1. Let $F : \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^1 \to \mathbb{R}$ be a differentiable function of a vector of arguments (x, z, θ), where x and z are vectors of choice variables of dimensions $n \geq 1$ and $m \geq 1$, respectively, and θ is a scalar parameter. Consider the problem:

$$\max_{w.r.t. x, z; \text{ for given } \theta} F(x, z, \theta).$$

Assume that the problem has a strict global solution for each value of θ. Denote the optimal values of x and z by $x^*(\theta)$ and $z^*(\theta)$ (assumed differentiable) and define the value function: $F^*(\theta) \equiv F(x^*(\theta), z^*(\theta), \theta)$. Now consider the problem:

$$\max_{w.r.t. x, z; \text{ for given } \theta} F(x, z, \theta).$$

Again assume that there is a strict global solution for all z and θ denoted $x(\theta, z)$ (again assumed differentiable) and define the value function: $F(\theta, z, \theta) \equiv F(x(\theta, z), z, \theta)$. It is obvious that $x^*(\theta) = x(z^*(\theta), \theta)$ and $F^*(\theta) = F(z^*(\theta), \theta)$.

a. Use the envelope theorem to show

$$\frac{dF^*}{d\theta}(\theta) = \frac{\partial \hat{F}}{\partial \theta}(z^*(\theta), \theta).$$

b. Show that

$$\frac{d^2F^*}{d\theta^2}(\theta) \geq \frac{\partial^2 \hat{F}}{\partial \theta^2}(z^*(\theta), \theta).$$

(Hint: For any θ_0 and θ_1, we have $F^*(\theta_1) = \hat{F}(z^*(\theta_1), \theta_1) \geq \hat{F}(z^*(\theta_0), \theta_1)$. Viewing $F^*(\theta_1)$ and $\hat{F}(z^*(\theta_0), \theta_1)$ as functions of θ_1 for fixed θ_0, write down second-order Taylor series expansions for them taking θ_0 as the expansion point.)

c. Use the results of part b and Hotelling's lemma (see, for example, Simon and Blume, Theorem 22.11) to prove that a competitive firm's "long-run" supply curve is at least as elastic as its "short-run" supply curve.
2. This problem is closely related to the previous one. Let \(F : \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^l \to \mathbb{R} \) and \(g : \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^l \to \mathbb{R} \) be differentiable functions of a vector of arguments \((x, z, \theta)\), where \(x \) and \(z \) are vectors of choice variables of dimensions \(n \geq 1 \) and \(m \geq 1 \), respectively, and \(\theta \) is a scalar parameter. We can think of the elements of \(x \) as choice variables that can be adjusted in the "long-run" or the "short-run," while the elements of \(z \) are choice variables that can be adjusted only in the long-run and are fixed in the short-run. First consider the long-run, equality-constrained, maximization problem:

\[
\max \quad F(x, z, \theta) \quad \text{subject to} \quad g(x, z, \theta) = b,
\]

where \(b \) is a scalar constraint constant. Assume that the problem has a strict global solution for each value of \(\theta \). Denote the optimal values of \(x \) and \(z \) by \(x^*(\theta) \) and \(z^*(\theta) \) (assumed differentiable) and define the long-run value function:

\[
F^*(\theta) \equiv F(x^*(\theta), z^*(\theta), \theta).
\]

Now consider the short-run, equality-constrained, maximization problem:

\[
\max \quad F(x, z, \theta) \quad \text{subject to} \quad g(x, z, \theta) = b.
\]

Again assume that there is a strict global solution for all \(z \) and \(\theta \) denoted \(\hat{x}(z, \theta) \) (again assumed differentiable) and define the short-run value function:

\[
\hat{F}(z, \theta) \equiv F(\hat{x}(z, \theta), z, \theta).
\]

It is obvious that \(x^*(\theta) = \hat{x}(z^*(\theta), \theta) \) and \(F^*(\theta) = \hat{F}(z^*(\theta), \theta) \).

a. Use the envelope theorem to establish the "first-order envelope property":

\[
\frac{dF^*}{d\theta}(\theta) = \frac{\partial \hat{F}}{\partial \theta}(z^*(\theta), \theta).
\]

b. Review the proof of the "second-order envelope property,"

\[
\frac{d^2F^*}{d\theta^2}(\theta) \geq \frac{\partial^2 \hat{F}}{\partial \theta^2}(z^*(\theta), \theta),
\]

given in part b of the previous problem. This proof carries over to the present case of an equality-constrained maximization problem except that we have to add the assumption that, for any \(z \) and \(\theta \), we can find an \(x \) that satisfies the constraint. Where is this additional assumption used in the proof?

