by it the same
as the original output correspondence from which f was derived? What properties
does f(x) inherit from P(x)?

a: To show that production function exists and is well defined, let x ∈ Rn
+.

By axiom P.1a, P(x) 6= ∅. By axioms P.4 and P.5, P(x) is compact. Thus P(x)
contains a maximal element and f(x) is well defined. NOte that only these
three of the axioms on P are needed to define the production function.

b: The output correspondence induced by f(x) is defined as follows

Pf (x) = [y ∈ R+ : f(x) ≥ y], x ∈ Rn
+ (4)
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This gives all output levels y that can be produced by the input vector
x. We can show that this induced correspondence is equivalent to the
output correspondence that produced f(x). We state this in a proposition.

Proposition 2. Pf (x) = P (x), ∀x ∈ Rn
+.

Proof. Let y ∈ Pf (x), x ∈ Rn
+ . By definition, y ≤ f(x). This means that y ≤

max {z: z ∈ P(x)}. Then by P.3.S, y ∈ P(x). Now show the other way. Let y
∈ P(x). By the definition of f, y ≤ max {z: z ∈ P(x)} = f(x). Thus y ∈ Pf (x).

�

Properties P.1a, P.3, P.4 and P.5 are sufficient to yield the induced pro-
duction correspondence.

2.2.1. Relationship between P(x) and f(x). We can summarize the relation-
ship between P and f with the following proposition:

Proposition 3. y ∈ P(x) ⇔ f(x) ≥ y, ∀ x ∈ Rn
+

2.3. Examples of Production Functions.

2.3.1. Production function for corn. Consider the production technology for corn on
a per acre basis. The inputs might include one acre of land and various amounts
of other inputs such as tillage operations made up of tractor and implement use,
labor, seed, herbicides, pesticides, fertilizer, harvesting operations made up of dif-
ferent combinations of equipment use, etc. If all but the fertilizer are held fixed,
we can consider a graph of the production relationship between fertilizer and corn
yield. In this case the production function might be written as

y = f (land, tillage, labor, seed, fertilizer, . . . ) (5)

2.3.2. Cobb-Douglas production function. Consider a production function with two
inputs given by y = f(x1, x2). A Cobb-Douglas [4] [5] represention of technology
has the following form.

y = Axα1
1 xα2

2

= 5x
1
3
1 x

1
4
2

(6)

Figure 2 is a graph of this production function.

Figure 3 shows the contours of this function.

With a single output and input, a Cobb-Douglas production function has the
shape shown in figure 4.

2.3.3. Polynomial production function. We often approximate a production function
using polynomials. For the case of a single input, a cubic production function
would take the following form.

y = α1 x + α2 x
2 + α3 x

3

= 10x + 20x2 − 0.60x3
(7)

The cubic production function in equation 7 is shown in figure 5.
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FIGURE 2. Cobb-Douglas Production Function
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FIGURE 3. Contours of a Cobb-Douglas Production Function
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Notice that the function first rises at an increasing rate, then increases at a de-
creasing rate and then begins to fall until it reaches zero.
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FIGURE 4. Cobb-Douglas Production Function with One Input
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FIGURE 5. Cubic Production Function
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2.3.4. Constant elasticity of substitution (CES) production function. An early alterna-
tive to the Cobb-Douglas production function is the constant elasticity of substi-
tution (CES) production function [1]. While still being quite tractable, with a min-
imum of parameters, it is more flexible than the Cobb-Douglas production func-
tion. For the case of two inputs, the CES production function takes the following
form.

y = A
[
δ1 x

−ρ
1 + δ2 x

−ρ
2

]−1
ρ

= 5
[
0.6x−2

1 + 0.2x−2
2

]−1
2

(8)

The CES production function in equation 8 is shown in figure 6. The production
contours of the production function in equation 8 are shown in figure 7. If we
change ρ to 0.2, the CES contours are as in figure 8.

2.3.5. Translog production function. An alternative to the Cobb-Douglas production
function is the translog production function.
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FIGURE 6. CES Production Function
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FIGURE 7. CES Production Function Contours - ρ=2
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ln y = α1 ln x1 + α2 ln x2 + β11 ln x
2
1 + β12 ln x1 ln x2 + β22 ln x

2
2

=
1
3
ln x1 +

1
10
ln x2 −

2
100

ln x2
1 +

1
10
ln x1 ln x2 −

2
10

ln x2
2

(9)

The translog can also be written with y as compared to ln y on the left hand
side.
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FIGURE 8. CES Production Function Contours - ρ=0.05
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y = A , xα1
1 xα2

2 eβ11 ln, x2
1 + β12 ln x1 ln x2 + β22 ln x2

2

= x
1/3
1 x

1/10
2 e−.02 ln x2

1 + 0.1 ln x1 ln x2 − 0.2 ln x2
2

(10)

Figure 9 shows the translog function from equation 9 while figure 10 shows the
contours of the translog function.

2.4. Properties of the Production Function. We can deduce a set of properties on
f that are equivalent to the properties on P in the sense that if a particular set holds
for P, it implies a particular set on f and vice versa.

2.4.1. f.1 Essentiality. f(0) = 0.

2.4.2. f.1.S Strict essentiality. f(x1, x2, . . . , 0, . . . , xn) = 0 for all xi.

2.4.3. f.2 Monotonicity. ∀ x ∈ Rn
+ , f(θx) ≥ f(x), θ ≥ 1.

2.4.4. f.2.S Strict monotonicity. ∀ x, x’ ∈ Rn
+ , if x ≥ x’ then f(x) ≥ f(x’).

2.4.5. f.3 Upper semi-continuity. f is upper semi-continuous on Rn
+ .

2.4.6. f.3.S Continuity. f is continuous on Rn
+.

2.4.7. f.4 Attainability. If f(x) > 0, f(λx) → +∞ as λ→ +∞.

2.4.8. f.5 Quasi-concavity. f is quasi-concave on Rn
+.

2.4.9. f.6 Concavity. f is concave on Rn
+.

2.5. Discussion of the Properties of the Production Function.
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FIGURE 9. Translog Production Function
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FIGURE 10. Contours of Translog Production Function
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2.5.1. f.1 Essentiality. f(0) = 0.
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This assumption is sometimes called essentiality. It says that with no inputs,
there is no output.

2.5.2. f.1.S Strict essentiality. f(x1, x2, . . . , 0, . . . , xn) = 0 for all xi.

This is called strict essentiality and says that some of each input is needed for
a positive output. In this case the input requirement set doesn’t touch any axis.
Consider as an example of strict essentiality the Cobb-Douglas function.

y = Axα1
1 xα2

2 (11)
Another example is the Generalized Leontief Function with no linear terms

y = β11x1 + 2β12 x1 x2 + β22 x2 (12)

2.5.3. f.2 Monotonicity. ∀ x ∈ Rn
+ , f(θx) ≥ f(x), θ ≥ 1.

