PROFIT FUNCTIONS

1. REPRESENTATION OF TECHNOLOGY

1.1. Technology Sets. The technology set for a given production process is defined as

T = {(x,y): xeR}, yeRY" xcan produce y}

where x is a vector of inputs and y is a vector of outputs. The set consists of those combinations
of x and y such that y can be produced from the given x.

1.2. The Output Correspondence and the Output Set.

1.2.1.

Definitions. It is often convenient to define a production correspondence and the associated

output set.

1.2.2.

1.2.3.

1: The output correspondence P, maps inputs x € R’} into subsets of outputs, i.e., P: R’} —
25¥ . A correspondence is different from a function in that a given domain is mapped into
a set as compared to a single real variable (or number) as in a function.

2: The output set for a given technology, P(x), is the set of all output vectors y € R’} that are
obtainable from the input vector x € R’. P(x) is then the set of all output vectors y ¢ R’
that are obtainable from the input vector x € R’} . We often write P(x) for both the set based
on a particular value of x, and the rule (correspondence) that assigns a set to each vector x.

Relationship between P(x) and T(x,y).
Px) = (y: (z,y)eT)
Properties of P(x).
P1a: P.1 No Free Lunch. 0 e P(x) Vx € RY}.
P.1b: y ¢ P(0),y > 0.
P.2: Input Disposability. ¥V x € R} , P(x) C P(6x), § > 1.
P.2.S: Strong Input Disposability. ¥V x, x" € R} , x’ > x = P(x) C P(x').
P.3: Output Disposability. Vx e R ,y e P(x) and 0 < A <1 = Ay e P(x).
P.3.S: Strong Output Disposability. Vx e R} ,y e P(x) =y € P(x),0 <y" <.
P.4: Boundedness. P(x) is bounded for all x ¢ R" ..
P.5: T(x) is a closed set P: R — 2F% is a closed correspondence, i.e., if [x* — x°, y* — y” and
yt e P(x%), ¥ {] then y° € P(x°).
P.6: Attainability. If y e P(x), y > 0 and x > 0, then V § > 0, 3 A\g > 0 such that 0y ¢ P(\sx).
P.7: P(x) is convex
P(x) is convex for all x € R} .
P.8: P is quasi-concave.
The correspondence P is quasi-concave on R’} whichmeansV x, x" ¢ R} ,0< 6 <1, P(x)
N P(x) C POx + (1-0)X")
P.9: Convexity of T(x). P is concave on R} which means V x, x" ¢ R} ,0 < 6 <1, 0P(x)+(1-
OP(x") C P(Ox + (1-0)X)
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1.2.4. Properties of T(x,y).

T.1a: Inaction and No Free Lunch. (0,y) e TV x € R} and y € R""". This implies that T(x,y) is a
non-empty subset of R

Tab: 0y)¢T, y=20,y#0.

T.2: Input Disposability. If (x,y) e T and 6 > 1 then (0x,y) € T.

T.2.S: Strong Input Disposability. If (x,y) € T and x" 2 x, then (X', y) € T.

T.3: Output Disposability. V (x,y) e R’ if (x, y) e Tand 0 < A < 1 then (x, Ay) € T.

T.3.S: Strong Output Disposability. If (x,y) e Tand y’ =y, then (x,y’) € T.

T.4: Boundedness. For every finite input vector x 2 0, the set y € P(x) is bounded from above.
This implies that only finite amounts of output can be produced from finite amounts of
inputs.

T.5: g(x) is a closed set. The assumption that P(x) and V(y) are closed does not imply that T
is a closed set, so it is assumed. Specifically, if [x* — x°, y* — y°) and (x,y*) € T, V /] then
(x° y%)eT.

T.9: T is a convex set. This is not implied by the convexity of P(x) and V(y). Specifically, a
technology could exhibit a diminishing rate of technical substitution, a diminishing rate of
product transformation and still exhibit increasing returns to scale.

2. PROFIT MAXIMIZATION AND THE PROFIT FUNCTION

2.1. Profit Maximization.

2.1.1. Setup of problem. The general firm-level maximization problem can be written in a number of
alternative ways.

T = max | E Dj Y — E w; x;), such that(x,y) eT. 1)
Ty
j=1 i=1

where T is represents the graph of the technology or the technology set. The problem can also
be written as

T = max [Z DY — Z w; x;] such hat x € V(y) ] (2a)
Ty
j=1 i=1
T = max [Z DY — Z w; x;] such that y € P(x) ] (2b)
Ty
j=1 i=1

where the technology is represented by V(y), the input requirement set, or P(x),the output set.
Though T is non-empty, closed and convex, profit may not attain a maximum on T, i.e. profit can be
unbounded even when the technology set is well behaved if output price is higher than input price.
Consider for example the production function f(x)= x + x!/2. The production function is concave
but profit will go to infinity if p > w. Therefore we often write

m=sup[> pjy; — Y wix], suchthat(xy)eT. (3)
TY =1 i=1

where sup stands for supremum and could be infinity. We understand that in all practical prob-
lems the sup is a max.
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If we carry out the maximization in equation 1 or equation 3, we obtain a vector of optimal
outputs and a vector of optimal outputs such that y is producible given x and profits cannot be
increased. We denote these optimal input and output choices as y(p,w) and x(p,w) where it is
implicit that y and x are vectors.

2.1.2. One output and two input example. In the case of a single output (such that f(x) is defined) and

two inputs we obtain the following.

™ =pf(r1,x2) — wrr1 — Waks (4)
If we differentiate the expression in equation 4 with respect to each input we obtain

87T 7p8f(£61,£62)

oo e M0 ®)
on _ OfGnw) o
8{E2 P 8x2 2

If we solve the equations in 5 for x; and x», we obtain the optimal values of x for a given p and
w. As a function of w for a fixed p, this gives the vector of factor demands for x.

" = x(p, wi, wa) ©)
= (xl(p, w1, w2), $2(p, w1, w2))
The optimal output is given by
vy = f (xl(p, w1, w2), $2(p, w1, w2)) ()

2.2. The Profit Function. If we substitute the optimal input demand from equation 6 into equation
1 or equation 4, we obtain the profit function. The profit function is usually designated by 7.

m n

mp,w) =D pyi(pw) — Y, wizi(p,w)
j=1 i=1 8)

=p f(z1(p,w), 22(p,w)) — wia1(p, w) — wax2(p,w)
Notice that 7 is a function of p and w, not x or y. The optimal x and optimal y have already been

chosen. The function tells us what profits will be (assuming the firm is maximizing profits) given a
set of output and input prices.

To help understand how 7(p,w) only depends on p and w, consider the profit function for the

case of two inputs.

Tr(pawla ’LUQ) = pf('rl(pawla ’LUQ), ZCQ(p,'lUl, ’(UQ)) — w1 'rl(pawla ’LUQ) - WQ.CCQ(p,WQ, ’LUQ) (9)

Consider the derivative of 7(p,w) with respect to p.

