1. $f: \mathbb{R}_+^n \rightarrow \mathbb{R}$ is concave with $f(0) = 0$. Prove that, for any $x \in \mathbb{R}_+^n$,

$$k \ f(x) \geq f(k \ x) \quad \text{if} \quad k \geq 1 \quad \text{and}$$

$$f(k \ x) \geq k \ f(x) \quad \text{if} \quad 0 \leq k < 1.$$

2. A total of $R > 0$ dollars must be allocated among $n \geq 3$ investment projects. For $i = 1, 2, \ldots, n$, the return from project i is

$$a_i \ \ln(1 + x_i),$$

where x_i is the amount invested in project i and the a_is are constants satisfying:

$$0 < a_1 < a_2 < a_3 \ldots < a_n.$$

The problem is to allocate the R dollars so as to maximize the portfolio's total return. This can be stated as follows:

$$\max_{w.r.t. \ x_1, x_2, \ldots, x_n} \sum_{i=1}^{n} a_i \ \ln(1 + x_i) \quad \text{such that} \quad x_1, x_2, \ldots, x_n \geq 0, \quad \text{and} \quad \sum_{i=1}^{n} x_i \leq R.$$

a. Write down the Lagrangian and the Kuhn-Tucker conditions for this problem.

b. Letting x_i^* denote the solution value for x_i, use the Kuhn-Tucker conditions to prove each of the following claims.

i. $\sum_{i=1}^{n} x_i^* = R$.

ii. $x_k^* = 0$ and $x_j^* > 0$ implies $k < j$.

iii. Let $0 < m < n$. If exactly m of the x_i^*s are equal to 0, then

$$a_m \leq \frac{\sum_{i=m+1}^{n} a_i}{n - m + R}.$$
3. A consumer chooses consumption levels to maximize utility subject to a budget constraint:

\[
\max_{x_1, x_2} U(x_1, x_2) \quad \text{such that} \quad p_1 x_1 + p_2 x_2 = I,
\]

where \(p_1 \) and \(p_2 \) are the positive prices of goods 1 and 2, and \(I > 0 \) is money income. (We assume that marginal utilities are strictly positive throughout the commodity space and that the marginal utility of good \(i \) goes to infinity as \(x_i \) goes to zero. These assumptions are sufficient to insure a solution on the budget line with strictly positive quantities of both goods. So it’s safe to ignore the non-negatively constraints on the \(x_i \)s and to treat the budget constraint as an equality.)

Denote the solutions to this problem by \(x_1^*(p_1, p_2; I) \) and \(x_2^*(p_1, p_2; I) \), and define the indirect utility function:

\[
V(p_1, p_2; I) = U(x_1^*(p_1, p_2; I), x_2^*(p_1, p_2; I)).
\]

a. Use the envelope theorem to prove Roy’s identity:

\[
\text{For } i = 1, 2, \quad x_i^*(p_1, p_2; I) = \frac{-\partial V / \partial p_i}{\partial V / \partial I}.
\]

b. Verify Roy’s identity for the special case of \(U(x_1, x_2) = \alpha x_1^\alpha x_2 \), where \(\alpha > 0 \). That is, solve for the forms of \(x_1^*() \), \(x_2^*() \), and \(V() \) for this utility function and differentiate \(V() \) to show that Roy’s identity holds.

4. Consider the following two equality constrained optimization problems:

\[
\begin{align*}
\max_{\text{w.r.t. } x_1, x_2} & \quad f(x_1, x_2) \quad \text{such that} \quad g(x_1, x_2) = b \quad \text{(*)} \\
\min_{\text{w.r.t. } x_1, x_2} & \quad h(x_1, x_2) \quad \text{such that} \quad g(x_1, x_2) = b \quad \text{(**)}
\end{align*}
\]

where \(f() \), \(g() \), and \(h() \) are differentiable functions and \(b \) is a constant.

a. Write down first- and second-order conditions that are sufficient for a strict local solution to problem (*). Write down first- and second-order conditions that are sufficient for a strict local solution to problem (**).

b. Show that an \(x^* = (x_1^*, x_2^*) \) that satisfies the sufficient conditions for problem (*) also satisfies the sufficient conditions for problem (**) when \(h(x_1, x_2) = -f(x_1, x_2) \).