This is a monotonicity assumption that says with a scalar expansion of x, output
cannot fall. There is also a strong version.

2.5.4. f.2 Strict monotonicity. ∀ x, x’ in Rn
+ , if x ≥ x’ then f(x) ≥ f(x’).

Increasing one input cannot lead to a decrease in output.

2.5.5. f.3 Upper semi-continuity. f is upper semi-continuous on Rn
+ .

The graph of the production function may have discontinuities, but at each
point of discontinuity the function will be continuous from the right. The prop-
erty of upper semi-continuity is a direct result of the fact that the output and input
correspondences are closed. In fact, it follows directly from the input sets being
closed.

2.5.6. f.3.S Continuity. f is continuous on Rn
+.

We often make the assumption that f is continuous so that we can use calculus
for analysis. We sometimes additionally assume the f is continuously differen-
tiable.

2.5.7. f.4 Attainability. If f(x) > 0, f(λx) → +∞ as λ→ +∞.

This axiom states that there is always a way to exceed any specified output rate
by increasing inputs enough in a proportional fashion.

2.5.8. f.5 Quasi-concavity. f is quasi-concave on Rn
+.

If a function is quasi-concave then

f(x) ≥ f(x0) ⇒ f(λx + (1 − λ) x0) ≥ f(x0) (13)
If V(y) is convex then f(x) is quasi-concave because V(y) is an upper contour

set of f. This also follows from quasiconcavity of P(x). Consider for example the
traditional three stage production function in figure 11. It is not concave, but it is
quasi-concave.
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FIGURE 11. Quasi-concave Production Function
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If the function f is quasi-concave the upper contour or isoquants are convex.
This is useful in problems of cost minimization as can be seen in figure 12.

FIGURE 12. Convex Lower Boundary of Input Requirement Set
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2.5.9. f.6 Concavity. f is concave on Rn
+.

If a function is concave then

f(λx + (1 − λ)x′) ≥ λ f(x) + (1 − λ)f(x′) (14)
Concavity of f follows from P.9 (V.9) or the overall convexity of the output and

input correspondences. This means the level sets are not only convex for a given
level of output or input but that the overall correspondence is convex. Contrast the
traditional three stage production function with a Cobb-Douglas one. Concavity is
implied by the function lying above the chord as can be seen in figure 13 or below
the tangent line as in figure 14.

2.6. Equivalence of Properties of P(x) and f(x). The properties (f.1 - f.6) on f(x) can
be related to specific properties on P(x) and vice versa. Specifically the following
proposition holds.
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FIGURE 13. Concavity Implies that a Chord Lies below the Function
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FIGURE 14. A Concave Function Lies Below the Tangent Line

x

y

Proposition 4. The output correspondence P: Rn
+ → 2R+ satisfies P.1 - P.6 iff the pro-

duction function f : Rn
+ → R+ satisfies f.1 - f.4. Furthermore P.8 ⇔ f.5 and P.9 ⇔ f.6.

Proofs of some of the equivalencies between properties of P(x) and f(x).

2.6.1. P.1 ⇔ f.1. P.1a states that 0 ∈ P(x) ∀ x ∈ Rn
+ ; y 6∈ P(0), y > 0. Let x ∈ Rn

+ so
that 0 ∈ P(x). Then by Proposition 3 f(x) ≥ 0 . Now if y > 0 then y 6∈ P(0) by P.1b.
So y > f(0). But f(x) ≥ 0 by Proposition 3. Thus let y → 0 to obtain f(0) = 0.

Now assume that f.1 holds. By Proposition 3 it is obvious that 0 ∈ P(x), ∀ x ∈
Rn

+. Now compute P(0) = [y∈R+: f(0) ≥ y ]. This is the empty set unless y = 0. So
if y > 0, then y 6∈ P(0).

2.6.2. P.2 ⇔ f.2. P.2 states that ∀ x ∈Rn
+, P(x) ⊆ P(θx), θ ≥ 1. Consider the definition

of f(x) and f(θx) given by

f(x) = max [y ∈ R+ : y ∈ P (x)] x ∈ Rn
+

f(θx) = max [y ∈ R+ : y ∈ P (θx)] x ∈ Rn
+
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Now because P(x) ⊆ P(θx) for θ ≥ 1 it is clear that the maximum over the second
set must be larger than the maximum over the first set.

To show the other way remember that if y ∈ P(x) then f(x) ≥ y. Now assume
that f(θx) ≥ f(x) ≥ y. This implies that y ∈ P(θx) which implies that P(x) ⊆ P(θx).

2.6.3. Definition of f → P.3. Remember that P.3 states ∀ x ∈ <n
+ , y ∈ P(x) and 0 ≤

λ ≤ 1 ⇒ λy ∈ P(x). So consider an input vector x and an output level y such that
f(x) ≥ y. Then consider a value of λ such that 0 ≤ λ ≤ 1. Given the restrction on λ,
y ≥ λy. But by Proposition 3 which follows from the definition of the producion
function in equation 2 and Proposition 2, λy ∈ P (x).

2.6.4. F.3 → P.4. Recall that P.4 is that P(x) is bounded for all x ∈ Rn
+. Let x ∈ <n

+ .
The set

M (x) = {u ∈ <n
+ : u ≤ x} (15)

is compact as it is closed and bounded. F.3 says that f(x) is upper-semicontinuous,
thus the maximum

f(u∗) = max{f(u) : u ∈ M (x)} ≥ f(x) (16)
u∗ ∈ M (x) exists. The closed interval [0,f(x)] is a subset of the closed interval

[0,f(u∗], i.e, [0, f(x)] ⊆ [0, f(u∗)]. Therefore P(x) = [0,f(x)] is bounded.

2.6.5. P.4 → F.3. Recall that f(x) is upper semi-continuous atx0 iff lim supn → ∞ f(xn) ≤ f(x0) for
all sequences xn → x0.

Consider a sequence {xn} → x0. Let yn ≡ f(xn). Now suppose that lim supn → ∞ yn = ȳ ≥ f(x0).
Then {yn} → y0 ≥ f(x0) because the maximum value of the sequence {yn} is
greater than f(x0). Because P : <n

+ → 2<+ is a closed correspondence, y0 ∈
[0, f(x0)] and y0 ≤ f(x0), a contradiction. Thus lim supn → ∞ f(xn) ≤ f(x0).

2.6.6. Other equivalencies. One can show that the following equivalences also hold.
a: P.6 ⇒ f.4
b: P.7 follows from the definition of P(x) in terms of f in equation 4.