87T(paw) =p 8f(£€1(p,’£0), CCQ(p,’LU)) 8561(]),’(0) + p 8f(£€1(p,’£0), CCQ(p,’LU)) 8562(}),10)

0 0 0 0 0
P X1 817 , X2 P (10)
+ far(pyw), aa(pw)) — wy 20@W)_ Onapw))
dp dp

Now collect terms containing axligz ) and 8“52 ),
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On(p,w) _ dzi(p,w) [ Of(zi(p,w), z2(p,w))
= p w1

8p 3p o1
4 9z2(p,w)) [p Of (x1(p, w), w2(p, w)) wQ] (11)
3p 3x2

+ f('rl(pa ’LU), ZCQ(p, ’LU))
But the first order conditions in equation 5 imply that

» 3f(~’01.$2)

0x;
This means that the two bracketed terms in equation 11 are equal to zero so that

—w; =0, i=1,2 (12)

Or (p, w)
Ip
which depends only on p and w.

= f(CCl(p,’LU), CCQ(p,’LU)) (13)

3. PROPERTIES OF, OR CONDITIONS ON, THE PROFIT FUNCTION

3.1. w.1. w(p, w)is an extended real valued function (it can take on the value of +co for finite prices)
defined for all (p, w) 2 (0,,, 0,,)) and 7(p, w) > pa - wb for a fixed vector (a, b) > (0., 0,,). This
implies that w(p, w) 2 0if (0,,, 0,,) € T(x,y),which we normally assume.

3.2. m.2. misnonincreasing in w

3.3. m.3. mis nondecreasing in p

3.4. m.4. mis a convex function

3.5. m.5. mis homogeneous of degree 1 in p and w.

3.6. 7.6 Hotelling’s Lemma.

Lg;jw) = y;(p, w) (14a)
377((31;10) = —zi(p, w) (14b)

4. DISCUSSION OF PROPERTIES OF THE PROFIT FUNCTION

For ease of exposition, consider the case where there is a single output. This is easily generalized
by replacing f(x(p,w)) with y(p,w) and letting p be a vector.

4.1. n.1. 7(p, w)is an extended real valued function (it can take on the value of +oc for finite prices)
defined for all (p, w) = (0,,, 0,,)) and 7(p, w) > pa - wb for a fixed vector (a, b) > (0., 0,,). This
implies that 7(p, w) = 0.

The profit function can be infinity due to the fact that maximum profits may be infinity as dis-
cussed in section 2.1.1. 7(p, w) > pa - wb for a fixed vector (a, b) because 7(p, w) is the maximum
profit at output prices p and input prices w. Any other input combination is bounded by 7(p, w).
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4.2. m.2. 7 is nonincreasing in w

Let optimal input be Z(p,w) with prices p and @ and Z(p,w) with prices p and . Now assume
thatw > w. Itis clear that pf(z(p,w) ) - w 2(p,w) < pf(@(p,w)) - w Z(p,w) because the optimal x with
w is . However, pf(2) - w & < pf(2 ) - @ £ because w > w by assumption. So we obtain

4.3. 7.3. 7is nondecreasing in p

Let profit be 7 (p,w) with prices p and w and 7(p,w) with prices p and w. Now assume that p >
p. Itis clear that

because #(p, w) is optimal for prices p. However,

because p > p by assumption. So we obtain,

4.4. 7.4. mis aconvex function

Consider the definition of a convex function. A function f: R™*" — R! is said to be convex if
FAxy + (1 = XN x2) < Af(x1) + (1 — X)f (22) for each vector x1, xo € R™*™ and for each ) €
[0, 1]. In the case of the profit function 7 maps an n+m vector containing output and input prices
into the real line. Alternatively, a differentiable function 7 is convex in R if and only if

W(p,w) > 71'(}3, ’LD) + Vpﬂ'(ﬁa @)/(p _Z_)) + Vwﬂ'(ﬁa ’LD)/(’LU —’LD),
(19)
for each distinct (p,w), (p, w) € R7*".

Let (y,x) be the profit maximizing choices of y and x when prices are(p, w) and let (y’,x") be
profit maximizing maximizing choices of y and x when prices are(p’, w’). Let (p” w”) be a linear
combination of the price vectors (p,w) and (p’,w’), i.e.

(", w") =X x (p,w) + (1 =A) x (p,w)

=Ap+ (1-=-Np, 2w + (1-Nw']
Then let (y”,x”) be the profit maximizing choices of y and x when prices are(p”, w”). This then
implies that

(20)

7_‘,(Z)//’ w//) — p// y// _ w// .':C// (21)
Now substitute the definition of p” and w” from equation 20 into 21
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n., 1 n ., 0

(" w") =p"y" — w'x
=[p+ A=y - [Aw + 1-Nw']2"
=Apy’ — dwa” + (1=XN)p'y" — (1-=XNw2" =
=A[py — w2+ 1-N) [Py — w'a"]

Be the definition of profit maximization, we know that when prices are (p,w) any output input
combination other than (y,x) will yield lower profits. Similarly when prices are (p’, w’). We then
can write

AMpy" —wa"] < Xpy — wza] = A7 (p, w)

(23)
A=y —wa"]< Q=N [y -] = [1-N)r@, )
Now write equation 23 without the middle terms
Alpy” — wa"] < A (p, w)
(24)
1=X) [Py — w'a"] < (1=X)m (p), w')
Now add the two inequalities in equation 24 to obtain
Apy" —wa"T+ (1 =X [Py —w'2"] < Am(p, w) + (1= A)m (¢, w') (25)
Now substitute for the left hand side of equation 25 from equation 22 to obtain
Tr(p//a ’LUN) < AT (pa ’LU) + (1 - )\)71' (p/a ’LU/) (26)

Becauuse 7(p,w) is convex, we know that its Hessian matrix is positive semidefinite. This means

that the diagonals of the Hessian matrix are all positive or zero, i.e., & g;@w) > (0 and % > 0.

We can visualize convexity if we hold all input prices fixed and only consider a firm with a single
output, or hold all but one output price fixed. In figure Iwe can see that the tangent lies below the
curve. At prices (p*, w*), profits are at the level 7(p*, w*). If we hold the output and input levels
fixed at (y*, x*) and change p, we move along the tangent line denoted by II(p*, w). Profits are less
along this line than along the profit function because we are not adjusting x and y to account for
the change in p.

4.5. 7.5. 7is homogeneous of degree 1 in p and w.

