1. Let $F : \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R} \to \mathbb{R}$ be differentiable functions of a vector of arguments (x,z,θ) where x and z are vectors of choice variables of dimensions $n \geq 1$ and $m \geq 1$, respectively, and θ is a scalar parameter. Consider the problem:

$$ \min_{w.r.t.\ x, z} F(x,z,\theta) \text{ subject to } g(x,z,\theta) = 0. $$

Assume that the problem has a strict global solution for each value of θ. Denote the optimal values of x and z by $x^*(\theta)$ and $z^*(\theta)$ (assumed differentiable) and define the value function:

$$ F^*(\theta) \equiv F(x^*(\theta),z^*(\theta),\theta). $$

Now consider the problem:

$$ \min_{w.r.t.\ x} F(x,z,\theta) \text{ subject to } g(x,z,\theta) = 0. $$

Assume that the problem has a strict global solution for each vector of values of z and θ. Denote the optimal value of x by $\hat{x}(z,\theta)$ (assumed differentiable) and define the value function:

$$ F^*(\theta) \equiv F(\hat{x}(z,\theta),z,\theta). $$

Problem #3 from Homework #2 in Fall 2000 established the following first- and second-order envelope properties for these value functions:

$$ \frac{dF^*}{d\theta}(\theta) = \frac{\partial \hat{F}}{\partial \theta}(z^*(\theta),\theta) \quad \text{and} \quad \frac{d^2F^*}{d\theta^2}(\theta) \leq \frac{\partial^2 \hat{F}}{\partial \theta^2}(z^*(\theta),\theta). $$

Verify these properties by direct calculation for the case in which $n = m = 1$, the role of "F" is played by $wL + rK$, and the role of "g" is played by $L^\alpha K^\beta - Q$, where $\alpha, \beta > 0$ and $\alpha + \beta < 1$. The interpretations are as follows:

L (the "x" variable) is labor employment,
K (the "z" variable) is capital employment,
w and r are the unit opportunity costs of labor and capital, respectively, and
Q (the "θ" parameter) is output quantity given by production function $Q = L^\alpha K^\beta$.

With these interpretations, $F^*(\cdot)$ and $\hat{F}(\cdot)$ are the long- and short-run cost functions, respectively.
2. \(F : \mathbb{R}^n \to \mathbb{R} \) is a differentiable function, \(g \in \mathbb{R}^n \) is a 1 x \(n \) vector with \(g \neq 0 \), and \(b \) is a scalar constant. Consider the problem:

\[
\max_{x} F(x) \quad \text{subject to} \quad g \cdot x = b, \quad (*)
\]

and define the Lagrangian:

\[
L(x; \lambda) = F(x) + \lambda(b - g \cdot x).
\]

In lecture we sketched the graph and intuition supporting the following proposition:

If \(F(\cdot) \) is quasi-concave and \(x^* \) satisfies the first-order necessary conditions (that is, there exists \(\lambda^* \neq 0 \) such that \((x^*, \lambda^*) \) is a stationary point of \(L(\cdot) \)), then \(x^* \) is a global solution to problem (*).

In this problem, we will provide a formal proof of this proposition.

Here are some hints. First recall that quasi-concavity of \(F(\cdot) \) is equivalent to:

\[
\text{For all } u, v \in \mathbb{R}^n \text{ such that } F(u) \geq F(v), \quad \frac{\partial F}{\partial x}(v)(u - v) \geq 0.
\]

Next, recalling a result from math camp about the dot product of two vectors (Simon and Blume, Theorem 10.3), we can see that the last inequality above has a geometric interpretation: The vector between points \(u \) and \(v \), and the gradient vector of \(F(\cdot) \) at \(v \), form an angle that is no bigger than 90 degrees.

Refer to the graph on the following page. Let \(x^* \) satisfy the first order conditions. To construct a proof by contradiction, suppose that there is an \(\hat{x} \) that satisfies the constraint but is such that \(F(\hat{x}) > F(x^*) \). By continuity of \(F(\cdot) \), the value of the function must be greater than \(F(x^*) \) on some neighborhood about \(\hat{x} \). Thus, one can add to \(\hat{x} \) a small positive multiple \((\varepsilon > 0) \) of the vector \(-\partial F/\partial x(x^*)\) and still have a point at which the value of the objective function is greater than \(F(x^*) \). Use this to establish a contradiction with the quasi-concavity of \(F(\cdot) \).
\[\frac{\partial F}{\partial x} (x^*) \]

\[F(x) = \text{constant} \]

\[g \cdot x = b \]