2.7. Marginal and Average Measures of Production.

2.7.1. Marginal product (MP). The firm is often interested in the effect of additional
inputs on the level of output. For example, the field supervisor of an irrigated crop
may want to know how much crop yield will rise with an additional application of
water during a particular period or a district manager may want to know what will
happen to total sales if she adds another salesperson and rearranges the assigned
areas. For small changes in input levels this output response is measured by the
marginal product of the input in question (abbreviated MP or MPP for marginal
physical product). In discrete terms the marginal product of the ith input is given
as

MPi =
∆y
∆xi

=
y2 − y1

x2
i − x1

i

(17)

where y2 and x2 are the level of output and input after the change in the input
level and y1 and x1 are the levels before the change in input use. For small changes
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in xi the marginal physical product is given by the partial derivative of f(x) with
respect to xi, i.e.,

MPi =
∂f (x)
∂xi

=
∂y

∂xi
(18)

This is the incremental change in f(x) as xi is changed holding all other inputs
levels fixed. Values of the discrete marginal product for the production function
in equation 19 are contained in table 2.7.1.

y = 10x + 20x2 − 0.60x3 (19)
For example the marginal product in going from 4 units of input to 5 units is

given by

MPi =
∆y
∆xi

=
475 − 321.6

5 − 4
= 153.40

The production function in equation 19 is shown in figure 15.

FIGURE 15. Cubic Production Function
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TABLE 1. Tabular representation of y = 10 x + 20 x2 − 0.60 x3

Input (x) Output (y)

Average
Product

y/x

Discrete
Marginal
Product

∆y
∆x

Marginal
Product

0.00 0.00 10.00
1.00 29.40 29.40 29.40 48.20
2.00 95.20 47.60 65.80 82.80
3.00 193.80 64.60 98.60 113.80
4.00 321.60 80.40 127.80 141.20
5.00 475.00 95.00 153.40 165.00
6.00 650.40 108.40 175.40 185.20
7.00 844.20 120.60 193.80 201.80
8.00 1052.80 131.60 208.60 214.80
9.00 1272.60 141.40 219.80 224.20
10.0 1500.00 150.00 227.4 230.0
11.0 1731.40 157.40 231.4 232.2
12.0 1963.20 163.60 231.8 230.8
13.0 2191.80 168.60 228.6 225.8
14.0 2413.60 172.40 221.8 217.2
15.0 2625.00 175.00 211.4 205.0
16.0 2822.40 176.40 197.4 189.2
17.0 3002.20 176.60 179.8 169.8
18.0 3160.80 175.60 158.6 146.8
19.0 3294.60 173.40 133.8 120.2
20.0 3400.00 170.00 105.4 90.0

We can compute the marginal product of the production function given in equa-
tion 19 using the derivative as follows

dy
dx

= 10 + 40 x − 1.80 x2 (20)

At x = 4 this gives 141.2 while at x = 5 this gives 165.0. The marginal product
function for the production function in equation 19 is shown in figure 16.

Notice that it rises at first and then falls as the production function’s rate of
increase falls. Although we typically do not show the production function and
marginal product in the same diagram (because of differences in scale of the ver-
tical axis), figure 17 shows both measures in the same picture to help visualize the
relationships between the production function and marginal product.

2.7.2. Average product (AP). The marginal product measures productivity of the
ith input at a given point on the production function. An average measure of the
relationship between outputs and inputs is given by the average product which is
just the level of output divided by the level of one of the inputs. Specifically the
average product of the ith input is
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FIGURE 16. Marginal Product
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FIGURE 17. Production and Marginal Product
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APi =
f (x)
xi

=
y

xi
(21)

For the production function in equation 19 the average product at x=5 is 475/5
= 95. Figure 18 shows the average and marginal products for the production func-
tion in equation 19. Notice that the marginal product curve is above the average
product curve when the average product curve is rising. The two curves intersect
where the average product reaches its maximum.

We can show that MP = AP at the maximum point of AP by taking the derivative
of APi with respect to xi as follows.
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FIGURE 18. Average and Marginal Product
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(

f(x)
xi

)

∂ xi
=
xi

∂ f
∂ xi

− f(x)
x2

i

=
1
xi

(
∂ f

∂ xi
− f(x)

xi

)

=
1
xi

(MPi − APi )

(22)

If we set the last expression in equation 22 equal to zero we obtain

MPi = APi (23)
We can represent MP and AP on a production function graph as slopes. The

slope of a ray from the origin to a point on f(x) measures average product at that
point. The slope of a tangent to f(x) at a point measures the marginal product at
that point. This is demonstrated in figure 19.

2.7.3. Elasticity of ouput. The elasticity of output for a production function is given
by

εi =
∂ f

∂ xi

xi

y
(24)

3. ECONOMIES OF SCALE

3.1. Definitions. Consider the production function given by

y = f (x1, x2, ... xn) = f (x) (25)

where y is output and x is the vector of inputs x1...xn. The rate at which the
amount of output, y, increases as all inputs are increased proportionately is called
the degree of returns to scale for the production function f(x). The function f is
said to exhibit nonincreasing returns to scale if for all x ∈ Rn

+ , λ ≥ 1, and µ ≤ 1,

f (λx) ≤ λf(x) and µf(x) ≤ f (µx) (26)
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FIGURE 19. Average and Marginal Product as Slopes
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Thus the function increases less than proportionately as all inputs x are in-
creased in the same proportion, and it decreases less than proportionately as all
x decrease in the same proportion. When inputs all increase by the same pro-
portion we say that they increase along a ray. In a similar fashion, we say that f
exhibits nondecreasing returns to scale if for all x ∈ Rn

+ , λ ≥ 1, and 0 < µ ≤ 1.

f (λx) ≥ λf(x) and µf(x) ≥ f (µx) (27)

The function f exhibits constant returns to scale if for all x ∈ Rn
+ and θ > 0.

f (θ x) = θf(x) (28)

This global definition of returns to scale is often supplemented by a local one
that yields a specific numerical magnitude. This measure of returns to scale will
be different depending on the levels of inputs and outputs at the point where it is
measured. The elasticity of scale (Ferguson 1971) is implicitly defined by

ε =
∂ ln f (λx)
∂ ln λ

| λ = 1 (29)

This simply explains how output changes as inputs are changed in fixed pro-
portions (along a ray through the origin). Intuitively, this measures how changes
in inputs are scaled into output changes. For one input, the elasticity of scale is

ε =
∂f(x)
∂x

x

f(x)
(30)

We can show that the expressions in equations 29 and 30 are the same as follows.
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∂ ln f(λx)
∂ ln λ

|λ=1 =
∂f(λx)
∂λ

λ

f(λx)
|λ=1

=
(
∂f

∂λx
x

)
λ

f(λx)
|λ= 1

=
∂f

∂x

1
λ

· x λ

f(λx)
|λ= 1

=
∂f

∂x
·

x

f(λx)
|λ= 1

=
∂f

∂x

x

f(x)

(31)

So the elasticity of scale is simply the elasticity of the marginal product of x, i.e.