Consider the profit maximization problem,

n

= i — i i), such that (x, T. 27
m(p, w) rg%x[;pjyj > wiw], such that (x, y) € 27)

=1

Now multiply all prices by A and denote the new profit mximization problem as
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FIGURE 1. The Profit Function is Convex
Profits

7t (p*, W)

& (28)
A max (3 py s -
= 7 (p,w) =An(p,w)
4.6. 7.6 Hotelling’s Lemma.
Or (p, w)
=, 2
Or (p, w)
L)~ ailp, 2
o 2i(p, w) (29b)

We have already shown part a of equation 29 in equation 13 for the case of a single output. We
can derive part b of f equation 29 in a similar manner. Consider the derivative of 7(p,w1, wa) with
respect to wi. The profit function is given by

W(p,wl, w2) = pf(xl(p,wl, w2), 562(17,101, w2)) - w xl(p,wl, w2) - W2 $2(p,w2, w2) (30)
Taking the derivative with respect to w; we obtain
87T(p,’LU) 8f($1(p,'lU), CCQ(paw)) 8561(}),’(0) 8f($1(p,’£U), CCQ(p,’LU)) 8562(]),’(0)

8’(01 =P 8261 8’(01 * p 8262 8’(01

3:61(17,10)) 8562(}),11)))
w1 owl

(1)

— w — z1(p,w) — we

Now collect terms containing axégl,w) and amggﬁw)'
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On(p,w) _ dzi(p,w) [ Of(zi(p,w), z2(p,w))
= p w1

8’(01 8’(01 8$1
4 9z2(p,w)) [p Of (x1(p, w), w2(p, w)) wQ] (32)
8’(01 3x2

— z1(p, w1, w2)
But the first order conditions in equation 5 imply that

D 8f(£61 .xg)

0x;
This means that the two braketed terms in equation 32 are equal to zero so that

on(p, w)

owl
We can show this in a more general manner as follows. Define a function g(p,w) as follows

= —z1(p, w1, w2) (34)

9(p,w) = 7(p,w) — [py" — wa”] (35)
where (y*, x*) is some production plan that is not necessarily optimal at prices (p,w). At prices
(p*, w*), (y*, x*) will be the profit maximizing production. The first term in equation 35 will always
be greater than or equal to the second term. Thus g(p,w) will reach its minimum when prices are
(p*, w"). Consider then the conditions for minimizing g(p,w).
dg(p*, w*) _ On(p™,w™) .

= -y =0, j=1,2,....,m
3pj 3pj 7

dg(p*, w*) _ Om(p*, w”) \ ,
Do = D0 +a; =0, i=12,...,n

Rearranging equation 36 we obtain

(36)

or(p*,w*) y

(37)

8 * *
M) §ay =0, i=12 0

* *
= Om(p, w’) =—x, i=12,...,m
8’(01'
A number of important implications come from equation 37.

1: We can obtain output supply and input demand equations by differentiating the profit
function.

2: If we have an expression (equation) for the profit function, we can obtain output supply
and input demand equations or functional forms for such equations by differentiating the
profit function as compared to solving a maximization problem. This would allow one to
find functional forms for estimating supply and demand without solving maximization
problems.
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3: Given that the output supply and input demand functions are derivatives of the profit
function, we can determine many of the properties of these response functions by under-
standing the properties of the profit function. For example, because the profit function is
homogeneous of degree one in p and w, its derivatives are homogeneous of degree zero.
This means that output supply and input demand equations are homogeneous of degree
zero, i.e., multiplying all prices by the same constant will not change output supply or
input demand.

4: The second derivatives of the profit function are the first derivatives of the output supply
and input demand functions. Properties of the second derivatives of the profit function
are properties of the first derivatives of the output supply and input demand functions.

5: The symmetry of second order cross partial derivatives leads to symmetry of first cross
price derivatives of the output supply and input demand functions.

5. NUMERIC EXAMPLE

5.1. Production function. Consider the following production function.

y = f(z1, 22)
(38)

=24x7 + 14xy — x% + T1T9 — x%
The first and second partial derivatives are given by
Of (w1, x2)
8561
Of (w1, x2)
8562

P flrr, x2) 5
Ox? - (39)

9 f(xy1, x2)
8$18.§C2
& f(x1, x2)

2
0x3

=24 — 2561 + X2

:14+.CC1 —2562

=1

= -2

The Hessian is

v 5 B <—2 1)
Iy, ZCQ) = (40)

The determinant of the Hessian is given by

-2 1
1 -2

The rate of technical substitution is given by

=4-1=3 (41)

Oxa(y, x1) 24 + 2m1 — 22

RTS = B
Oz 14 + 21 — 229

(42)

The elasticity substitution is given by



10 PROFIT FUNCTIONS

—f1 fo (1 f1 + x2 f2)
x1 @ (f11 f2 — 2f12 f1 f2 + foo fR)

—(14 + z1 — 222)(24 — 221 + z2) (m% — 1221 — Taxo — z122 + m%)

012 —

w122 (1108 + 322 — 7221 — 4222 — 3122 + 323))

5.2. Profit maximization. Profit is given by

a :pf(ZCl, 552) — W1 T — wW2T2

=p [24:01 + 14z — 2:0% + X1 2o —2:03] — W1 T1 — Wy X9

(43)

(44)

We maximize profit by taking the derivatives of 44 setting them equal to zero and solving for x;

and xs.

0

_7T :p[24 — 2%1 + xg] — w1 = O
8561

0

o =p[ld + 1 — 222] — wy =0
8562

Rearranging 45 we obtain

UM — 2y 4wy = 2
P
14 4 2, — 20y = 22
P

Now solve equation 46a for x; as follows

24p — wy + pxo
2p

xry =

Then substitute x; from equation 47 into equation 46b as follows

(45)

(46a)

(46b)

(47)
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24p —
14 + ( b w1+px2> ~oop, =2
2p p
(28p + 24p — wy + pro — 4px2> Wy
= = —
2p p
N (52p — wy — 3px2> _wy
p
( 3px2> _wy (52p — w1>
p 2p (48)
B 2wg — B2p 4+ wy
- %

= —3pxre = 2wy — H2p + wy
—2wse + 52p — wy
3p
~52p — wy — 2we
= 3

= T2 =

If we substitute the last expression in equation 48 for x» in equation 47 we obtain

24p — w1 + pxs

xrp =

2p
24p —
L TN 2
2p 2
~ 24p — wn n 1 /52p — w1 — 2ws
n 2p 2 3p
(49)

~ T2p — 3wy + 52p — wy — 2we
= o
- 124p — 4wy — 2we
= &
- 62p — 2w1 — W2
= 3

5.3. Necessary and sufficient conditions for a maximum. Consider the Hessian of the profit equa-

tion.
-2 1 -2
V27T(:c1, To) = P = b (50)
1 -2 p  —2p

For amaximum we need the diagonal elements to be negative and the determinant to be positive.
The diagonal elements are negative. The determinant of the Hessian is 4p®-p, = 3p?, which is
positive.
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5.4. Optimal output. We can obtain optimal output as a function of p, w; and wy by substituting
the optimal values of x; and x; into the production function.

y(pawla'lUQ) = f(xl(p,WQ,IUQ), $2(p,w1,w2))

_24<62p— 2w —w2> N 14(52p—w1 - 2w2>

3p 3p
62p — 2wy — we 2 62p — 2w — wo 52p — w1 — 2we (51)
- +
3p 3p 3p
_ 52p — w1 — 2we 2
3p

Now put everything over a common denominator and multiply out as follows

(72p) (62p — 2w1 — w2) n 42p (52p — w1 — 2ws)

y(pa wry, ’LUQ) = 9p2 9p2

(62p — 2wy — w2)2 (62p — 2wy — wa) (52p — w1 — 2wo)
2 + 2
9p 9p

B (52p — wy — 2w2)2

9p?
4464p* — 144pwy — T2pws
_ o (52a)
2184p% — 42 — 84
N Y pw1 pw2 (52b)
9p?
3844p? — 248pwi + dwi — 124pwy + dwiwy + w3 (52¢)
9p?
N 3224p% — 166pw; + 2w? —2 176pws + Bwiws + 2w} (52d)
9p
B 2704p? — 104pwl + w? — 208pws + 4wiwy + 4w3 (52e)
9p?

