
PROFIT MAXIMIZATION

1. DEFINITION OF A NEOCLASSICAL FIRM

A neoclassical firm is an organization that controls the transformation of inputs (resources it
owns or purchases) into outputs or products (valued products that it sells) and earns the difference
between what it receives in revenue and what it spends on inputs.

A technology is a description of process by which inputs are converted in outputs. There are a
myriad of ways to describe a technology, but all of them in one way or another specify the outputs
that are feasible with a given choice of inputs. Specifically, a production technology is a description
of the set of outputs that can be produced by a given set of factors of production or inputs using a
given method of production or production process.

We assume that neoclassical firms exist to make money. Such firms are called for-profit firms. We
then set up the firm level decision problem as maximizing the net returns from the technologies
controlled by the firm taking into account the demand for final consumption products, opportuni-
ties for buying and selling products from other firms, and the actions of other firms in the markets
in which the firm participates. In perfectly competitive markets this means the firm will take prices
as given and choose the levels of inputs and outputs that maximize profits. If the firm controls more
than one production technology it takes into account the interactions between the technologies and
the overall profits from the group of technologies. The profits (or net returns) to a particular pro-
duction plan are given by the revenue obtained from the plan minus the costs of the inputs or

π = Σm
j=1pjyj − Σn

i=1 wi xi (1)

where pj is the price of the jth output and wi is the price of the ith input. In the case of a single
output this can be written

π = p y − Σn
i=1 wi xi (2)

where p is the price of the single output y.

2. DESCRIPTIONS OF TECHNOLOGY

2.1. Technology Sets. A common way to describe a production technology is with a production
set. The technology set for a given production process is defined as

T = {(x, y) : x ε Rn
+, y ε Rm :

+ x can produce y } (3)

where x is a vector of inputs and y is a vector of outputs. The set consists of those combinations
of x and y such that y can be produced from the given x.
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2.2. Production Correspondence. The output correspondence P, maps inputs x ε Rn
+ into subsets

of outputs, i.e., P: Rn
+ → 2Rm

+ , or P(x) ⊆ Rm
+ . The set P(x) is the set of all output vectors y ε Rm

+ that
are obtainable from the input vector x ε Rn

+. We represent P in terms of the technology set as

P (x) = {y : (x, y) ε T} (4)

2.3. Input Correspondence. The input correspondence V, maps outputs y ε Rm
+ into subsets of

inputs, i.e., V: Rm
+ → 2Rn

+ , or V(y) ⊆ Rn
+. The set V(y) is the set of all input vectors x ε Rn

+ that are
able to yield the output vector y ε Rm

+ . We represent V in terms of the technology set as

V (y) = {x : (x, y) ε T} (5)

2.4. Relationships between representations: V(y), P(x) and T(x,y). The technology set can be
written in terms of either the input or output correspondence.

T = {(x, y) : x ε Rn
+, y ε Rm

+ , such that x will produce y} (6a)

T = {(x, y) ε Rn+m
+ : y εP (x), xε Rn

+} (6b)

T = {(x, y) ε Rn+m
+ : x εV (y), yε Rm

+ } (6c)

We can summarize the relationships between the input correspondence, the output correspon-
dence, and the production possibilities set in the following proposition.

Proposition 1. y ε P(x) ⇔ x ε V(y) ⇔ (x,y) ε T

2.5. Production Function. In the case where there is a single output it is sometimes useful to rep-
resent the technology of the firm with a mathematical function that gives the maximum output
attainable from a given vector of inputs. This function is called a production function and is de-
fined as

f (x) = max
y

[y : (x, y) ε T ]

= max
y

[y : x ε V (y)]

= max
y ε P (x)

[y]

(7)

2.6. Asymmetric Transformation Function. In cases where there are multiple outputs one way to
represent the technology of the firm is with an asymmetric transformation function. The function
is asymmetric in the sense that it normalizes on one of the outputs, treating it asymmetrically with
the other outputs. We usually normalize on the first output in the output vector, but this is not
necessary. If y = (y1, y2, . . ., ym) we can write it in the following asymmetric fashion y = (y1, ỹ)
where ỹ = (y2, y3, . . ., ym). The transformation function is then defined as

f(ỹ, x) = max
y1

{y1 : (y1, ỹ, x) ∈ T}, if it exists

= −∞ otherwise, ỹ ≥ 0m−1, x ≥ 0n

(8)

This gives the maximum obtainable level of y1, given levels of the other outputs and the input
vector x. We could also define the asymmetric transformation function based on yi. In this case
it would give the maximum obtainable level of yi, given levels of the other outputs (including y1)
and the input vector x. There are additional ways to describe multiproduct technologies using
functions which will be discussed in a later section.
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3. THE GENERAL PROFIT MAXIMIZATION PROBLEM

The general firm-level maximization problem can be written in a number of alternative ways.