ε =
∂f (x)
∂x

x

f(x)
=

∂y

∂x

x

y
=

∂ln y

∂ln x
(32)

In the case of multiple inputs, the elasticity of scale can also be represented as

ε =
∑

n
i=1

∂f

∂xi

xi

y

=
n∑

i=1

∂f
∂xi

y
xi

=
n∑

i=1

MPi

APi

(33)

This can be shown as follows where x is now an n element vector:

∂ ln f(λx)
∂ ln λ

|λ=1 =
∂f(λx)
∂λ

λ

f(λx)

=
n∑

i=1

(
∂f

∂λxi
xi

)
λ

f(λx)
|λ= 1

=
n∑

i=1

∂f

∂xi

1
λ

· xi
λ

f(λx)
|λ= 1

=
n∑

i=1

∂f

∂xi

xi

f(λx)
|λ= 1

=
n∑

i=1

∂f(x)
∂xi

xi

f(x)

=
n∑

i=1

MPi
xi

y

(34)
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Thus elasticity of scale is the sum of the output elasticities for each input. If ε
is less than one, then the technology is said to exhibit decreasing returns to scale
and isoquants spread out as output rises; if it is equal to one, then the technol-
ogy exhibits constant returns to scale and isoquants are evenly spaced; and if ε is
greater than one, the technology exhibits increasing returns to scale and the iso-
quants bunch as output expands. The returns to scale from increasing all of the
inputs is thus the average marginal increase in output from all inputs, where each
input is weighted by the relative size of that input compared to output. With de-
creasing returns to scale, the last expression in equation 33 implies that MPi <APi

for all i.

3.2. Implications of Various Types of Returns to Scale. If a technology exhibits
constant returns to scale then the firm can expand operations proportionately. If
the firm can produce 5 units of output with a profit per unit of $20, then by dou-
bling the inputs and producing 10 units the firm will have a profit of $40. Thus
the firm can always make more profits by expanding. If the firm has increasing
returns to scale, then by doubling inputs it will have more than double the output.
Thus if it makes $20 with 5 units it will make more than $40 with 10 units etc. This
assumes in all cases that the firm is increasing inputs in a proportional manner.
If the firm can reduce the cost of an increased output by increasing inputs in a
manner that is not proportional to the original inputs, then its increased economic
returns may be larger than that implied by its scale coefficient.

3.3. Multiproduct Returns to Scale. Most firms do not produce a single product,
but rather, a number of related products. For example it is common for farms to
produce two or more crops, such as corn and soybeans, barley and alfalfa hay,
wheat and dry beans, etc. A flour miller may produce several types of flour and a
retailer such as Walmart carries a large number of products. A firm that produces
several different products is called a multiproduct firm. Consider the production
possibility set of the multi-product firm

T = {(x, y) : x ∈ Rn
+, y ∈ Rm :

+ x can produce y}

where y and x are vectors of outputs and inputs, respectively. We define the mul-
tiproduct elasticity of scale by

εm = sup{r : there exists a δ > 1 such that (λx, λ yr) ∈ T for 1 ≤ λ ≤ δ} (35)

For our purposes we can regard the sup as a maximum. The constant of pro-
portion is greater than or equal to 1. This gives the maximum proportional growth
rate of outputs along a ray, as all inputs are expanded proportionally [2]. The idea
is that we expand inputs by some proportion and see how much outputs can pro-
portionately expand and still be in the production set. If r = 1, then we have con-
stant returns to scale. If r < 1 then we have decreasing returns, and if r > 1, we
have increasing returns to scale.
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4. RATE OF TECHNICAL SUBSTITUTION

The rate of technical substitution (RTS) measures the extent to which one input
substitutes for another input, holding all other inputs constant. The rate of techni-
cal substitution is also called the marginal technical rate of substitution or just the
marginal rate of substitution.

4.1. Definition of RTS. Consider a production function given by

y = f(x1, x2 . . . , xn) (36)
If the implicit function theorem holds then

φ(y, x1, x 2, . . . , xn) = y − f(x1, x2 . . . , xn) = 0 (37)

is continuously differentiable and the Jacobian matrix has rank 1. i.e.,

∂φ

∂xj
=

∂f

∂xj
6= 0 (38)

Given that the implicit function theorem holds, we can solve equation 38 for xk

as a function of y and the other x’s i.e.

x∗k = ψk(x1, x2, . . . , xk−1, xk+1, . . . , y ) (39)
Thus it will be true that

φ(y, x1, x2, . . . , xk−1, x
∗
k, xk+1, . . . , xn ) ≡ 0 (40)

or that

y ≡ f(x1, x2, . . . , xk−1, x
∗
k, xk+1, . . . , xn ) (41)

Differentiating the identity in equation 41 with respect to xj will give

0 =
∂f

∂xj
+

∂f

∂xk

∂xk

∂xj
(42)

or

∂xk

∂xj
=

− ∂f
∂xj

∂f
∂xk

= RTS = MRS (43)

Or we can obtain this directly as

∂φ(y, x1, x2, . . . , xk−1, ψk, xk+1, . . . , xn)
∂xk

∂ψk

∂xj
=

−∂φ(y, x1, x2, . . . , xk−1, ψk, xk+1, . . . , xn)
∂xj

⇒ ∂φ

∂xk

∂xk

∂xj
= − ∂φ

∂xj

⇒ ∂xk

∂xj
=

− ∂f
∂xj

∂f
∂xk

= MRS

(44)
The above expression represents the slope of the projection of the boundary of

the input requirement (or level/contour) set V(y) into xk, xj space. With two in-
puts, this is, of course, just the slope of the boundary. Its slope is negative. It is
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convex because V(y) is convex. Because it is convex, there will be a diminishing
rate of technical substitution. Figure 20 shows the rate of technical substitution.