Notice that we have terms in the following p?, pw1 pws, wi, wiws and w3. Now rearrange
terms in equation 52 combining like terms.
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4464p2 + 2184p? — 3844p% + 3224p2 — 2704p?

y(p, w1, w2) = 0p? (53a)
—144 — 42 248 — 166 104
i pwi pwi + p2w1 pwi + pw1 (53b)
9p
72 — 84 124 — 176 208
n 72pws pwa + p;U2 pwy + 208pws (53¢)
9p
—4w? + 2;0% — w? (53d)
9p
—4wiwe + 5UJ1;U2 — 4wiwo (536)
9p
2 2 2
—w; + 2w; — 4w;
53f
= (53)
Now combine terms
- 3324p? Opw1 Opws —3w? —3wiwa —3w3
y(p,’LU1,’LU2) - 9p2 =+ 9p2 =+ 9p2 =+ 9p2 =+ 9p2 + 9p2
_1108p?  wi  wiwy  wd (54)
- 3p2 3p2 3p2 3p2
71108_10_%_ W W2 _w_g
3 3p2 3p2 3p2

5.5. The example numerical profit function. We obtain the profit function by substituting the op-
timal values of x; and x; into the profit equation

Tr(pawlan) :pf(«rl(p,'LUQ,'lUQ), ZEQ(p,’LUl,’LUQ)) - U)1CC1(p,’LU2,’LU2) - U)QCCQ(p,’LUQ,’LUQ)

( 1108p?  w?  wiwy  wi )
=D

3p? 3pr 3p? 3p?

62p — 2wy — wo w 52p — w1 — 2we
—w _

! 3p 2 3p (55)

- 1108p2 — w% — WiWo — wg — 62pw; + Zw% + wiws — 52pws + wiwse + 2w§
= 3
_1108p? + wi + w3 + wywg — 62pwy — 52pws
= 3

5.6. Optimal input demands via Hotelling’s lemma. We can find the optimal input demands by
taking the derivative of equation 86 with respect to w; and wy. First with respect to wy
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1108p? + w? + w2 + wiws — 62pw; — 52pwo
3p

7(p, wi,w2) =

87T(p, wy, w2) o 2wy + wg — 62p

56
8’(01 3p ( )
2 — 62 62p — 2wy —
= z1(p,wi,w2) = — Wit s p _ DEp T s T W2
3p 3p
Then with respect to wa
87T(p, wy, w2) o 2wg + wy — 52p
8’(02 3p (57)

2 — 52 520 — wq — 2
= zo(p,wi,we) = — wa + W P _ 52p—wi — 2wy

3p 3p

5.7. Optimal output via Hotelling’s lemma. Take the derivative of the profit function with respect
to p using the quotient rule

1108p? + w? + w? + wiws — 62pw; — 52pwo

7(p, wi,wz) =

3p
Om(p,wi,wa)  3p(2216p — 62wy — 52ws) — 3 (1108p* + wi + w3 + wiwa — 62pwy — 52pwy)
p B 9p?
- 6648p2 — 186pw; — 156pwy — 3324p? — 3w? — w3 — 3wiws + 186pw; + 156pws
— 57

- 3324p? — 3w% — 3w§ — 3wiws
= 072

1108p? — w? — w3 — wiws

= y(p, w1, we) =

3p?
(58)
6. ALGEBRAIC EXAMPLE
6.1. Production function. Consider the following production function.
y = [f(z1, x2)
1 2 (59)

2 2
=71 + aery + Buixy + Pirexix2 + Porxs

The first and second partial derivatives are given by
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Of@n22) _\ y 9812y + Braws
8$1
U@ 22) _ oy 4 Broes + 260m2
3x2
O*f(z1, x2)
oz m ©0
Pfwr, w) _ g
dr10ry 12
O f(x1, z2)
o

The Hessian is

2
V2 f(z1, 72) = Bi1 P2 61)
612 2622
The determinant of the Hessian is given by
2611 612
= 4f11f2 — B 62
612 2611 e 12 ( )
The rate of technical substitution is given by
dxa(y, 1) a1 + 20z + Siaxs
RTS = = = 63
Oxq az + Sioz1 + 202270 (63)

The elasticity substitution is given by

—f1 fo(z1 fi + x2 f2)
x1 @ (f11 f2 — 2f12 f1 f2 + foo fR)

_ —(a1 + 221811 + w2bB12)(2 + x1B12 +222B22) (223B11 + z1(on + 222612) + z2(a + 222622))

012 —

z1 22 (2 (o1 + 221611 + 22812)2 B22 — 2812 (1 + 221811 + x2812) (2 + z1 812 + 2x2622) + 2611 (2 + 21812 + 222322)?))
(64)

6.2. Profit maximization. Profit is given by

™ :pf(xl, $2) — W11 — W22 65)

=p [Oélxl + aaws + Buai + Pzias + 52213] — WiT1 — W22

We maximize profit by taking the derivatives of 65 setting them equal to zero and solving for x;
and xs.

0
8—::1 =plar + 2611x1 + Prexz] — w; = 0
5 (66)
T
e =plas + Braw1 + 2P2222] — we = 0
€2

Rearranging 66 we obtain
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w

ar + 260111 + Biezre = ?1 (67a)
w2

ag + B2z + 202272 = ? (67b)

Now solve equation 67a for x; as follows

wy — pay — praSia
T = 68
! 2pB11 (68)

Then substitute x; from equation 68 into equation 67b as follows

w1, — pox1 — pr w
Oé2+512( 1— pay p2612>+2522$2—?2

2pfB11
_, 2paafu + wifie — poafe - prafity + Aprafiifer w2
2pfr1 D (69)
2poa i1 + wifiz — paiPia dpxofi1Pos — prafiy,  wo
= = —
2pf1 2pB11
N 2paafii + wifia — parfiz w2 (48112 — i) _ w2
2pFr1 2011 D
Now isolate x, on the left hand side of equation 69 as follows.
z (4011022 — O1a) _wy  2pasfin 4+ wifis — paifio
2611 p 2pPr1
- 2311wz B (2611) 2pafin + wifhia — paifi2)
p (4611022 — %) 2p6i1 (4611622 — %)
_ 2B11w2 B (2pazfin + wifiz — poifiz) (70)
p(4611622 - 5%2) p(4611622 - 5%2)
_ 2B11we — 2pagfii — wifiz + paifiz
p(4611622 - 5%2)
_ 2011w — wifi2 + plarfiz — 202011)
p(4611622 - 5%2)
If we substitute the last expression in equation 70 for x» in equation 68 we obtain
w1 —pay — prafia
xry =
2pB11
W1 — pay B2 -
= - 2
2B 2pPu 71)

_ w1 —px pP12 (2511102 — 2panfii — wifiz + p041512>

26 2pBu p (4611022 — %)