π = max
x y

[Σm
j=1 pjyj − Σn

i=1 wi xi], such that (x, y) ∈ T. (9)

where T is represents the graph of the technology or the technology set. The problem can also
be written as

π = max
x y

[Σm
j=1 pjyj − Σn

i=1 wi xi] such that x ∈ V(y) ] (10a)

π = max
x y

[Σm
j=1 pjyj − Σn

i=1 wi xi] such that y ∈ P(x) ] (10b)

where the technology is represented by V(y), the input requirement set, or P(x), the output set.
We can write it in terms of functions in the following two ways

π = max
x

[p f(x1, x2, . . . , xn) − Σn
i=1 wi xi] (11a)

π = max
x ỹ

[p1 f(ỹ, x) + Σm
2=1 pj yj − Σn

i=1 wi xi] (11b)

= max
x ỹ

[p1 f(ỹ, x) + p̃ ỹ − w x] where

p̃ = (p2, p3, . . . , pm), ỹ = (y2, y3, . . . , ym),

w = (w1, w2, . . . , wn) x = (x1, x2, . . . , pn)

4. PROFIT MAXIMIZATION WITH A SINGLE OUTPUT AND A SINGLE INPUT

4.1. Formulation of Problem. The production function is given by

y = f(x) (12)

If the production function is continuous and differentiable we can use calculus to obtain a set of
conditions describing optimal input choice. If we let π represent profit then we have

π = p f (x) − w x (13)

If we differentiate the expression in equation 13 with respect to the input x obtain

∂ π

∂ x
= p

∂f (x)
∂x

− w = 0 (14)

Since the partial derivative of f with respect to x is the marginal product of x this can be inter-
preted as

p MPx = w

⇒ MV Px = MFCx
(15)

where MVPx is the marginal value product of x and MFCx (marginal factor cost) is its factor
price. Thus the firm will continue using the input x until its marginal contribution to revenues just
covers its costs. We can write equation 14 in an alternative useful way as follows
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p
∂f (x)

∂x
− w = 0

⇒ ∂f (x)
∂x

=
w

p

(16)

This says that the slope of the production function is equal to the ratio of input price to output
price. We can also view this as the slope of the isoprofit line. Remember that profit is given by

π = p y − w x

⇒ y =
π

p
+

w x

p

(17)

The slope of the line is then w
p

. This relationship is demonstrated in figure 1.

FIGURE 1. Profit Maximization Point

x

y
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4.2. Input demands. If we solve equation 14 or equation 16 for x, we obtain the optimal value of x
for a given p and w. As a function of w for a fixed p, this is the factor demand for x.

x∗ = x(p, w) (18)

4.3. Sensitivity analysis. We can investigate the properties of x(p,w) by substituting x(p,w) for x
in equation 14 and then treating it as an identity.

p
∂f ( x(p, w) )

∂x
− w ≡ 0 (19)

If we differentiate equation 19 with respect to w we obtain

p
∂2f ( x(p, w) )

∂x2

∂ x(p, w)
∂w

− 1 ≡ 0 (20)

As long as ∂2f ( x(p,w) )
∂x2 6= 0, we can write

∂ x(p, w)
∂w

≡ 1

p
∂2f ( x(p,w) )

∂x2

(21)
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If the production function is concave then ∂2f ( x(p,w) )
∂x2 ≤ 0. This then implies that ∂ x(p,w)

∂w
≤ 0.

Factor demand curves slope down.

If we differentiate equation 19 with respect to p we obtain

p
∂2f ( x(p, w) )

∂x2

∂ x(p, w)
∂p

+
∂f ( x(p, w) )

∂x
≡ 0 (22)

As long as ∂2f ( x(p,w) )
∂x2 6= 0, we can write

∂ x(p, w)
∂p

≡
− ∂f (x(p,w) )

∂x

p ∂2f ( x(p,w) )
∂x2

(23)

If the production function is concave with a positive marginal product then ∂ x(p,w)
∂p

≥ 0. Factor
demand rises with an increase in output price.

