Effects of a Decrease in the Government Budget Deficit
in a Dynamic Sticky-Price IS-LM Model

Background Materials:

- Packet Materials on the Dynamic Sticky-Price IS-LM Model (PACKETS 6-8);
- “Dynamic Sticky-Price IS-LM Model: Illustrative Exercise” (PACKET 9)
- Answer Key for Exercise 3 (handed out in class)

Packet 9 provides an illustrative exercise for a modified version (“Model M”) of the dynamic sticky-price IS-LM model developed in Packets 6-8. A four-diagram graphical analysis is used to determine (as far as possible) the effects of an increase in the government budget deficit \(D \) at the beginning of period 1 on the Model M solution values for endogenous variables in time periods 1 and 2, assuming that the Model M economy begins in period 1 (prior to the increase in \(D \)) with actual real GDP less than potential real GDP, and that the increase in \(D \) at the beginning of period 1 is then maintained throughout all periods \(T \geq 1 \).

This exercise asks you to use a similar four-diagram graphical analysis to analyze the effects of a decrease in the government budget deficit \(D \) at the beginning of period 1 on Model M solution values for endogenous variables in time periods 1 and 2, assuming that the Model M economy begins in period 1 (prior to the decrease in \(D \)) with actual real GDP less than potential real GDP, and that the decrease in \(D \) at the beginning of period 1 is then maintained throughout all periods \(T \geq 1 \).
Model M: For each time period $T \geq 1$:

\begin{align*}
(1) & \quad Y(T) = C(T) + I(T) + G(T) + NE(T) \\
(2) & \quad C(T) = a + b[1 - t]Y(T) \\
(3) & \quad I(T) = e - dR(T) \\
(4) & \quad NE(T) = g - mY(T) - nR(T) \\
(5) & \quad G(T) - tY(T) = D \\
(6) & \quad M/P(T) = kY(T) - hR(T) \\
(7) & \quad N^*(T) = (1 + u)^T \cdot H([1 - t]w^*(T)) \\
(8) & \quad Y^*(T) = A(T)F(N^*(T), K(T)) \\
(9) & \quad w^*(T) = A(T)F_N(N^*(T), K(T)) \\
(10) & \quad A(T) = [1 + \theta \cdot G(T)] \\
(11) & \quad \pi(T, T + 1) = [P(T + 1) - P(T)]/P(T) \\
(12) & \quad \pi(T, T + 1) = \lambda \cdot \pi(T - 1, T) + f \cdot [Y(T) - Y^*(T)]/Y^*(T) \\
(13) & \quad K(T + 1) = I(T) + K(T)
\end{align*}

Classification of Variables and Admissibility Conditions:

Thirteen Period-T Endogenous Variables ($T \geq 1$):
$Y(T), C(T), I(T), G(T), NE(T), R(T), N^*(T), w^*(T), Y^*(T), A(T), \pi(T, T + 1), P(T + 1), K(T + 1)$

Three Period-T Predetermined (State) Variables ($T > 1$):
$\pi(T - 1, T), P(T), K(T)$

Admissible Exogenous Variables and Functional Forms:

Initial Conditions for State Variables ($T = 1$): $\pi^\alpha(0, 1) = 0, P^\alpha(1) > 0, K^\alpha(1) > 0$

Coefficients: $0 < a, 0 < e, 0 < d, 0 < g, 0 < n, 0 < k, 0 < h, 0 < u, 0 < \theta, 0 < \lambda, 0 < f, 0 < b < 1, 0 < m < 1$

Government Policy Variables: $0 < t < 1; 0 < D^\alpha; 0 < M$

Functional Forms:

$H(z)$ with $H(0) = 0$ and $dH(z)/dz > 0$ for all $z = [1 - t]w \geq 0$

$F(N, K)$ with $F(0, K) = F(N, 0) = 0, F_N > 0, F_K > 0, F_{NN} < 0, F_{KK} < 0, F_{NK} > 0$
Suppose, first, that the government maintains the government budget deficit at level D^o for all periods $T \geq 1$. For any $T \geq 1$, let the resulting solution values for the 13 period-T endogenous variables for the Model M equations (1)-(13) with deficit D^o be referred to as the \textit{benchmark solution for period} T, denoted by

$$\text{BenchSol}_T = Y^o(T), C^o(T), I^o(T), G^o(T), NE^o(T), R^o(T), N^{*o}(T), w^{*o}(T), Y^{*o}(T), A^o(T), \pi^o(T), P^o(T + 1), K^o(T + 1)$$