Now put both terms in equation 71 over a common denominator and simplify
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~ p(4P1ifaa — Biy) (w1 —pan) — pPia (2Bn1ws — 2pasfin — wifia + ponfia)
B 2pP1p (4611822 — Biy)
(4511522 - 5%2) (w1 —par) — Pz (2011w — 2pazfi1 — w1 B2 + paiPBi2)
2pPr1 (4611822 — Bia)

_ 4w 11822 — w17 — ApaiPrifaz + pon By — 2P11 frawa + 2pazfii iz + w1y — paifiy
2p6i1 (4511522 — Bs)

_ 4wy B11P22 — 4pai Br1 P22 — 2611 B12w2 + 2paafBiiBiz
2p6i1 (4611822 — Bs)

_ 2wy fag — 2pavifBag — Prawe + pasfiz
p(4611622 - 5%2)

_ 2wy 22 — Prawz + p(aefi2 — 2a1322)
p (4511522 - 5%2)

1

(72)

6.3. Necessary and sufficient conditions for a maximum. Consider the Hessian of the profit equa-
tion.

2611 B2 2pB11 pbi2
v? = = 73
7T($1, IQ) P ( B2 2522) ( pP12 2p522> 73)

For amaximum we need the diagonal elements to be negative and the determinant to be positive.
The diagonal elements will negative if 3;; and (22 are negative. The determinant of the Hessian is
given by

2pB11 pBi2

= 4p°B11Pe2 — P°By = p° (46811622 — B1a) (74)
pBi2 2pPa2

So the solution will be a maximum if $;; and 22 are both less than zero and 4311322 > [(%,.
Notice that if 4311320 = [33,, the test fails.

6.4. Optimal output. We can obtain optimal output as a function of p, w; and wy by substituting
the optimal values of x; and x; into the production function.
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y(p,wl,w2) = f(xl(p,w2,w2), 352(17,101,102))

—a (2101522 — 2pavi Baz — Prawe + p042512>
! p(4611622 - 5%2)

Ta (2511102 — 2panfii — wifiz + p041512>
2 p(4611622 - 5%2)

2w fag — 2pavifBag — Prawe + pasfiz ) ?
p(4611622 - 5%2)

+511(

+8 ((2101522 — 2pavi Baz — Prawe + p042512> (2511102 — 2panfii — wibiz + poifiz
12

p(4611622 - 5%2)

2B11wa — 2pasfin — wibiz + p041512>2
p(4511622 - 5%2)

p(4611622 - 5%2)

+ 522(

(75)

We can simplify equation 75 by simplifying the squared and cross product terms. First consider
2
X7.

L2 2w fog — 2pai fBag — Prawe + pasfiz (2101522 — 2pov1 Bz — Prawa + p042512>
' 4511522 - 512) p(4611622 - 5%2)
_ (4 522 4pw1a1622 — 2wiwa P22 + 2pw1a2612622>
p (4511522 - 512)
+ ( 4pw1a1622 + 4p 5%2"‘217102041512522 - 2p2041042512522> (76)
2
p? (4511522 - 5%2)
T ( 2urwa 222 + 2pa1w2512622+w2612 - pw2a2512>
p (4511522 - 512)
+ <2pw1a2612622 - 2p araaf12322 —pw2a2612 + p20425%2>
p? (4611022 — 512)

We can simplify equation 76 as follows

))
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4“’1522 - 8pw1a1622 dwrwaBr12022 + 4pw1a2612622>
2
p (4511522 - 5%2)

4p?ad B3, + dpwocri Brafae — 4p 041042512522>

( p? (4011522 — 512)
(5

w357y — 2pw2a26f2>
3
p? (4511522 — (%)

a3 3o )
p2 4511522 - 5?2)2

Simplifying again we obtain

041522 — 4p*aiasPBiafas + p 042512)
2 (4511022 — 512)

dpwioaBi2faz — 8pw1a1622 + 4pw2a1612622 - 2pa2w2512>
p (4511522 - 512)

4wi B3, — dwiwafiafae + w2612>
2 (411022 — 512)

2 (461162 — B)°
dpwy (a2B12022 — 2041522) )

p

(
2 (461122 — B)°
(
2 (

2pwy (2001 512322 — 042512) )
411 B2 — )’

4w1522 — dwiwa P22 + w2512>

4611622 - 612)

"
[
(%
(p 4a2622 darasBiafar + %612))
[
*
(%

Similarly for x;

19

77)

(78)
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4w3 By — 8pwaa B3 + 4p*a3fy, — 4w1w2611512>
P2 (4811622 — %)’

dpaywafr1 iz + dpwiasBiifra — 4p 041042511512>
p (4511522 - 512)

512 - 2pw1a1612 )
P2 (401150 — (%)’

(79)

P 4a2611 — dagazfiifie + 041512)>
2 (4B11522 — B2)°

2pw1 (202611612 — 041512)>
p 4511522 - 512)

dpws (201511512 — 2042511))
24611 a2 — B)°

wi B, — dwiwaBi1 Pz + 4“’2511)
2 (4511522 — 512)

(
(
(
)
S
(
(=
(5

And for xq*xo

ok — (2101522 — Brows + p(a2fi2 —2041522)> (2511102 — wifi2 + plarfia — 20&2511))
! 2 4511522 - 512) p (4511522 - 5%2)
_ <4w1w2611622 - 2101512522 + 2pw1622 (041512 - 2042511))
p? (4611622 — B%)°
n ( 2w3 B11512 + wiwe Sy — pwaia (1 Pi2 — 2042511))
P2 (4611622 — B%,)°
n (2pw2611 (a2f12 — 201 B22) — pwi B2 (a2Bi2 — 201 Ba2) + p? (a1 B2 — 2a2611) (212 — 201522))
p? (4511522 - 5%2)

(80)
Now collect terms in equation 80
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p° (a1fBi2 — 20211) (2fr12 — 201 B22) + 2pwifaz (a1 Bi2 — 202311)

21

p? (4511522 - 5%2)2

2pwaBi1 (P2 — 201 Ba2) — pwiPiz (2fi2 — 201522))

+ 2
p? (4511022 — fis)

+

2101512522 + w1w2512 + 4w1w2611522 - 2102511512)

(7
(
( P> (411822 — Bs)°
(7
(
(

2 (4611522 — B2)°
pwi (2022 (1812 — 2a2P11) — Pr2 (aefra — 2041522)))

p? (1f12 — 2a9011) (v2fr2 — 201522))

+

p? (4511022 — 5%2)2

pwa (2011 (B2 — 2a1B22) — Pr2 (a2 — 2041511)))
P2 (481152 — %)

+ (‘210%512522 + wiws (4511522 + 5%2) - 210%511512)
p? (4511522 - 5?2)2

+

— pwa 2 (a1 2 — 202511))

(81)

Now substitute the results from equations 70, 72 78 , 79 and 81 into equation 75
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y(p, wi,w2) = f(z1(p, w2, w2), z2(p, w1, ws))

— 2w B2 — Pr2wz + p(azfiz — 2a1622)
p (4811822 — B%)