4.4. Example. Consider the production function given by

y = 15 x − .5 x2 (24)
Now let the price of output be given by p = 5 and the price of the input be given by w = 10. The

profit maximization problem can be written

π = max
x

[5 f (x) − 10 x]

= max
x

[5 (15x − 0.5x2) − 10 x]

= max
x

[65x − 2.5x2]

(25)

If we differentiate π with respect to x we obtain

65 − 5 x = 0
⇒ 5 x = 65
⇒ x = 13

(26)

If we write this in terms of marginal value product and marginal factor cost we obtain

5 (15 − x) − 10 = 0
⇒ p MPx − MFCx = 0

⇒ p MPx = MFCx

⇒ x = 13

(27)

5. PROFIT MAXIMIZATION WITH A SINGLE OUTPUT AND TWO INPUTS

5.1. Formulation of Problem. The production function is given by

y = f (x1, x2 ) (28)
If the production function is continuous and differentiable we can use calculus to obtain a set of

conditions describing optimal input choice. If we let π represent profit then we have

π = p f (x1, x2 ) − w1 x1 − w2 x2 (29)
If we differentiate the expression in equation 29 with respect to each input we obtain
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∂ π

∂ x1
= p

∂f (x1, x2)
∂x1

− w1 = 0

∂ π

∂ x2
= p

∂f (x1, x2)
∂x2

− w2 = 0

(30)

Since the partial derivative of f with respect to xj is the marginal product of xj this can be inter-
preted as

π = p f (x1, x2 ) − w1 x1 − w2 x2 (31)

p MP1 = w1

p MP2 = w2

⇒ MV P1 = MFC1

⇒ MV P2 = MFC2

(32)

where MVPj is the marginal value product of the jth input and MFCj (marginal factor cost) is its
factor price.

5.2. Second order conditions. The second order conditions for a maxmimum in equation 29 are
given by examining the Hessian of the objective function.

∇2 π(x) = Hπ =




∂2π(x∗)
∂x1 ∂x1

∂2π(x∗)
∂x1 ∂x2

∂2π(x∗)
∂x2 ∂x1

∂2π(x∗)
∂x2 ∂x2


 =




∂2π(x∗)
∂x2

1

∂2π(x∗)
∂x1 ∂x2

∂2π(x∗)
∂x2 ∂x1

∂2π(x∗)
∂x2

2


 =

[
π11 π12

π21 π22

]
(33)

Equation 29 has a local maximum at the point x∗ if ∂2π
∂x2

1
(x∗) < 0 and ∂2π

∂x2
1

∂2π
∂x2

2
−
[

∂2π
∂x1 ∂x2

]2
> 0 at x∗.

We can say this in another way as follows. The leading principal minors of ∇2 π(x) alternate in sign
with the first leading principal minor being negative. Specifically,

∂2π(x∗)
∂x2

1

= p
∂2f(x∗)

∂x2
1

< 0

→ ∂2f(x∗)
∂x2

1

< 0, given that p > 0

p

∣∣∣∣∣∣

∂2f(x∗)
∂x2

1

∂2f(x∗)
∂x1 ∂x2

∂2f(x∗)
∂x2 ∂x1

∂2f(x∗)
∂x2

2

∣∣∣∣∣∣
> 0

(34)

5.3. Input demands. If we solve the equations in 30 for x1 and x2, we obtain the optimal values of
x for a given p and w. As a function of w for a fixed p, this gives the vector of factor demands for x.

x∗ = x(p, w1, w2) = ( x1(p, w1, w2), x2(p, w1, w2) ) (35)
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5.4. Homogeneity of degree zero of input demands. Consider the profit maximization problem if
we multiply all prices (p w1, w2) by a constant λ as follows

π = p f (x1, x2 ) − w1 x1 − w2 x2 (36a)

⇒ π(λ) = λ p f (x1, x2 ) − λ w1 x1 − λ w2 x2 (36b)

= λ [p f (x1, x2 ) − w1 x1 − w2 x2 ] (36c)

Maximizing 36a or 36c will give the same results for x(p, w1, w2) because λ is just a constant that
will not affect the optimal choice.