FIGURE 20. Rate of Technical Substitution
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x2

RTS =
¶x2
���������
¶x1

Dx2

Dx1

4.2. Example Computation of RTS.

4.2.1. Cobb-Douglas. Consider the following Cobb-Douglas production function

y = 5x
1
3
1 x

1
4
2 (45)

The partial derivative of y with respect to x1 is

∂y

∂x1
=

5
3
x

−2
3

1 x
1
4
2 (46)

The partial derivative of y with respect to x2 is

∂y

∂x2
=

5
4
x

1
3
1 x

−3
4

2 (47)

The rate of technical substitution is

∂x2

∂x1
=

− ∂f
∂x1

∂f
∂x2

= −
5
3 x

−2
3

1 x
1
4
2

5
4
x

1
3
1 x

−3
4

2

= −
5
3
5
4

x2

x1

= − 4
3
x2

x1

(48)
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4.2.2. CES. Consider the following CES production function

y = 5
[
0.6x−2

1 + 0.2x−2
2

]−1
2 (49)

The partial derivative of y with respect to x1 is

∂y

∂x1
=

−5
2
[
0.6x−2

1 + 0.2x−2
2

]−3
2 (−6/5)x−3

1 (50)

The partial derivative of y with respect to x2 is

∂y

∂x2
=

−5
2
[
0.6x−2

1 + 0.2x−2
2

]−3
2 (−2/5)x−3

2 (51)

The rate of technical substitution is

∂x2

∂x1
=

− ∂f
∂x1

∂f
∂x2

= −
−5
2

[
0.6x−2

1 + 0.2x−2
2

]−3
2 (−6/5)x−3

1

−5
2

[
0.6x−2

1 + 0.2x−2
2

]−3
2 (−2/5)x−3

2

= −
2
5
6
5

x−3
1

x−3
2

= − 3
x3

2

x3
1

(52)

5. ELASTICITY OF SUBSTITUTION

The elasticity of substitution is a unitless measure of how various inputs substi-
tute for each other. For example, how does capital substitute for labor, how does
low skilled labor substitute for high skilled labor, how do pesticides substitute for
tillage, how does ethanol substitute for gasoline. The elasticity of substituion at-
tempts to measure the curvature of the lower boundary of the input requirement
set. The most commonly used measure of the elasticity of substitution based on
the slope of an isoquant is due to Hicks [13, p. 117, 244-245], [17, p.330]. He defines
the elasticity of substitution between x2 and x1 as follows.

σ =
d(x2/x1)
d(f1/f2)

· (f1/f2)
(x2/x1)

(53)

This is the percentage change in the input ratio induced by a one percent change
in the RTS.

5.1. Geometric Intuition. We can better understand this definition by an appeal
to geometry. Consider figure 21. First consider the factor ratio of x2 to x1. Along
the ray labeled a, the ratio x2

x1
is given by the tangent of the angle θ. Along the ray

labeled b, the ratio x2
x1

is given by the tangent of the angle φ. For example at point

d, x0
2

x0
1

= tan φ along the ray b.
Now consider the ratio of the slopes of the input requirement boundary at two

different points. Figures 22 and 23 show these slopes. The slope of the curve at
point c is equal to minus the tangent of the angle γ in figure 22. The slope of the
curve at point d is equal to minus the tangent of the angle δ in figure 23.
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FIGURE 21. Elasticity of Substitution (Factor Ratios)

Consider the right triangle formed by drawing a vertical line from the inter-
section of the two tangent lines and the x1 axis. The base is the x1 axis and the
hypotenuse is the tangent line between the other two sides. This is shown in fig-
ure 24. Angle α measures the third angle in the smaller triangle. Angle α + angle
γ equal 90 degrees. In figure 25, the angle between the vertical line and the tan-
gent at point d is represented by α + β. Angle β + angle α+ angle δ also equals 90
degrees, so that α + γ = α +β + δ or γ = β + δ. This then means that β, the angle
between the two tangent lines is equal to γ - δ.

FIGURE 22. Elasticity of Substitution (Angle of Tangent at Point c)
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FIGURE 23. Elasticity of Substitution (Angle of Tangent at Point d)

FIGURE 24. Elasticity of Substitution (Angle Tangent at Point d)

If we combine the information in figures 22, 23, 24 and 25 into figure 26, we can
measure the elasticity of substitution. Remember that it is given by

σ =
d(x2/x1)
d(f1/f2)

· (f1/f2)
(x2/x1)

The change in x2
x1

is given by the angle ξ which is θ - φ. The marginal rate of
technical substitution is given by the slope of the boundary of V(y). At point d the
slope is given by δ while at c it is given by γ. The change in this slope is β. The
rate of technical substitution is computed as
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FIGURE 25. Elasticity of Substitution Measuring Slope Change

RTS =
∂x2

∂x1
=

− ∂f
∂x1

∂f
∂x2

Therefore we can say that the ratio of the change in the input ratio and the
change in the slope of the lower the boundary of V(y) is given by

σ ≈ ξ

β
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FIGURE 26. Geometric Interpretation of the Elasticity of Substitution

5.2. Algebraic Expression for σ12. In the case of two inputs, the elasticity of sub-
stitution is given by

σ12 =
−f1 f2 (x1 f1 + x2 f2)

x1 x2 (f11 f2
2 − 2f12 f1 f2 + f22 f2

1 )
(54)

5.3. Derivation of the Algebraic Expression for σ12. By definition

σ12 =
d(x2/x1)
d(f1/f2)

· (f1/f2)
(x2/x1)

(55)

First compute d
(

x2
x1

)
. This is a differential. Computing this differential we

obtain

d

(
x2

x1

)
=

x1 dx2 − x2 dx1

x2
1

(56)

Then compute the differential d
(

∂ f
∂ x1
∂ f

∂ x2

)
.

d

(
∂ f
∂ x1

∂ f
∂ x2

)
= d

(
f1
f2

)
=

∂ ( f1
f2

)

∂x1
dx1 +

∂ ( f1
f2

)

∂x2
dx2 (57)

With the level of y fixed as along the boundary of V(y), we have via the implicit
function theorem or equation 43
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∂x2

∂x1
=

− ∂f
∂x1

∂f
∂x2

(58)

Rearranging equation 58 (and being a bit sloppy with differentials and partial
derivatives) we can conclude

dx2

dx1
=

−f1
f2

⇒ dx2 =
(
− f1
f2

)
dx1

(59)

and

dx1 =
(
− f2
f1

)
dx2 (60)

This then implies that

d

(
x2

x1

)
=
x1

(
− f1
f2

)
dx1 − x2 dx1

x2
1

=

(
x1

(
− f1
f2

)
− x2

)
dx1

x2
1

(61)

and that

d

(
∂ f
∂ x1

∂ f
∂ x2

)
= d

(
f1
f2

)
=

∂ ( f1
f2

)

∂x1
dx1 +

∂ ( f1
f2

)

∂x2

(
− f1
f2

)
dx1

=

(
∂ ( f1

f2
)

∂x1
+

∂ ( f1
f2

)

∂x2

(
− f1
f2

))
dx1

(62)

Now compute
∂

(
f1
f2

)

∂x2
.