+ o 2B11wa2 — wiPi2 + p(a1fiz — 2a2811)
p(4B11B22 — B,)

s (ID2 (40282, — Ay Bi2fBar + 0282,) + dpwi (c2B12B22 — 20415%2))
1
p? (48311822 — 5%2)2

2pws (201 B12622 — a2 8%y) + Aw? B2, — dwiwa B2 P22 + w3 B,
p? (4611622 — 5%2)2

4 Bro (2172 (1812 — 202811) (2812 — 2001 B22) L (2822 (a1812 — 2a2B11) — P12 (a2fB12 — 2041522)))

p? (4811822 — 5%2)2 p? (4311822 — 5%2)2
4 Bro pwa (2011 (a2f12 — 2a1822) — P12 (a1f12 — 2a1811)) n —2w?B12B22 + wiwa (4811822 + %) — 210%511512)
p? (4811822 — 552)2 p? (4811822 — 5%2)2
p? (40362 — danasBiiBiz + a2B%,)  2pwi (202811812 — a1 BEy)
+ B2z Py + RV
p? (4811822 — Bis) p? (4811822 — B)
+ Ba (420102 (201811812 — 20283,)  wip?, — dwiwaPr1Bi2 + 4w§6%1>
p? (4811822 — B2)° p? (4811822 — B2,)°

(82)
To start simplifying, we need to put everything over a common denominator
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y(p, wi,w2) = f(z1(p, w2, w2), z2(p, w1, ws))

_ (22071)1041522 (46811822 — BE,) — pwacn Pz (4611022 — Bi) + p?a1 (4811822 — B%,) (B2 — 2041522))
p? (4811822 — 5%2)2
(22071)2042511 (4B11P22 — B3y) — pwicaPia (4B11822 — B%,) + pPaz (4811822 — B%) (a1f12 — 2042511))
p? (4811822 — 5%2)2

+

+

2611 (40282, — darazBi2B22 + adB%) + dpwi Bi1 (a2B12622 — 2041522))
p? (4811822 — 512)

+

2pwaBi1 (201 B12822 — a2%y) + 4w? P11 82, — dwiwa B11 12622 + w2511512>
p? (4811822 — 512)

+

2 (4811822 — B%,)° p? (4811822 — B2,)°

pwa B2 (2811 (a2f12 — 2a1f22) — P12 (a1 P12 — 2041511)))
p? (4811822 — 5%2)2

—2w? 32, B2z + wiwz P12 (46811622 + 512) - 2w2511512>
p? (4811822 — 512)

n (ID B2z (40383 — 4darazfiiPiz + aifd,) n 2pw) Baz (2002611 P12 — 0415%))

+

+

(ID B12 (a1512 — 202011) (a2 fB12 — 2001 322) n pwi1 P12 (2622 (a1f12 — 2a2811) — P12 (a2f12 — 2041522)))

p? (4811822 — 5%2)2 p? (4811822 — 5%2)2
n (4:0102522 (201811812 — 20282, " w2B2,B22 — AwiwaP11P12P22 + 4w%551522>
p? (4811822 — 5%1)2 p? (4811822 — 5%2)2

83)
Notice that we have terms in the following p?, pw; pws, wi, wiws and w3. Now rearrange
terms in equation 83 combining like terms. After some manipulations we obtain

w311 — wiwePra + wife — p (043511 —araefi2 + 04%522)
y(p, w1, wa) = B 2 (84)
p? (4P11022 — Fia)

6.5. The example profit function. We obtain the profit function by substituting the optimal values
of x; and x3 into the profit equation

Tr(pawlan) :pf('rl(panan)a ZEQ(p,’LUl,’LUQ)) - wlxl(panan) - '(UQCCQ(p,’LUQ,’LUQ)

» w311 — wiwe P + wifas — p (043511 —arazfiz + 04%522)
p? (4611022 — 5%2)

w (2101522 — Browa + p (212 — 20&1522)) Cw (2511102 —wifi2 +p (a1 fria — 20&2511))
! p (4511522 - 5%2) 2 p (4511522 - 6%2()85

We can simplify equation 85 as follows
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7(p, wi,w2) =

w%ﬂu — wwa 2 + w%ﬂm - p? (043511 —aropfia + 04%522)
p (4511522 - 5%2)

W (2101522 — Browa + p (212 — 20&1522)) Cw (2511102 —wifi2 +p (a1 fria — 20&2511))
! p (4511522 - 5%2) ? p (4511522 - 5%2)

w3 P11 — wiwaBiz + wifas — p (043511 — i + 04%522)
p(4B11f22 — B7y)

n 2w3 Bag + wiw2 12 — pwi (2fra — 20&1522))

( p (4611522 — B%)
n ( 2w3 B11 + wiwa B2 — pws (a1 B2 — 20&2511))

(4611622 - 612)

—w3 P11 + wiwafia — wifaa — P (043511 — a1 + a%ﬁm))

p (4511022 — Pis)
—pws (a2 — 201522))
4611622 - 612)

n (—pw2 (a1Pi2 — 20&2511))
p (4511522 - 5%2)

+

(86)
We can write equation 86 in the following useful fashion

(p, w1, w2) = (

—w2B11 + wiwzBiz — wiBa — pwi (a2fr2 — 201 822) — pwa (a1 P12 — 2a2B11) — p? (2811 — cranBiz + afB22)
p (4811822 — B%,)
(87)

6.6. Optimal input demands. We can find the optimal input demands by taking the derivative of
equation 86 with respect to w; and w. First with respect to w;

or(p, w1, wa) (512102 — 2f20w1 — p (2f12 — 20&1522))

ow; p (4511522 - 5%2) (88)
-z = (—512102 + 2f20w1 + p (2612 — 20&1522))
p (4511522 - 5%2)
Then with respect to wa
om(p, w1, wa) _ (—2102511 +wif12 — p(a1fi2 — 202511))
Ows p (4511522 - 5%2) (89)

o (szﬁu —wifi2 +p (1 fiz — 2a2511)>
? p (451122 — B%5)

6.7. Optimal output. Take the derivative of equation 87 with respect to p
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—w3p11 + wiwafia — wifaz — pwi (a2fiz — 2a1622) — pwa (a1 B12 — 2a2P11) — p° (agﬁn —ajazfia + a%ﬁzz) )

m(p, wy, wa) = ( p (4811822 — B3y)

O7(p, w1, wa) (P <4ﬁ11ﬁ22 - B%z)) (*wl (a2B12 — 2001 B22) — wa (a1B12 — 2a2B11) — 2p (agﬁn —ajazfiz + a%ﬁzz))
ap h p? (4811822 — ﬁf2)2

(*wgﬁn +wiwa Pz — wiBaz — pwi (a2Biz — 201 B22) — pws (a1f12 — 202611) — p2 (agﬁn —ajazBia + a%ﬁzz)) <4ﬁ11ﬁ22 - B%z)
p? (4811822 — ﬁf2)2

(*Pwl (c2B12 — 2a1f22) — pwa (a1fiz — 202811) — 2p° (agﬁn —arazfiz + a%ﬁzz)) <4ﬁ11ﬁ22 - ﬁfz)
p? (4811822 — ﬁf2)2