5.5. Sensitivity analysis.

5.5.1. Response of factor demand to input prices. We can investigate the properties of x(p, w1, w2) by
substituting x(p, w1, w2) for x in equation 30 and then treating it as an identity.

p
∂f ( x(p, w1, w2) )

∂x1
≡ w1

p
∂f ( x(p, w1, w2) )

∂x2
≡ w2

(37)

If we differentiate equation 37 with respect to w1 we obtain

p
∂2f ( x(p, w1, w2) )

∂x2
1

∂ x1(p, w1, w2)
∂w1

+ p
∂2f ( x(p, w1, w2) )

∂x2 ∂x1

∂ x2(p, w1, w2)
∂w1

≡ 1

p
∂2f ( x(p, w1, w2) )

∂x1 ∂x2

∂ x1(p, w1, w2)
∂w1

+ p
∂2f ( x(p, w1, w2) )

∂x2
2

∂ x2(p, w1, w2)
∂w1

≡ 0

(38)

We can write this in more abbreviated notation as

p f11
∂ x1(p, w1, w2)

∂w1
+ p f12

∂ x2(p, w1, w2)
∂w1

≡ 1

p f21
∂ x1(p, w1, w2)

∂w1
+ p f22

∂ x2(p, w1, w2)
∂w1

≡ 0

(39)

If we differentiate equation 37 with respect to w2 we obtain

p f11
∂ x1(p, w1, w2)

∂w2
+ p f12

∂ x2(p, w1, w2)
∂w2

≡ 0

p f21
∂ x1(p, w1, w2)

∂w2
+ p f22

∂ x2(p, w1, w2)
∂w2

≡ 1

(40)

Now write equations 39 and 40 in matrix form.

p

(
f11 f12

f21 f22

) (
∂ x1(p, w1, w2)

∂w1

∂ x1(p, w1, w2)
∂w2

∂ x2(p, w1, w2)
∂w1

∂ x2(p, w1, w2)
∂w2

)
=
(

1 0
0 1

)
(41)

If the Hessian matrix is non-singular,we can solve this equation for the matrix of first derivatives,
(

∂ x1(p, w1, w2)
∂w1

∂ x1(p, w1, w2)
∂w2

∂ x2(p, w1, w2)
∂w1

∂ x2(p, w1, w2)
∂w2

)
=

1
p

(
f11 f12

f21 f22

)−1

(42)
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We can compute the various partial derivatives on the left hand side of equation 42 by inverting
the Hessian or using Cramer’s rule in connection with equation 41.

The inverse of the Hessian of a two variable production function gan be computed by using the
adjoint. The adjoint is the transpose of the cofactor matrix of the Hessian. For a square nonsingular
matrix A, its inverse is given by

A−1 =
1

|A |
A+ (43)

We compute the inverse by first computing the cofactor matrix.

∇2 f(x1, x2, . . . , xn ) =
(

f11 f12

f21 f22

)

cofactor[f11] = (−1)2 f22

cofactor[f12] = (−1)3 f21

cofactor[f21] = (−1)3 f12

cofactor[f22] = (−1)4 f11

⇒ cofactor
[
∇2 f(x1, x2, . . . , xn )

]
=

(
f22 −f21

−f12 f11

)

(44)

We then find the adjoint by taking the transpose of the cofactor matrix.

adjoint
[
∇2 f(x1, x2, . . . , xn )

]
=

(
f22 −f12

−f21 f11

)
(45)

We obtain the inverse by dividing the adjoint by the determinant of
[
∇2 f(x1, x2, . . . , xn )

]
.

(
f11 f12

f21 f22

)−1

=

(
f22 −f12

−f21 f11

)

f11 f22 − f12 f21

(46)

Referring back to equation 42, we can compute the various partial derivatives.

(
∂ x1(p, w1, w2)

∂w1

∂ x1(p, w1, w2)
∂w2

∂ x2(p, w1, w2)
∂w1

∂ x2(p, w1, w2)
∂w2

)
=

(
f22 −f12

−f21 f11

)

p ( f11 f22 − f12 f21 )
(47)

We then obtain



PROFIT MAXIMIZATION 9

∂ x1(p, w1, w2)
∂w1

=
f22

p ( f11 f22 − f2
12 )

(48a)

∂ x1(p, w1, w2)
∂w2

=
−f12

p ( f11 f22 − f2
12 )

(48b)

∂ x2(p, w1, w2)
∂w1

=
−f21

p ( f11 f22 − f2
12 )

(48c)

∂ x2(p, w1, w2)
∂w2

=
f11

p ( f11 f22 − f2
12 )

(48d)

The denominator is positive by second order conditions in eqaution 34 or the fact that f( ) is
concave. Because we have a maximum, f11 and f22 are less than zero. Own price derivatives are
negative and so factor demand curves slope downwards. The sign of the cross partial derivatives
depends on the sign of f12. If x1 and x2 are gross substitutes, then f12 is negative and the second
cross partials are positive. This means that the demand for x1 goes up as the price of x2 goes up.

