
SAMPLE MOMENTS

1. POPULATION MOMENTS

1.1. Moments about the origin (raw moments). The rth moment about the origin of a random
variable X, denoted by µ′

r , is the expected value of Xr ; symbolically,

µ′
r =E(Xr) (1)

=
∑

x

xr f(x) (2)

for r = 0, 1, 2, . . . when X is discrete and

µ′
r =E(Xr)

v
(3)

when X is continuous. The rth moment about the origin is only defined if E[ Xr ] exists. A mo-
ment about the origin is sometimes called a raw moment. Note that µ′

1 = E(X) = µX , the mean of
the distribution of X, or simply the mean of X. The rth moment is sometimes written as function of
θ where θ is a vector of parameters that characterize the distribution of X.

If there is a sequence of random variables, X1, X2, . . . Xn, we will call the rth population moment
of the ith random variable µ′

i, r and define it as

µ′
i , r = E (Xr

i) (4)

1.2. Central moments. The rth moment about the mean of a random variable X, denoted by µr , is
the expected value of ( X − µX )r symbolically,

µr =E[ ( X − µX )r ]

=
∑

x

( x − µX )r f(x) (5)

for r = 0, 1, 2, . . . when X is discrete and

µr =E[ (X − µX)r ]
=
∫∞
−∞ (x − µX )r

f(x) dx
(6)

when X is continuous. The rth moment about the mean is only defined if E[ (X - µX)r] exists. The
rth moment about the mean of a random variable X is sometimes called the rth central moment of
X. The rth central moment of X about a is defined as E[ (X - a)r ]. If a = µX, we have the rth central
moment of X about µX.
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Note that µ1 = E[(X - µX)] = 0 and µ2 = E[(X - µX)2] = Var[X]. Also note that all odd moments of
X around its mean are zero for symmetrical distributions, provided such moments exist.

If there is a sequence of random variables, X1, X2, . . . Xn, we will call the rth central population
moment of the ith random variable µ i , r and define it as

µi, r = E
(
Xr

i − µ′
i,1

)r (7)

When the variables are identically distributed, we will drop the i subscript and write µ′
r and µ r

.

2. SAMPLE MOMENTS

2.1. Definitions. Assume there is a sequence of random variables, X1, X2, . . . Xn. The first sample
moment, usually called the average is defined by

X̄n =
1
n

n∑

i= 1

Xi (8)

Corresponding to this statistic is its numerical value, x̄n, which is defined by

x̄n =
1
n

n∑

i= 1

xi (9)

where xi represents the observed value of Xi. The rth sample moment for any t is defined by

X̄r
n =

1
n

n∑

i= 1

Xr
i (10)

This too has a numerical counterpart given by

x̄r
n =

1
n

n∑

i= 1

xr
i (11)

2.2. Properties of Sample Moments.

2.2.1. Expected value of X̄ r
n . Taking the expected value of equation 10 we obtain

E
[
X̄r

n

]
= EX̄r

n =
1
n

n∑

i= 1

E Xr
i =

1
n

n∑

i= 1

µ′
i , r (12)

If the X’s are identically distributed, then

E
[
X̄r

n

]
= EX̄r

n =
1
n

n∑

i= 1

µ′
r = µ′

r (13)

2.2.2. Variance of X̄r
n.

E
[
X̄r

n

]
= ¯E X

r
n =

1
n

n∑

i= 1

µ′
r = µ′

r (14)
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2.2.3. Variance of X̄r
n. First consider the case where we have a sample X1, X2, . . . Xn.

V ar
(
X̄r

n

)
= V ar

(
1
n

n∑

i= 1

Xr
i

)
=

1
n2

V ar

(
n∑

i= 1

Xr
i

)
(15)

If the X’s are independent, then

V ar
(
X̄r

n

)
=

1
n2

n∑

i = 1

V ar (Xr
i ) (16)

If the X’s are independent and identically distributed, then

V ar
(
X̄r

n

)
=

1
n

V ar (Xr) (17)

where X denotes any one of the random variables (because they are all identical). In the case
where r =1, we obtain

V ar
(
X̄n

)
=

1
n

V ar ( X ) =
σ2

n
(18)

3. SAMPLE CENTRAL MOMENTS

3.1. Definitions. Assume there is a sequence of random variables, X1, X2, . . . Xn. We define the
sample central moments as

Cr
n = 1

n

∑n
i = 1

(
Xi − µ′

i , 1

)r
, r = 1 , 2 , 3 , · · · ,

⇒ C1
n = 1

n

∑n
i = 1

(
Xi − µ′

i , 1

)

⇒ C 2
n = 1

n

∑n
i = 1

(
Xi − µ′

i , 1

)2 (19)

These are only defined if µ′
i ,1 is known.