∂
(

f1
f2

)

∂x2
=

f2 f12 − f1 f22

f2
2

(63)

and
∂

(
f1
f2

)

∂x1

∂
(

f1
f2

)

∂x1
=

f2 f11 − f1 f21

f2
2

(64)

Now replace
∂

(
f1
f2

)

∂x2
and

∂
(

f1
f2

)

∂x1
in equation 62 with their equivalent expressions

from equations 63 and 64 in equation 65.

d

(
∂ f
∂ x1

∂ f
∂ x2

)
= d

(
f1
f2

)
=
(
f2f11 − f1f21

f2
2

+
f2 f12 − f1f22

f2
2

(
−f1
f2

))
dx1 (65)
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We now have all the pieces we need to compute σ12 by substituing from equa-
tions 61 and 65 into equation 55.

σ12 =
d(x2/x1)
d(f1/f2)

· (f1/f2)
(x2/x1)

=

(
x1

(
− f1
f2

)
− x2

)
dx1

x2
1(

f2 f11 − f1 f21
f2
2

+ f2 f12 − f1 f22
f2
2

(
− f1
f2

) )
dx1

· (f1/f2)
(x2/x1)

=

(
x1

(
− f1
f2

)
− x2

)
f1 x1

x2
1 f2 x2

(
f2 f11 − f1 f21

f2
2

+ f2 f12 − f1 f22
f2
2

(
− f1
f2

) )

=
(− f1 x1 − f2 x2 )

f2
f1

x1 x2 f2

(
f2 f11 − f1 f21

f2
2

+ f2 f12 − f1 f22
f2
2

(
− f1
f2

) )

=
− f1 ( f1 x1 + f2 x2 )

x1 x2 f2
2

(
f2 f11 − f1 f21

f2
2

+ f2 f12 − f1 f22
f2
2

(
− f1
f2

) )

(66)

Consider the expression in parentheses in the denominator of equation 66. We
can rearrange and simplify it as follows

(
f2f11 − f1f21

f2
2

+
f2 f12 − f1f22

f2
2

(
−f1

f2

))
=

f2
2 f11 − f1f2f21

f3
2

+
−f1f2f12 + f2

1 f22

f3
2

=
f2
2 f11 − f1f2f21 − f1f2f12 + f2

1 f22

f3
2

=
f2
2 f11 − 2f1f2f12 + f2

1 f22

f3
2

by Young’s Theorem

(67)
Now substitute equation 67 into equation 66

σ12 =
− f1 ( f1 x1 + f2 x2 )

x1 x2 f2
2

(
f2
2 f11−2f1f2f12+f2

1 f22

f3
2

)

=
− f1 f2 ( f1 x1 + f2 x2 )

x1 x2 f2
2 (f11 f2

2 − 2 f12 f1 f2 + f22 f2
1 )

(68)

5.4. Matrix Representation of σ12. In matrix notation σ12 is given by

σ12 =
(x1 f1 + f2 x2)

x1 x2

F12

F
(69)

where

F =

∣∣∣∣∣∣

0 f1 f2
f1 f11 f12

f2 f21 f22

∣∣∣∣∣∣
= det (HB) (70)
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whereHB is the bordered Hessian of the production function. F12 is the cofactor
of f12 in the matrix F, i.e.,

f12 = (−1)5
∣∣∣∣
0 f1
f2 f21

∣∣∣∣ = (−1) (−f1 f2) = f1 f2 (71)

The determinant of F computed by expanding along the first row is given by

F =

∣∣∣∣∣∣

0 f1 f2
f1 f11 f12

f2 f21 f22

∣∣∣∣∣∣
= 0 · (f11f22 − f2

12) − f1 · (f1f22 − f2f12) + f2 · (f1 f21 − f2f11)

= −f2
1 f22 + 2f1 f2 f12 − f2

2 f11

(72)
Substitute equations 71 and 70 into the last expression of equation 69 to find F12

F

F12

F
=

−f1 f2
f2
1 f22 − 2f1 f2 f12 + f2

2 f11
(73)

Now substitute F12
F from equation 73 into equation 69.

σ12 =
(x1 f1 + f2 x2)

x1 x2

−f1 f2
f2
1 f22 − 2f1 f2 f12 + f2

2 f11
(74)

Then compare with equation 68

σ12 =
− f1 f2 ( f1 x1 + f2 x2 )

x1 x2 f2
2 (f11 f2

2 − 2 f12 f1 f2 + f22 f2
1 )

Note that from equation 74, σ12 is symmetric. We can also show that for a quasi-
concave production function that F12

F is always negative so that the elasticity of
substitution is also negative. This also follows from the fact that quasi-concave
functions have convex level sets.

6. HOMGENEITY

6.1. Definition of Homogeneity. A function is homogeneous of degree k in x if

f(λx, z) = λkf(x, z), ∀ λ > 0, ∀ x ∈ Rn
+, ∀ z ∈ Rm

+ (75)

6.2. Some Properties of Homogeneous Functions. If f(x1, . . ., xn) is homoge-
neous of degree k in x, then with suitable restrictions on the function f in each
case,

a:
∂f

∂xi
is homogeneous of degree k-1, i = 1, 2, . . . , n (76)

b:

f(x) = xk
i f

(
x1

xi
,
x2

xi
, . . . , 1, x i+1

xi

, . . . ,
xn

xi

)
,

xi > 0, i = 1, 2, . . . , n.
(77)
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6.3. An Euler Equation for Homogeneous Functions. f is homogeneous of de-
gree k if and only if

n∑

i=1

∂f

∂xi
xi = k f(x) (78)

Proof of Euler equation. Define the following functions g(λ, x) and h(x).

g(λ, x) = f(λ x) − λk f(x) ≡ 0 (79a)

h(x) =
n∑

i=1

∂f

∂xi
xi − k f(x) (79b)

Now differentiate g with respect to λ using the chain rule

∂g(λ, x)
∂λ

=
n∑

i=1

∂f(λx)
∂(λxi)

∂(λxi)
∂ λ

− kλk−1 f(x)

=
n∑

i=1

∂f(λx)
∂(λxi)

xi − kλk−1 f(x)

(80)

Now multiply both sides of 80 by λ to obtain

λ
∂g(λ, x)
∂λ

= λ

[
Σn

i=1

∂f(λx)
∂λxi

xi − kλk−1 f(x)
]

=
[
Σn

i=1

∂f(λx)
∂λxi

λxi − kλk f(x)
]

=
[
Σn

i=1

∂f(λx)
∂λxi

λxi − k f(λ x)
]

= h(λx)

(81)

The last two steps follows because f(λx)= λk f(x). By assumption g(λ, x) ≡ 0 so
∂ g(λ, x)

∂ λ ≡ 0. Now set λ = 1 in the equation 81 obtain

0 = h(λx) |λ=1 =
[
Σn

i=1

∂f(x)
∂xi

xi − k f(x)
]

⇒ Σn
i=1

∂f(x)
∂xi

xi = k f(x)
(82)

�

A more complete disussion of homogeneity is contained in Eichorn [6, p. 69-
77],Sydsaeter [20, p. 125-131] and Sydsaeter and Hammond. [21, p. 432-442].