5.5.2. Finding factor demand response using Cramer’s rule. When we differentiate the first order con-
ditions we obtain

p

(
f11 f12

f21 f22

) (
∂ x1(p, w1, w2)

∂w1

∂ x1(p, w1, w2)
∂w2

∂ x2(p, w1, w2)
∂w1

∂ x2(p, w1, w2)
∂w2

)
=
(

1 0
0 1

)

⇒
(

f11 f12

f21 f22

) ( ∂ x1(p, w1, w2)
∂w1

∂ x2(p, w1, w2)
∂w1

)
=

1
p

(
1
0

)
=
(

1
p

0

) (49)

To find ∂ x1(p, w1, w2)
∂w1

we replace the first column of the Hessian with the right hand side vector
and then form the ratio of the determinant of this matrix to the determinant of the Hessian. First
for the determinant of the matrix with the righthand side replacing the first column.

∣∣∣∣
1
p

f12

0 f22

∣∣∣∣ =
1
p

f22 (50)

Then find the determinant of the Hessian

∣∣∣∣
f11 f12

f210 f22

∣∣∣∣ = f11 f22 − f12 f21 (51)

Forming the ratio we obtain

∂ x1(p, w1, w2)
∂w1

=
f22

p ( f11 f22 − f12 f21 )
(52)

which is the same as in equation 48.

5.5.3. Response of factor demand to output price. If we differentiate equation 37 with respect to p we
obtain
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p f11
∂ x1(p, w1, w2)

∂p
+ p f12

∂ x2(p, w1, w2)
∂p

≡ −f1

p f21
∂ x1(p, w1, w2)

∂p
+ p f22

∂ x2(p, w1, w2)
∂p

≡ −f2

(53)

Now write equation 53 in matrix form.

p

(
f11 f12

f21 f22

) (
∂ x1(p, w1, w2)

∂p

∂ x2(p, w1, w2)
∂p

)
=
(
−f1

−f2

)
(54)

Multiply both sides of equation 54 by 1
p
∇2 f(x1, x2, . . . , xn )−1 to obtain

(
∂ x1(p, w1, w2)

∂p

∂ x2(p, w1, w2)
∂p

)
=

1
p

(
f11 f12

f21 f22

)−1 (−f1

−f2

)

=

(
f22 −f12

−f21 f11

)

p ( f11 f22 − f12 f21 )

(
−f1

−f2

)

=

(
−f1 f22 + f2 f12

f1 f21 − f2 f11

)

p ( f11 f22 − f12 f21 )

(55)

This implies that

∂ x1(p, w1, w2)
∂p

=
−f1 f22 + f2 f12

p ( f11 f22 − f2
12 )

∂ x2(p, w1, w2)
∂p

=
f1 f21 − f2 f11

p ( f11 f22 − f2
12 )

(56)

These derivatives can be of either sign. Inputs usually have a positive derivative with respect to
output price.

5.6. Example.

5.6.1. Production function. Consider the following production function.

y = f(x1, x2)

= 30x1 + 16x2 − x2
1 + x1 x2 − 2 x2

2

(57)

The first and second partial derivatives are given by
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∂f(x1, x2)
∂x1

= 30 − 2 x1 + x2

∂f(x1, x2)
∂x2

= 16 + x1 − 4 x2

∂2f(x1, x2)
∂x2

1

= − 2

∂2f(x1, x2)
∂x1∂x2

= 1

∂2f(x1, x2)
∂x2

2

= − 4

(58)

The Hessian is

∇2 f(x1, x2) =




∂2f(x1, x2)
∂x2

1

∂2f(x1, x2)
∂x2∂x1

∂2f(x1, x2)
∂x1∂x2

∂2f(x1, x2)
∂x2

2


 =

(
−2 1
1 −4

)
(59)

The determinant of the Hessian is given by

∣∣∣∣
−2 1
1 −4

∣∣∣∣ = 8 − 1 = 7 (60)

5.6.2. Profit maximization. Profit is given by

π = p f(x1, x2) − w1 x1 − w2 x2

= p
[
30x1 + 16x2 − x2

1 + x1 x2 − 2 x2
2

]
− w1 x1 − w2 x2

(61)

We maximize profit by taking the derivatives of 61 setting them equal to zero and solving for x1

and x2.