3.2. Properties of Sample Moments.

3.2.1. Expected value of Cr
n. The expected value of Cr

n is given by

E ( Cr
n ) = 1

n

∑n
i = 1

(
Xi − µ′

i , 1

)r = 1
n

∑n
i = 1 µ i , r (20)

The last equality follows from equation 7.

If the Xi are identically distributed, then

E ( Cr
n ) =µ r

E
(
C1

n

)
=0 (21)
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3.2.2. Variance of C r
n. First consider the case where we have a sample X1, X2, . . . Xn.

V ar ( Cr
n ) = V ar

(
1
n

n∑

i= 1

(
Xi − µ′

i ,1

) r

)
=

1
n2

V ar

(
n∑

i= 1

(
Xi − µ′

i ,1

)r
)

(22)

If the X’s are independently distributed, then

V ar ( Cr
n ) =

1
n2

n∑

i= 1

V ar
[ (

Xi − µ′
i ,1

)r] (23)

If the X’s are independent and identically distributed, then

V ar ( Cr
n ) =

1
n

V ar
[
( X − µ′

1 )r ] (24)

where X denotes any one of the random variables (because they are all identical). In the case
where r =1, we obtain

V ar ( Cr
n ) = 1

n V ar [ X − µ′
1 ]

= 1
n V ar [ X − µ ]

= 1
n σ2 − 2 Cov [ X , µ ] + V ar [ µ ]

= 1
n σ2

(25)

4. SAMPLE ABOUT THE AVERAGE

4.1. Definitions. Assume there is a sequence of random variables, X1, X2, . . . Xn. Define the rth
sample moment about the average as

M r
n = 1

n

∑n
i = 1

(
Xi − X̄n

)r
, r = 1 , 2 , 3 , · · · , (26)

This is clearly a statistic of which we can compute a numerical value. We denote the numerical
value by, mr

n, and define it as

mr
n =

1
n

n∑

i= 1

( xi − x̄n)r (27)

In the special case where r = 1 we have

M1
n = 1

n

∑n
i = 1

(
Xi − X̄n

)

= 1
n

∑n
i= 1 Xi − X̄n

=X̄n − X̄n = 0
(28)

4.2. Properties of Sample Moments about the Average when r = 2.
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4.2.1. Alternative ways to write M r
n. We can write M r

n in an alternative useful way by expanding the
squared term and then simplifying as follows

M r
n = 1

n

∑n
i = 1

(
Xi − X̄n

)r

⇒ M2
n = 1

n

∑n
i = 1

(
Xi − X̄n

)2
= 1

n

(∑n
i = 1

[
X 2

i − 2 XiX̄n + X̄ 2
n

])

= 1
n

∑n
i= 1 X 2

i − 2X̄n

n

∑n
i= 1Xi + 1

n

∑n
i= 1 X̄2

n

= 1
n

∑n
i= 1 X2

i − 2X̄2
n + X̄2

n

= 1
n

(∑n
i = 1 X 2

i

)
− X̄2

n

(29)

4.2.2. Expected value of M r
n. The expected value of M r

n is then given by

E
(
M2

n

)
= 1

n E
[∑n

i = 1 X 2
i

]
− E

[
X̄2

n

]

= 1
n

∑n
i = 1 E

[
X2

i

]
−
(
E
[

X̄n

] )2 − V ar(X̄n )
= 1

n

∑n
i = 1 µ′

i , 2 −
(

1
n

∑n
i = 1 µ′

i , 1

)2 − V ar(X̄n )
(30)

The second line follows from the alternative definition of variance

V ar ( X ) =E
(

X 2
)
− [ E ( X ) ]2

⇒ E
(

X 2
)