6.4. Geometry of Homogeneous Functions. There are a number of ways to graph-
ically characterize a homothetic function. The first is that the points on the graph
above a ray form a smooth curve in n + 1 space. The second considers the shape
of level sets and the third the slope of level sets along a given ray.
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FIGURE 27. Graph of a PLH Function
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6.4.1. Graph of a homogeneous function as lines through the origin. Consider a positive
linear homogeneous production (PLH) function with two inputs. The graph of the
function is shown in figure 27.

In figure 28 we plot the points on the surface of the graph which lie above the
ray running through the point (x10, x20, 0). As can be clearly seen, the graph above
this ray is a straight line. The height of the function at this point is c. Points along
the ray through the point (x10, x20, 0) are generated as λ (x10, x20, 0). The height
of the function above any point along the ray is then given by λk c, where k is the
degree of homogeneity of the function. Figure 29 shows the straight line as part of
the graph.

Thus the graph of f consists of curves of the form z = λk c, above each ray in
the hyperplane generated by λ (x10,x20,0). Thus if we know one point on each
ray we know the function. If k = 1 then z = λ c and the graph is generated by
straight lines through the origin. This is the case for the function in this example
as demonstated in figure 30. Figures 31, 32, 33, and 34 show the same relationships
when the function is homogeneous of degree 0 < k < 1.

6.4.2. Shape of level sets. Suppose the x̃ and z̃ are both elements of the lower bound-
ary of a particular level set for a function which is homogeneous of degree k. Then
we know that

f(x̃) = f(z̃)

f(λ x̃) = λkf(x̃)

f(λ z̃) = λkf(z̃)

⇒ f(λ x̃) = f(λ z̃)

(83)
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FIGURE 28. Graph of PLH Function as a Straight Line Above Any Ray
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FIGURE 29. Graph of a PLH Function Along with Function Value
Above a Ray
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Thus the two points λ x̃ and λ z̃ are on the same level set. In figure 35 we can see
how to construct the level set containing λ x̃ and λ z̃ and the one containing x̃ and
z̃. If we scale points a and b on the intial lower isoquant by 2, we arrive on the same
level set at y = 108.15. Given that this is less than twice 60, this technology exhibits
decreasing returns to scale. We can construct all other level sets from this initial
one in a similar manner. The conclusion is that if the function is homogeneous
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FIGURE 30. Graph of a PLH function Along with Function Values
Above Rays
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FIGURE 31. Graph of a General Homogeneous Function
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and we know one level set, we can construct all the others by a radial expansion
or contraction of the set.

6.4.3. Description using slopes along rays. Remember from equation 76 that the de-
rivative function homogeneous of degree k is homogenous of degree k−1. Specif-
ically
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FIGURE 32. Graph of General Homogeneous Function as a Curve
Above Any Ray
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FIGURE 33. Graph of a general homogeneous function along with
function value above a ray

x1

x2

f@x1,x2D

∂f

∂xi
(λx1, λx2, · · · , λxn) = λk−1 ∂f

∂xi
(λx1, λx2, · · · , λxn) (84)

This is true for all i. Define the gradient of f(x1, x2, . . ., xn ) as the vector of first
derivatives, i.e.,
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FIGURE 34. Graph of a general homogeneous function along with
function values above rays
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FIGURE 35. Constructing One Level Set from an Initial One for
Homogeneous Functions
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y=60

y=108.15

∇f(x) =




∂ f(x)
∂ x1

∂ f(x)
∂ x2

...
∂ f(x)
∂ xn




(85)
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We can then write for all λ > 0 and i = 1,2,. . ., n

∇f(λx1, λx2, · · · , λxn) = λk−1 ∇f(λx1, λx2, · · · , λxn) (86)

So along a given ray the gradients are parallel. Gradients are orthogonal (or at
right angles) to level sets. So along a given ray if the gradients are all parallel, then
the level sets are parallel along the ray.

FIGURE 36. Level Sets for a Function which is Homogeneous of
Degree One
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6.5. Returns to Scale and a Generalized Euler Equation.

6.5.1. Definition of elasticity of scale.

ε(λ, x) =
∂ ln f(λx)
∂ ln λ

=
∂ f(λx)
∂ λ

λ

f(λx)

=
n∑

i=1

∂f(λx)
∂λxi

∂(λxi)
∂λ

λ

f(λx)

=
n∑

i=1

∂f(λx)
∂λxi

λxi

f(λx)

(87)

Now evaluate at λ = 1 to obtain
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ε(1, x) =
n∑

i=1

∂f(x)
∂xi

xi

f(x)

⇒
n∑

i=1

∂f(x)
∂xi

xi = ε(1, x) f(x)

(88)

The sum of the partial derivatives of f(x) multiplied by the levels of the x’s
is equal to ε(1,x) multiplied by the value of the function f(x). Remember from
equation 24 the output elasticity is given by

εj =
∂f(x)
∂xj

xj

f(x)
, f(x) 6= 0. (89)

Replace 1 in equation 88 with λ and rewrite it as follows

ε(λ, x) =
n∑

i=1

∂f(λx)
∂λxi

λxi

f(λx)
(90)

Now substitute equation 89 in equation 90 to obtain

ε(λx) = ε1(λx) + ε2(λx) + · · · + εn(λx) (91)
If λ =1 , then we obtain the result we previously obtained in equation 33.

ε(1, x) = ε1(x) + ε2(x) + · · · + εn(x) (92)
And we usually write ε(x) for ε(1,x).

6.5.2. Properties of returns to scale. Remember from equations 26, 27, and 28 that
1: ε(x) = 1 ⇒ constant returns to scale (CRS)
2: ε(x) < 1 ⇒ decreasing returns to scale (DRS)
3: ε(x) > 1 ⇒ increasing returns to scale (IRS)

6.5.3. General nature of returns to scale. In general ε(x) is a function depending on
x. With different levels of xj , ε(x) will change.

6.6. Returns to Scale for Homogeneous Technologies. We know from equation
88 that returns to scale are given by

ε(1, x) =
n∑

i=1

∂f(x)
∂xi

xi

f(x)

⇒
n∑

i=1

∂f(x)
∂xi

xi = ε(1, x) f(x)

(93)

For a homogeneous function (equation 78) the Euler equation implies

n∑

i=1

∂f

∂xi
xi = r f(x) (94)

where r is the degree of homogeneity. Combining the results in equations 93
and 94 we obtain

ε (1, x) = r (95)
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Alternatively it can be shown directly by using the definition of homogeneity
and the definition of ε. First note that if a function is homogeneous f(λx) = λr f(x).
Now write the definition of the elasticity of scale, substitute λr f(x) for f(λx) and
then take the derivative.