∂π

∂x1
= p [ 30 − 2 x1 + x2] − w1 = 0

∂π

∂x2
= p [ 16 + x1 − 4 x2] − w2 = 0

(62)

Rearranging 62 we obtain

30 − 2 x1 + x2 =
w1

p
(63a)

16 + x1 − 4 x2 =
w2

p
(63b)

Multiply equation 63b by 2 and add them together to obtain
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62 − 7 x2 =
w1

p
+ 2

w2

p

⇒ 7 x2 = 62 − w1

p
− 2

w2

p

⇒ x2 =
62
7

− w1

7p
− 2w2

7p

(64)

Now substitute x2 in equation 63b and solve for x1.

16 + x1 − 4
(

62
7

− w1

7p
− 2w2

7p

)
=

w2

p

⇒ x1 =
w2

p
+ 4

(
62
7

−
w1

7p
−

2w2

7p

)
− 16

=
w2

p
+

136
7

− 4w1

7p
− 8w2

7p

=
136
7

− 4w1

7p
− w2

7p

(65)

5.6.3. Necessary and sufficient conditions for a maximum. Consider the Hessian of the profit equation.

∇2 π(x1, x2) =




∂2π(x1, x2)
∂x2

1

∂2π(x1, x2)
∂x2∂x1

∂2π(x1, x2)
∂x1∂x2

∂2π(x1, x2)
∂x2

2


 =

(
−2p p
p −4p

)
(66)

For a maximum we need the diagonal elements to be negative and the determinant to be positive.
The diagonal elements are negative. The determinant of the Hessian is given by

∣∣∣∣
−2p p
p −4p

∣∣∣∣ = 8p2 − p2 = 7p2 ≥ 0 (67)

5.6.4. Input demand derivatives computed via first order conditions and formulas. Consider the change
in input demand with a change in input price. Remember the Hessian of the production function
from equation 59 is given by

∇2 f(x1, x2) =
(
−2 1
1 −4

)

∣∣∣∣
−2 1
1 −4

∣∣∣∣ = 7

Now substitute in the formulas for input demand derivatives from equation 48
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∂ x1(p, w1, w2)
∂w1

=
f22

p ( f11 f22 − f2
12 )

=
−4
7p

(68a)

∂ x1(p, w1, w2)
∂w2

=
−f12

p ( f11 f22 − f2
12 )

=
−1
7p

(68b)

∂ x2(p, w1, w2)
∂w1

=
−f21

p ( f11 f22 − f2
12 )

=
−1
7p

(68c)

∂ x2(p, w1, w2)
∂w2

=
f11

p ( f11 f22 − f2
12 )

=
−2
7p

(68d)

5.6.5. Input demand derivatives computed from the optimal input demand equations.

x1 =
136
7

− 4w1

7p
− w2

7p

x2 =
62
7

− w1

7p
− 2w2

7p

∂x1

∂w1
= − 4

7p

∂x1

∂w2
= − 1

7p

∂x2

∂w1
= − 1

7p

∂x2

∂w2
= − 2

7p

(69)

6. PROFIT MAXIMIZATION WITH A SINGLE OUTPUT AND MULTIPLE INPUTS

6.1. Formulation of Problem. The production function is given by

y = f (x1, x2, · · · , xn) (70)
If the production function is continuous and differentiable we can use calculus to obtain a set of

conditions describing optimal input choice. If we let π represent profit then we have

π = p f (x1, x2, · · · , xn) −
n∑

j=1

wi xi, j = 1, 2, · · · n (71)

If we differentiate the expression in equation 71 with respect to each input we obtain

∂ π

∂ xj
= p

∂f (x)
∂xj

− wj = 0, j = 1, 2, · · · n (72)

Since the partial derivative of f with respect to xj is the marginal product of xj this can be inter-
preted as

MPj = wj, j = 1, 2, . . . n

⇒ MV Pj = MFCj, j = 1, 2, . . . n
(73)
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where MVPj is the marginal value product of the jth input and MFCj (marginal factor cost) is its
factor price.

6.2. Input demands. If we solve the equations in 72 for xj , j = 1, 2, . . ., n, we obtain the optimal
values of x for a given p and w. As a function of w for a fixed p, this gives the vector of factor
demands for x.

x∗ = x(p, w) = (x1(p, w), x2(p, w), . . . , xn(p, w)) (74)

6.3. Second order conditions. The second order conditions for a maxmimum in equation 71 are
given by examining the Hessian of the objective function.