Suppose, instead, that the government at the beginning of period 1 \textit{decreases} the government budget deficit from D^o to a lower (but still positive) value D' and then maintains the deficit at this lower value D' for all periods $T \geq 1$. For any period $T \geq 1$, let the resulting solution values for the 13 period-T endogenous variables for the Model M equations (1)-(13) with deficit D' be referred to as the \textit{new solution for period} T, denoted by

$$\text{NewSol}_T = Y'(T), C'(T), I'(T), G'(T), NE'(T), R'(T), N^{*'}(T), w^{*'}(T), Y^{*'}(T), A'(T), \pi'(T), P'(T + 1), K'(T + 1)$$

IMPORTANT NOTES ON EXERCISE 4:

- Assume in your answers for all parts of Exercise 4 that, for the benchmark solution BenchSol1 for period 1, actual real GDP in period 1 is strictly lower than potential real GDP, and investment is strictly positive; that is, assume $Y^o(1) < Y^{*o}(1)$ and $0 < I^o(1)$.

- Observe that the first five equations for Model M are the same as the first five equations for the IS-LM model from Exercise 3. You should make use of this fact in Exercise 4 to save yourself some calculations.

- As in Packet 9, to simplify the analysis it is assumed in equation (6) for Model M that there is no “Keynes ex ante effect,” that is, it is assumed that real money demand depends on the \textit{real} interest rate R rather than on the (\textit{ex ante}) nominal interest rate $R + \pi$.

- As in Packet 9, it is assumed in equation (10) for Model M that the Total Factor Productivity (TFP) coefficient $A(T)$ appearing in the period-T aggregate production function is an increasing function of period-T government expenditure $G(T)$, where $G(T)$ is classified as a period-T endogenous variable. Thus, in Model M, both $A(T)$ and $G(T)$ are period-T endogenous variables.
QUESTION 1 [13 POINTS TOTAL]:

Part Q1.A [6.5 Points]: Using a careful 4-diagram graphical analysis as illustrated in Packet 9, determine for each of the 13 period-1 endogenous variables whether its NewSol1 solution value resulting under the smaller deficit level D' is larger, the same, smaller, or indeterminate in size in relation to its corresponding BenchSol1 solution value under the original deficit level D^o.

For example, for the particular endogenous variable Y (real GDP), can you sign the difference $[Y'(1) - Y^o(1)]$? Why or why not? Be sure all of your graphs are carefully labeled and explained, and that all of your assertions are carefully justified in terms of Model M assumptions.

Part Q1.B [6.5 Points]: Provide a careful economic interpretation for your findings in Part Q1.A. That is, carefully discuss what you believe to be the economic meaning of these findings.

QUESTION 2 [13 POINTS TOTAL]:

Part Q2.A [6.5 Points]: Using a careful 4-diagram graphical analysis as illustrated in Packet 9, determine for each of the 13 period-2 endogenous variables whether its NewSol2 solution value resulting under the smaller deficit level D' is larger, the same, smaller, or indeterminate in size in relation to its corresponding BenchSol2 solution value under the original deficit level D^o.

For example, for the particular endogenous variable Y (real GDP), can you sign the difference $[Y'(2) - Y^o(2)]$? Why or why not? Be sure all of your graphs are carefully labeled and explained, and that all of your assertions are carefully justified in terms of Model M assumptions.

Part Q2.B [6.5 Points]: Provide a careful economic interpretation for your findings in Part Q2.A. That is, carefully discuss what you believe to be the economic meaning of these findings.

QUESTION 3 [4 POINTS]:

Based on your findings for Q1 and Q2, to what extent (if any) does Model M provide support for the following assertion currently being made by U.S. and European austerity advocates:

All else equal, a decrease in the government budget deficit (with no change in income tax rates) will result in a higher level of real GDP over the longer run.