ε(λ, x) =
∂ ln f(λx)
∂ ln λ

=
∂ f(λx)
∂ λ

λ

f(λx)

=
∂[λr f (x)]

∂ λ

λ

λr f (x)

= r λr−1 f(x) · λ

λrf(x)
= r

(96)

This means that the isoquants spread or bunch at a constant rate and are paral-
lel. Figure 37 shows the isoquants for a CES production function that is homoge-
neous of degree one.

FIGURE 37. Level Sets for CES Production Function that is Ho-
mogeneous of Degree 1
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Figures 38 and 39 show the isoquants for production functions that are homo-
geneous of a degree less than one.

Figure 40 shows the isoquant for a production function that is homogeneous of
a degree greater than one.
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FIGURE 38. Level Sets for Production Function that is Homoge-
neous of Degree Less than 1
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7. HOMOTHETIC FUNCTIONS

7.1. Definition of a Homothetic Function. A function f(x, z) is homothetic in x if
it can be written

y = f(x, z) = H(x, z) = F (φ(x, z), z) (97)

where z ∈ Rm
+ and F is continuously differentiable to the second degree (C2),

finite, non-negative and non-decreasing. Furthermore

(a) lim
µ→∞

F (µ, z) = ∞

(b) F (0, z) = 0

(c) φ(x, z) is positively linear homogeneous (PLH) in x

7.2. Alternative Definition of a Homothetic Function. Let y = f(x)= F(φ(x)) where
F has the same properties as in the original definition. Then consider the function
h(y) = φ(x) where φ(x) is PLH and h( ) = F−1( ) and it is assumed that F−1 exists.
The idea is that a transformation of y is homogeneous. Specifically the function in
equation 98 is a homothetic function.

h(y) = φ(x), where φ(x) is positively linear homogeneous (PLH) in x (98)

7.3. Some Properties of Homothetic Functions.
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FIGURE 39. Level Sets for CES Production Function that is Ho-
mogeneous of Degree Less than 1
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7.3.1. Rate of technical substitution for homothetic functions. Define y as follows

y = h(x) = F (φ(x)) (99)

Using the implicit function theorem (equation 43 ), find ∂ xi

∂ xj
.

∂xi

∂xj
=
− ∂F

∂xj

∂F
∂xi

= −
F ′ ∂φ

∂xj

F ′ ∂φ
∂xi

= −
∂φ
∂xj

∂φ
∂xi

(100)

φ is homogeneous of degree 1 so its derivatives are homogeneous of degree zero
by the results in section 6.2. The ratio of these derivatives is also homogeneous of
degree zero so that the rate of technical substitution does not change as x changes;
i.e. the isoquants are parallel because RTS is constant along a ray from the ori-
gin just as with positively linear homogeneous functions. Lau [14] also shows that
this condition is sufficient for a production function to be homothetic. This implies
that we can obtain the isoquant for any y ≥ 0 by a radical expansion of the unit
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FIGURE 40. Level Sets for Production Function that is Homoge-
neous of Degree Greater than 1
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isoquant in the fixed ratio h(y)/h(1). Figure 41 shows the isoquants for a Cobb-
Douglas production function that is homogeneous of degree one.

y =
(
5x.25

1 x.75
2

)
(101)

Note that the level sets are evenly spaced {20, 40, 60, 80, 100, 120}. Also notice
that along a ray through the origin the tangent lines are parallel. We can construct
the level set for all levels of output by expanding the level set for any one level of
output inward or outward.

Now let’s consider a transformation of a linear homogeneous CES production
function to create a homothetic function.

f(x) =
[
0.3x−2

1 + 0.1x−2
2

]−1
2

y = F [f(x)] = f(x)2 + f(x)

=
[ [

0.3x−2
1 + 0.1x−2

2

]−1
2

]2
+
[
0.3x−2

1 + 0.1x−2
2

]−1
2

(102)

The function is shown in figure 42 while the level sets are contained in figure
43. The function is not concave and has increasing returns to scale. The level sets
are convex and parallel but become closer together for equal increases in output.
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FIGURE 41. Level Sets for Cobb-Douglas Prodcution Function
that is Homogeneous of Degree 1
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The spacing depends on the level of output and is not a fixed rate of increase or
decrease.

FIGURE 42. Homothetic Production Function
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7.3.2. Elasticity of scale for homothetic functions. Let y = f(x) = F(φ(x)) or h(y) = φ(x)
as in equation 98.
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FIGURE 43. Level Sets for Homothetic Function with Increasing
Returns to Scale
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h(y) = φ(x), where φ(x) is positively linear homogeneous (PLH) in x

Differentiate both sides of the identity with respect to xi

h′(y)
∂y

∂xi
=

∂φ

∂xi
⇒ ∂y

∂xi
=

∂φ
∂xi

h′(y)
(103)

Then write the definition of ε and substitute
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ε(1, x) =
n∑

i=1

∂F (φ(x))
∂xi

· xi

F (φ(x))

=
n∑

i=1

∂y

∂xi
· xi

y

=
n∑

i=1

∂φ
∂xi

h′(y)
xi

y

=
h (y)
h′(y) y

by Euler′s Theorem

= ε̃(y)

(104)

so ε is a function only of y and not a function of x. This is clear from figure 43.

7.4. A Generalized Euler Equation for Homothetic Functions. Let y = f(x) =
F(φ(x)) or alternatively let h(y) = φ(x). Then from equation 104 we know that

ε =
h(y)
h′(y)y

(105)

where

n∑

i=1

∂f

∂xi

xi

y
=

h(y)
h′(y) y = ε(y) (106)

This implies then that

n∑

i=1

∂f

∂xi
xi = ε(y) y (107)

So ε depends on y and not on the mix of the x’s. With homogeneous functions ε
is a constant not depending on y.

7.5. Multiplication property of homothetic functions. If h represents a homo-
thetic function then

Theorem 1.

h(y) = xi · V
(
x̃

xi

)
= xi V (ψ) (108)

where x̃ is (x1, x2, xi−1, xi+1, . . . , xn) and

ψj =
xj

xi
, j 6= i (109)

Here h is a transform like F, in fact h(z) = F−1(z) and V is a nondecreasing concave
function.

Proof. Let y = F(φ(x)) where φ(x) is PLH. Then
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y = F (φ(x))

= F (xi · φ[ψ1, ψ2 . . . 1 . . . ψn]) (by PLH)

⇒ F−1(y) = xi · φ[ψ1, ψ2 . . . 1 . . . ψn])

⇒ xi =
F−1(y)

φ(ψ1, ψ2 ... 1 ... ψn)

=
h (y)
V (ψ)

⇒ h(y) = xi V (ψ)

(110)

�
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