∇2 π(x) = Hπ =




∂2π(x∗)
∂x1 ∂x1

∂2π(x∗)
∂x1 ∂x2

. . . ∂2π(x∗)
∂x1 ∂xn

∂2π(x∗)
∂x2 ∂x1

∂2π(x∗)
∂x2 ∂x2

. . . ∂2π(x∗)
∂x2 ∂xn

...
...

...
...

∂2π(x∗)
∂xn ∂x1

∂2π(x∗)
∂xn ∂x2

. . . ∂2π(x∗)
∂xn ∂xn




=




π11 π12 . . . π1n

π21 π22 . . . π2n

...
...

...
...

πn1 πn2 . . . πnn




(75)

Equation 71 has a local maximum at the point x∗ if the leading principal minors of ∇2 π(x)
alternate in sign with the first leading principal minor being negative, the second positive and so
forth. Thus π11 < 0 and π11π22 − π12π21 > 0 and so on. Specifically,

∂2π(x∗)
∂x2

1

= p
∂2f(x∗)

∂x2
1

< 0

→
∂2f(x∗)

∂x2
1

< 0, given that p > 0

p

∣∣∣∣∣∣

∂2f(x∗)
∂x2

1

∂2f(x∗)
∂x1 ∂x2

∂2f(x∗)
∂x2 ∂x1

∂2f(x∗)
∂x2

2

∣∣∣∣∣∣
> 0

p

∣∣∣∣∣∣∣∣∣

∂2f(x∗)
∂x2

1

∂2f(x∗)
∂x1 ∂x2

∂2f(x∗)
∂x1 ∂x3

∂2f(x∗)
∂x2 ∂x1

∂2f(x∗)
∂x2

2

∂2f(x∗)
∂x2 ∂x3

∂2f(x∗)
∂x3 ∂x1

∂2f(x∗)
∂x3∂x2

∂2f(x∗)
∂x2

3

∣∣∣∣∣∣∣∣∣
< 0

...

(76)

6.4. Sensitivity analysis. We can investigate the properties of x(p,w) by substituting x(p,w) for x
in equation 72 and then treating it as an identity.

p
∂f ( x(p, w) )

∂xj
− wj ≡ 0, j = 1, 2, · · · n (77)

If we differentiate the first equation in 77 with respect to wj we obtain
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p
∂2f(x(p, w))

∂x2
1

∂x1(p, w)
∂wj

+ p
∂2f(x(p, w)

∂x2 ∂x1

∂x2(p, w)
∂wj

+ p
∂2f(x(p, w)

∂x3∂x1

∂ x3(p, w)
∂wj

+ · · · ≡ 0

⇒
(

p∂2f(x(p, w))
∂x2

1
p ∂2f(x(p,w)

∂x2 ∂x1
p ∂2f(x(p,w)

∂x3∂x1
· · · ∂2f(x(p,w)

∂xn∂x1

)




∂x1(p, w)
∂wj

∂x2(p, w)
∂wj

∂x3(p, w)
∂wj

...
∂xn(p, w)

∂wj




≡ 0

(78)

If we differentiate the second equation in 77 with respect to wj we obtain

p
∂2f(x(p, w))

∂x1∂x2

∂x1(p, w)
∂wj

+ p
∂2f(x(p, w)

∂x2
2

∂x2(p, w)
∂wj

+ p
∂2f(x(p, w)

∂x3∂x2

∂ x3(p, w)
∂wj

+ · · · ≡ 0

⇒
(

p∂2f(x(p, w))
∂x1∂x2

p ∂2f(x(p,w)
∂x2

2
p ∂2f(x(p,w)

∂x3∂x2
· · · ∂2f(x(p,w)

∂xn∂x2

)




∂x1(p, w)
∂wj

∂x2(p, w)
∂wj

∂x3(p, w)
∂wj

...
∂xn(p, w)

∂wj




≡ 0

(79)

If we differentiate the jth equation in 77 with respect to wj we obtain

p
∂2f(x(p, w))

∂x1∂xj

∂x1(p, w)
∂wj

+ p
∂2f(x(p, w)

∂x2∂xj

∂x2(p, w)
∂wj

+ · · ·+ p
∂2f(x(p, w)

∂x2
j

∂ xj(p, w)
∂wj

+ · · · ≡ 1

⇒
(

p∂2f(x(p, w))
∂x1∂xj

p ∂2f(x(p,w)
∂x2∂xj

· · · p ∂2f(x(p,w)
∂x2

j

· · · ∂2f(x(p,w)
∂xn∂x2

)




∂x1(p, w)
∂wj

∂x2(p, w)
∂wj

...
∂xj(p, w)

∂wj

...
∂xn(p, w)

∂wj




≡ 1

(80)
Continuing in the same fashion we obtain
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p




∂2f(x(p, w))
∂x2

1

∂2f(x(p,w)
∂x2 ∂x1

· · · ∂2f(x(p,w)
∂xj∂x1

· · · ∂2f(x(p,w)
∂xn∂x1

∂2f(x(p, w))
∂x1∂x2

∂2f(x(p,w)
∂x2

2
· · · ∂2f(x(p,w)

∂xj∂x2
· · · ∂2f(x(p,w)

∂xn∂x2

...
...