N (wgﬁn — wywaBra + wifaz + pwy (a2B12 — 201 B22) + pwa (a1 P12 — 202811) + p° (agﬁn —arazfiz + a%ﬁzz)) <4ﬁ11ﬁ22 - ﬁfz)
P2 (4611 P22 — B2,)°2

(*Pz (agﬁn —arazfiz + a%ﬁzz) (wgﬁn —wiwz B2 + w%ﬁzz)) <4ﬁ11ﬁ22 - ﬁfz)
- p? (4811822 — ﬁlg)

(*Pz (agﬁn —arazfiz + a%ﬁzz) + (wgﬁn —wiwz B2 + w%ﬁzz))
p? (4811822 — B,)

2 2 2( 2 2
w3 B11 — wiwzPBr2 + wifae — p (azﬁn —arazfiz + alﬁzz)

p2 (4811822 — B3,)

(90)

7. SINGULARITY OF THE HESSIAN MATRIX

We can show that the Hessian matrix of the profit function is singular. This is a direct implication
of linear homogeneity. To show this first write the identity

m(tp, tw) = tw(p, w), where tisa scaler greater than zero 91)

Differentiate equation 91 with respect to t. This will yield

m on n on
> o) T > atw;)

j=1 i=1

= 7(p, w) (92)

7

Differentiate equation 92 with respect to t again. Each term in equation 92 will yield a sum of
derivatives so the result will be a double sum as follows

Z Z O(tpr) O(t p;) pkp] + Z Z ( twg tpj) wep;

j=1 =1

(93)
& 0w L O?*m
* ; kzzl Bt p) Otwn) Lo i T ; 2:: atwe) oftwy) e =0
We can factor t out of each terms in equation 93 because
9f(x) _ 19[(x)
dtz) t Ox ©4)

This will give



26 PROFIT FUNCTIONS

J=1 k=1 Opr 9p; J=1 =1
n m 82 n n 2 (95)

1 1 o°m

+t_2;]§8pk8w1pkwi+t_2;;(?wg(?wlwewl 0
This then implies that

m m 8271' m n 82

Z Z PkDPj + Z Z We Pj

J=1 k=1 Opr, Op; j=1 =1 Owe Op;

0 0
K3 1 T O
2D G P 2 D G,

The last expression in equation 96 is actually a quadratic form involving the Hessian of 7(p,w).
To see this write out the Hessian and then pre and post multiply by a vector containing output and
input prices.

r 82_77 2 92 x 92 Pr 7 - -
2 p? 9p20p1 9pm dp1 w1 dp1 OwnOpy p1
92 s 92 x 92 92 x D2
0p10p2 ap3 T 9pmOp2 owy0py 77 Own Op2
% % n n % r % n Pn
[pl P2 ... DPm w1 ... wn] Dpidpm Opadpm - op2, dwiopm Bwndpm wy
o r 9w % o r 2 n
dp1ow; Opg Owy Opm Owy aw% Owy Owy w2
3= 3 x 3 r 3P x 3P r Wn
L Op10wn Ops Own, e Opm Own, w1 Own, e ow?

©7)
Equation 96 implies that this quadratic form is zero for this particular vector (p,w). This means
that the Hessian matrix is singular. The profit function is convex so we know that its Hessian
is positive semi-definite. This implies that it is positive semidefinite only and cannot be positive
definite.

8. SENSITIVITY ANALYSIS FOR THE PROFIT MAXIMIZATION PROBLEM

The Hessian of the profit function is positive semidefinite so all its diagonal elements are non-
negative (Hadley [9, p. 117]).

8.1. Response of Output Supply. Consider first the response of any output to its own price.

0 Yj 82 ™
== >0 98
Supply curves derived from profit maximization will always slope upwards because this deriv-
ative is on the diagonal of the Hessian. Now consider the response of an output to another product

price.

%7 P

= —— 99
O pr 0 p, Op; ©9)
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This element is not on the diagonal of the Hessian of the profit function and so we cannot deter-
mine its sign.
Similarly we cannot sign the response of an output to an input price.

0 Yj 82 ™
= 1
8.2. Response of Input Supply. Consider first the response of any input to its own price.
8 €Xr; 82 T
= -——- < 101
0 w; ow? — 0 (101)

Demand curves derived from profit maximization will always slope downwards because this
derivative is on the diagonal of the Hessian and input demand is the negative of the derivative of
the profit function with respect to input price. Now consider the response of an input to another
input price.

2
Ori _ 01 (102)
0wy 0wy Ow;

This element is not on the diagonal of the Hessian of the profit function and so we cannot deter-
mine its sign.

Similarly we cannot sign the response of an input to an output price.

8$1‘ o 8271'
dpe  Oppow;

(103)

8.3. Homogeneity. Because output supply and input demand are derivatives of a function which
is homogeneous of degree one, they are homogeneous of degree zero.

yi(Ap, Aw) =y;(p, w)zi(Ap, \w) = zi(p, w) (104)

8.4. Symmetry of response. If 7(p, w) is twice differentiable then Young’s theorem on second cross
partial derivatives implies

*r OPm
OpiOp;  Op;Op;
O?m O?m
_ 105
OprOw; Ow; Op, (19
*r OPr
8’(01' 8’LUj - 8’LUj 8’(01
This then implies
8yj _ 8y1
dpi  Opj
ow; Yk
_ — 1
Opk ow; (106)
Ozi _ Os;

8’LUj - 8’(01
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The response of any output to a different output price is symmetric, i.e. cross price derivatives
are equal. Similarly with input demand response. The way an output responds to a particular
input price is the same as the response of that input to the output’s price.

8.5. Own and cross price response. Because any principal submatrix of a positive semi-definite
matrix is also positive semidefinite (Hadley [9, p. 262]), we also have the following results.

8561' % > 8:61 8xj

ow; . 8’LUj - 8’LUj . ow;

(107)

To see this note that if the submatrix above is positive semi-definite then the determinant must
be non-negative which means that (the product of the diagonal elements) - (the product of the off
diagonal elements) must be greater than or equal to zero.

We also have

dpj  Opr — Opr  Opj
The product of own price responses is larger than the product in cross price responses.
We also have

(108)

dy;  Oxy dy; Oz
=L == > 2. == 109
Op; Owy —  Owy  Opj (109)

9. SUBSTITUTES AND COMPLEMENTS

9.1. Gross substitutes. We say that inputs are gross substitutes if

8’LUj 8’(01

>0 (110)

9.2. Gross complements. We say that inputs are gross complements if

8’LUj 8’(01

<0 (111)

10. RECOVERING PRODUCTION RELATIONSHIPS FROM THE PROFIT FUNCTION

10.1. Marginal Products. We can find marginal products from the first order conditions for profit
maximization. The easiest way to see this is when technology is represented by an asymmetric
transformation function.