(Note: The first-order envelope property says that the long-run and short-run value functions are tangent at the point they have in common. The second-order envelope property says that, at this tangency point, the long-run value function is at least as convex as the short-run value function.)
c. Use the result of part b, the expenditure function from consumer theory, and its relation to Hicksian (compensated) demand functions (discussed in Mas-Colell, Whinston, and Green, section 3.E and Proposition 3.G.1, for example) to prove that a consumer’s Hicksian demand for a good is at least as responsive to changes in own-price in the long-run (when quantities of all goods can be chosen freely) as in the short-run (when the quantities of some goods are fixed).

(Note: This result is called the LeChatelier-Samuelson principle.)

3. This problem is closely related to the previous two. Let \(F : \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^1 \rightarrow \mathbb{R} \) and \(g : \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^1 \rightarrow \mathbb{R} \) be differentiable functions of a vector of arguments \((x, z, \theta)\), where \(x\) and \(z\) are vectors of choice variables of dimensions \(n \geq 1\) and \(m \geq 1\), respectively, and \(\theta\) is a scalar parameter. Consider the problem:

\[
\min_{w.r.t. \ x, \ z; \ for \ given \ \theta} F(x, z, \theta) \quad \text{subject to} \quad g(x, z, \theta) = 0,
\]

Assume that the problem has a strict global solution for each value of \(\theta\). Denote the optimal values of \(x\) and \(z\) by \(x^*(\theta)\) and \(z^*(\theta)\) (assumed differentiable) and define the value function: \(F^*(\theta) = F(x^*(\theta), z^*(\theta), \theta)\). Now consider the problem:

\[
\min_{w.r.t. \ x; \ for \ given \ \theta, \ z} F(x, z, \theta) \quad \text{subject to} \quad g(x, z, \theta) = 0.
\]

Again assume that there is a strict global solution for all \(z\) and \(\theta\) denoted \(\hat{x}(z, \theta)\) (again assumed differentiable) and define the value function: \(\hat{F}(z, \theta) = F(\hat{x}(z, \theta), z, \theta)\).

State and prove the second-order envelope property relevant to these two problems.

Every principles of microeconomics textbook contains a graph of a family of \(U\)-shaped short-run average cost curves and the associated long-run average cost curve. How is the second-order envelope property evident in the appearance of these graphs?

4. Consider the following expenditure minimization problem for a consumer with utility function \(u(x_1, x_2)\):

\[
\min_{w.r.t. \ x_1, x_2} p_1 x_1 + p_2 x_2 \quad \text{subject to} \quad u(x_1, x_2) = U.
\]

Assume that \(u(\cdot)\) is differentiable with strictly positive partial derivatives throughout \(\mathbb{R}^2_+\). Further assume that: given initial values for prices, \(p_1\) and \(p_2\), and utility, \(U\); we have strictly positive solutions, \(x_1^*\) and \(x_2^*\) at which the second-order sufficient conditions for the problem are satisfied. (These assumptions mean that it is safe to ignore the non-
negativity restrictions on x_1 and x_2, and to treat the utility constraint as an equality, as we have done in the statement of the problem above. Denote the solutions as functions (assumed differentiable) of the parameters: $x_1^*(p_1, p_2; U)$ and $x_2^*(p_1, p_2; U)$. Define the expenditure function: $E(p_1, p_2; U) = p_1 x_1^*(p_1, p_2; U) + p_2 x_2^*(p_1, p_2; U)$.

a. Prove that $\frac{\partial x_1^*}{\partial p_2} = \frac{\partial x_2^*}{\partial p_1}$ with an approach that uses the envelope theorem and Young's theorem. (Young's theorem says that the second-order cross partial derivatives of differentiable functions are independent of the order in which the derivatives are taken.)

b. Prove the same result stated in part a with an approach that applies the implicit function theorem to the first-order necessary conditions for the expenditure minimization problem.