...
...

...
...

∂2f(x(p, w))
∂x1∂xj

∂2f(x(p,w)
∂x2∂xj

· · · ∂2f(x(p,w)
∂x2

j
· · · ∂2f(x(p,w)

∂xn∂xj

...
...

...
...

...
...

∂2f(x(p, w))
∂x1∂xn

∂2f(x(p,w)
∂x2∂xn

· · · ∂2f(x(p,w)
∂xj∂xn

· · · ∂2f(x(p,w)
∂x2

n







∂x1(p, w)
∂wj

∂x2(p, w)
∂wj

...
∂xj(p, w)

∂wj

...
∂xn(p, w)

∂wj




≡




0

0
...

1
...

0




(81)

If we then consider derivatives with respect to each of the wj we obtain

p




∂2f(x(p, w))
∂x2

1

∂2f(x(p,w)
∂x2 ∂x1

· · · ∂2f(x(p,w)
∂xn∂x1

∂2f(x(p, w))
∂x1∂x2

∂2f(x(p,w)
∂x2

2
· · · ∂2f(x(p,w)

∂xn∂x2

.

.

.
.
.
.

.

.

.
.
.
.

∂2f(x(p, w))
∂x1∂xj

∂2f(x(p,w)
∂x2∂xj

· · · ∂2f(x(p,w)
∂xn∂xj

.

.

.
.
.
.

.

.

.
.
.
.

∂2f(x(p, w))
∂x1∂xn

∂2f(x(p,w)
∂x2∂xn

· · · ∂2f(x(p,w)
∂x2

n







∂x1(p, w)
∂w1

∂x1(p, w)
∂w2

· · · ∂x1(p, w)
∂wn

∂x2(p, w)
∂w1

∂x2(p, w)
∂w2

· · · ∂x2(p, w)
∂wn

.

.

.
.
.
.

.

.

.
.
.
.

∂xn(p, w)
∂w1

∂xn(p, w)
∂w2

· · · ∂xn(p, w)
∂wn




≡




1 0 · · · 0

0 1 · · · 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 0 · · · 1




(82)

We can then write




∂x1(p, w)
∂w1

∂x1(p, w)
∂w2

· · · ∂x1(p, w)
∂wn

∂x2(p, w)
∂w1

∂x2(p, w)
∂w2

· · · ∂x2(p, w)
∂wn

...
...

...
...

∂xn(p, w)
∂w1

∂xn(p, w)
∂w2

· · · ∂xn(p, w)
∂wn




≡ 1

p




∂2f(x(p, w))

∂x2
1

∂2f(x(p,w)
∂x2 ∂x1

· · · ∂2f(x(p,w)
∂xn∂x1

∂2f(x(p, w))
∂x1∂x2

∂2f(x(p,w)

∂x2
2

· · · ∂2f(x(p,w)
∂xn∂x2

...
...

...
...

∂2f(x(p, w))
∂x1∂xj

∂2f(x(p,w)
∂x2∂xj

· · · ∂2f(x(p,w)
∂xn∂xj

...
...

...
...

∂2f(x(p, w))
∂x1∂xn

∂2f(x(p,w)
∂x2∂xn

· · · ∂2f(x(p,w)
∂x2

n




−1

(83)

If the production function is concave, the Hessian will be at least negative semidefinite. This
means that its characteristics roots are all negative or zero. If the Hessian is negative definite then
its characteristics roots are all negative. A negative definite matrix is invertible. The inverse of
an invertible matrix has characteristics roots which are reciprocals of the characteristic roots of the
original matrix. So if the roots of the original matrix are all negative, the roots of the inverse will
also be negative. If the characteristics roots of a matrix are all negative then the matrix is negative
definite. And the diagonal elements of negative definite matrix are all negative. So own price
derivatives are negative. The second order conditions for profit maximization also imply that the
Hessian is negative definite as is clear from equation 76.