™ = max Py f( x) + D> piy — > wia] (112a)
2=1 1=1
— max [p1 f(§, @) + §§ — wa] where
Ty

ﬁ:(p27p37"'7pm)3 g:(y27y37"'7ym)7
w = (w1, wo, ..., w,) x = (T1, T2y -, Pn)

If f(g,x) is differentiable, then the first order conditions for maximizing profit are as follows.
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or _Of(y, x) o .
8—55,L- _plTxl — Ww; = O, 1—1,2,...,7?,
(113)
—87T = 73f(3], 2) i =0, 7=2,3 m
8y] 1 8y] p] ’ 3y

We can then obtain marginal products by rearranging the first order conditions. We can find the
impact on y; of an increase in any of the inputs as
OGx) vy (114)
Ox; p1
We can find the impact on y; of an increase in any of the other outputs as

0f@. @) _ pi i_y93
Ay, b
We can find other marginal products by solving the profit maximization problem with a different

normalization than the one on y;.

m (115)

cey

In the case of a single output we obtain

Of @) _wi

11
81:1 p7 Y Y 5n ( 6)

This is clear from figure 2. The isoprofit line is given by

T = py — wr

Solving for y we obtain

= A
=

FIGURE 2. Marginal Product is Equal to Price Ratio
Y

f (x)
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10.2. Output elasticity. We normally think of output elasticity in terms of one output and many
inputs so define it as follows.

of (z) x
e (117)

€ =

e

If we substitute for gg(f) from equation 116 we obtain

6 = T (118)
Py
10.3. Elasticity of scale. Elasticity of scale is given by the sum of the output elasticities,i.e.,

- P Y (119)

Revenue

A profit maximizing firm will never produce in a region of the production function with in-
creasing returns to scale assuming the technology eventually becomes locally concave and remains
concave. As the result for a profit maximizing firm, returns to scale is just the ratio of cost to rev-
enue.

11. DUALITY BETWEEN THE PROFIT FUNCTION AND THE TECHNOLOGY

We can show that if we have an arbitrarily specified profit function that satisfies the conditions in
section 3, we can construct from it a reasonable technology that satisfies the conditions we specified
in section 1.2.4 and that would generate the specified profit function. A general discussion of this
duality is contained in Diewert [2]

11.1. Constructing a technology from the profit function. Let T* be defined as

T = {(z,y) : py — wz < w(p,w),V(p,w) = (0,0)} (120)
To see the intuition of why we can construct T this way consider the case of one input and one
output as in figure 3
If we pick a particular set of prices then T* consists of all points below the line that is tangent
to T(x,y) at the optimal input output combination. The equation {(x,y) : py — wz < 7(p,w) for
a particular set of prices defines a line in R? or a hyperplane in R"*™. Points below the line are
considered to be in T*. Now pick a different set of prices with w lower and construct a different
line as in figure 4. The number of points in T* is now less than before. If we add a third set of
prices with w higher than in the original case as in figure 5, we can reduce the size of T* even more.
Continuing in this fashion we can recover T(x,y). This is an application of what is often called
Minkowski’s theorem.

To show that T is in fact equal to T*, we need to show that T* C T. We do this by assuming that
some particular input output combination (x°, y°) € T* but (x°, y°) ¢ T. If (x°, y°) ¢ T, then (x°,
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FIGURE 3. Half-Spaces and Technology Set
g

T(x,Y)

FIGURE 4. Two Half-Spaces and Technology Set
g

T(x,Y)

y?) can be separated from T by a hyperplane (py° - wx®). But T* consists of points lying below the
hyperplane defined by the maximal profits with prices p and w. This means that the point (x°, y°)
cannot be in T*. We can show this in figure 6. Consider point a in figure 6 which is not in T(x,y). It
is in T* if we only consider the half spaces defined by the hyperplanes intersecting T(x,y) at points
c and d. But at the prices defined by a hyperplane with “slope” as the one passing through b, point
a is not in T*. If we consider any other point not in T, there exists a hyperplane that also excludes
it from T*. This implies than that T* C T and so T* = T. For more on this topic consult McFadden
[12] or Fare and Primont [6].

11.2. Using the properties of the profit function to recover properties of the technology. We
repeat here for convenience the properties of T(x,y) and 7 (p,w).

11.2.1. Properties of the technology.
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FIGURE 5. Three Half-Spaces and Technology Set
g

T(xX,Y)

FIGURE 6. Separating Hyperplanes and the Technology Set
Y

T.1a: Inaction and No Free Lunch. (0,y) e TV x ¢ R} and y € R This implies that T(x,y) is a
non-empty subset of R

Tab: Oy)¢T,y=20,y#0.

T.2: Input Disposability. If (x,y) e T and 6 > 1 then (0x,y) € T.

T.2.S: Strong Input Disposability. If (x,y) € T and x’ 2 x, then (X', y) € T.

T.3: Output Disposability. V (x,y) e R’ if (x, y) e Tand 0 < A < 1 then (x, Ay) € T.

T.3.S: Strong Output Disposability. If (x,y) e Tand y’ =y, then (x,y) € T.

T.4: Boundedness. For every finite input vector x 2 0, the set y € P(x) is bounded from above.
This implies that only finite amounts of output can be produced from finite amounts of
inputs.

T.5: g(x) is a closed set. The assumption that P(x) and V(y) are closed does not imply that T
is a closed set, so it is assumed. Specifically, if [x* — x°, y* — y°) and (x*,y*) € T, ¥ £] then
(x° y%)eT.
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T.9: T is a convex set. This is not implied by the convexity of P(x) and V(y). Specifically, a
technology could exhibit a diminishing rate of technical substitution, a diminishing rate of
product transformation and still exhibit increasing returns to scale.

11.2.2. Properties of the profit function.

m.1: m(p, w) is an extended real valued function (it can take on the value of +oco for finite
prices) defined for all (p, w) = (0, 0,,)) and 7(p, w) > pa - wb for a fixed vector (a, b) >
(O, 0,,). This implies that w(p, w) 2 0 if (0,,,, 0,,) € T(x,y),which we normally assume.

m.2: 7 is nonincreasing in w

m.3: 7 is nondecreasing in p

m.4: 7 is a convex function

m.5: mis homogeneous of degree 1 in p and w.

We will consider only a few of the properties of T(x,y)
11.2.3. T(xy) is non-empty. By w.1, n(p, w) > pa - wb for a fixed vector (a, b) > (0,,,, 0,,) or 7(p, w)

> 0 if (O, 0,) € T(x,y). Given that 7(p, w) > 0, with x zero, there are obviously values of y (for
example 0) which make (py - wx) less than 7(p, w). So T*(x,y) is not empty and (0,y) € T*(xy).

11.2.4. Strong Input Disposability. If (x,y) ¢ T and x” 2 x, then (X', y) € T. .

Suppose that (x, y) e T*, 0 < x < x"and V (p, w) 2 0. Then py - wx’ < py - wx < w(p, w) ¥V (p, w)
2 0. Thus (y, x’) e T*.

11.2.5. Strong Output Disposability. If (x,y) e Tandy’ <y, then (x,y') e T. .

Suppose (y, x) e T* and 0 <y’ <y then py’ - wx < py - wx < 7(p, w) V (p, w) = 0. Thus (y’, x) €
T*.

11.2.6. T(x) is a closed and convex set. From the definition, T* is the intersection of a family of closed
half-spaces because we have a hyperplane in n+m space dividing the space. Thus T is a closed
convex set (Rockafellar [13, p. 10].
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