1.1. Graph the sets A, B, C and D below and decide whether or not they are convex.

$A = \{(x, y): x \geq 0, y \geq 0, \ x + y + \text{Max}[(x - 5), 0] \leq w\}; \quad w > 0, \ a\ scalar$

$B = \{(x, y): x \geq 0, y \geq 0, \ 2x + y - \text{Max}[(x - 5), 0] \leq w\}; \quad w > 10, \ a\ scalar$

$C = \{(x, y): x \geq 0, y \geq 0, \ x + y + \text{Max}[x, y] \geq w\}; \quad w > 0, \ a\ scalar$

$D = \{(x, y): x \geq 0, y \geq 0, \ x + y + \text{Min}[x, y] \geq w\}; \quad w > 0, \ a\ scalar$

NOTE: $\text{Max}[(x - 5), 0] = 0, \ x \leq 5; \text{Max}[(x - 5), 0] = (x - 5) \ for \ x \geq 5$

1.2. Set A in problem set 1.1 can represent a budget set for someone who has income w and faces prices $(p_x, p_y) = (1, 1)$ if he buys no more than 5 units of good y, but must pay a price of $p_x = 2$ for all units of x purchased in excess of 5. Similarly, set B can be thought of as a similar case, except that the price of x is 2 for the first 5 units of x, whereas the price declines to $p_x = 1$ on all units of y purchased in excess of 5. Suppose you want to maximize the function: $U = xy$.

a. Find the maximum for (x, y) in set A and relate your answer to the value of w. Can you be sure a local maximum is a global maximum?

b. What difficulties do you encounter in finding a maximum for (x, y) in set B? Is every local maximum going to be a global maximum?

c. Find the optimum for (x, y) in set B and relate your answer to the value of w.

d. Set C above describes upper contour sets and, in terms of “utility” functions, represents a variant of Leontief preferences. Is the function $f(x, y)$ described by the left-hand side of the inequality in set C a quasi-concave function?

e. Repeat part (d) for set D.

1.3. Consider the function $f: \mathbb{R}^2_{++} \to \mathbb{R}$ specified as $f(x_1, x_2) = \left[x_1^\alpha + x_2^\beta\right]^{\beta/\alpha}, \ \beta > 0$.

a. Derive restrictions on α and β which ensure that f is concave.

b. Derive restrictions on α and β which ensure that f is quasiconcave.

c. Derive restrictions on α and β which ensure that f is convex.

1.4. Suppose we have two functions $f, g: \mathbb{R}^2_{++} \to \mathbb{R}: f(x_1, x_2) = x_1^\alpha x_2^\beta, \ g(x_1, x_2) = x_1^\gamma x_2^\phi$. Assume all parameters $(\alpha, \beta, \eta, \phi)$ are positive.

a. If (α, β) and (η, ϕ) are such that f and g are concave, is $(f + g)$ necessarily concave?

b. If (α, β) and (η, ϕ) are such that f and g are convex, is $(f + g)$ necessarily convex?

c. If (α, β) and (η, ϕ) are such that f and g are quasi-concave, is $(f + g)$ necessarily quasi-concave? Explain your answer to each part.
1.5. Let \(f: [-10,10] \rightarrow \mathbb{R} \) be given by \(f(x) = x^3 - 48x \).

Use first and second order conditions to identify local minimum and maximum points, and argue why each of these local maximum (minimum) need not be a global maximum (minimum). **Which points in this domain are the global minimum and maximum points?**

If the domain were \([-10, 4]\) would your answer concerning the relationship between the local and global extreme point(s) change? How?

1.6. For the following three versions of the function \(f: S \rightarrow \mathbb{R} \) discuss whether Weierstrass’ theorem applies and indicate the global maximum and minimum (if they exist):

 (i) \(S = \mathbb{R} \) and \(f(x) = x^4 \)

 (ii) \(S = (0,1) \) and \(f(x) = x \)

 (iii) \(S = [-4,4] \) and \(f(x) = \begin{cases}
 x^3 - 8 & x \neq 2, \\
 x - 2 & a \text{ a scalar.}
\end{cases} \)

1.7. Let \(f(x_1, x_2) \) be a concave function, and assume \((x_1, x_2) \in D \subset \mathbb{R}^2\).

 a. Must a global maximum exist in \(D \) for \(f(x_1, x_2) \)?

 b. If we find \((x_1^*, x_2^*)\) is a local maximum, can we conclude it is a global maximum?

 c. Define a new function: \(g(x_1, x_2) = H(f(x_1, x_2)) \) where \(H: \mathbb{R} \rightarrow \mathbb{R} \). Suppose \(H \) is differentiable and \(\frac{dH}{df} > 0 \) everywhere. Is the function \(g(x_1, x_2) \) necessarily concave?

 d. Same assumptions as (b) and (c). Will \((x_1^*, x_2^*)\) be a local maximum for \(g(x_1, x_2) \)? Will it be a global maximum? Explain your answer.