=[ E ( X ) ]2 + V ar ( X )
⇒ E

(
X̄ 2

n

)
=
[

E
(
X̄n

) ]2
+ V ar(X̄n )

(31)

and the third line follows from equation 12. If the Xi are independent and identically distributed,
then

E
(
M2

n

)
= 1

n
E
[∑n

i = 1 X 2
i

]
− E

[
X̄ 2

n

]

= 1
n

∑n
i= 1 µ′

i ,2 −
(

1
n

∑n
i= 1 µ′

i ,1

) 2 − V ar(X̄n )
=µ′

2 − ( µ′
1 ) 2 − σ2

n
=σ2 − 1

n σ2

= n − 1
n σ2

(32)

where µ′
1 and µ′

2 are the first and second population moments, and µ2 is the second central
population moment for the identically distributed variables. Note that this obviously implies

E
[∑n

i= 1

(
Xi − X̄

)2 ]
=n E

(
M2

n

)

=n
(

n − 1
n

)
σ2

=( n − 1) σ2

(33)

4.2.3. Variance of M2
n. By definition,

V ar
(
M2

n

)
=E

[(
M2

n

)2]−
(
E M2

n

)2 (34)

The second term on the right on equation 34 is easily obtained by squaring the result in equation
32.

E
(
M2

n

)
=n − 1

n σ2

⇒
(
E
(
M2

n

))2 =
(
E M2

n

)2 = (n − 1)2

n2 σ4
(35)
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Now consider the first term on the right hand side of equation 34. Write it as

E
[(

M2
n

)2] =E

[(
1
n

∑n
i = 1

(
Xi − X̄n

)2)2
]

(36)

Now consider writing 1
n

∑n
i = 1

(
Xi − X̄n

)2 as follows

1
n

∑n
i = 1

(
Xi − X̄

)2 = 1
n

∑n
i = 1

(
(Xi − µ) − (X̄ − µ)

)2

= 1
n

∑n
i = 1

(
Yi − Ȳ

)2
where Yi =Xi − µ

Ȳ =X̄ − µ

(37)

Obviously,

∑n
i = 1

(
Xi − X̄

)2 =
∑n

i = 1

(
Yi − Ȳ

)2
, where Yi = Xi − µ , Ȳ = X̄ − µ (38)

Now consider the properties of the random variable Yi which is a transformation of Xi. First the
expected value.

Yi =Xi − µ
E ( Yi ) =E (Xi ) − E ( µ)

=µ − µ
=0

(39)

The variance of Yi is

Yi =Xi − µ

V ar (Yi) =V ar (Xi) (40)

=σ2 if Xi are independently and identically distributed

Also consider E(Yi
4). We can write this as

E( Y 4) =
∫∞
−∞ y4 f ( x ) d x

=
∫∞
−∞ ( x − µ)4 f(x) d x

=µ4

(41)

Now write equation 36 as follows

E
[(

M2
n

)2] =E

[(
1
n

∑n
i= 1

(
Xi − X̄n

)2)2
]

=E

[(
1
n

∑n
i= 1

(
Xi − X̄

)2 )2
]

=E

[(
1
n

∑n
i= 1

(
Yi − Ȳ

)2 )2
]

= 1
n2 E

[(∑n
i= 1

(
Yi − Ȳ

)2)2
]

(42)

Ignoring 1
n2 for now, expand equation 42 as follows
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E



(

n∑

i = 1

(
Yi − Ȳ

)2
)2

 =E



(

n∑

i = 1

(
Y 2

i − 2 YiȲ + Ȳ 2
)
)2



=E



(

n∑

i = 1

Y 2
i − 2 Ȳ

n∑

i = 1

Yi +
n∑

i= 1

Ȳ 2

)2



=E



(

n∑

i = 1

Y 2
i − 2 n Ȳ 2 + n Ȳ 2

)2



=E



(

n∑

i = 1

Y 2
i − 2nȲ 2

)2

 (43)

=E



(

n∑

i = 1

Y 2
i

)2

− 2 n Ȳ 2
n∑

i = 1

Y 2
i + n2Ȳ 4




=E



(

n∑

i = 1

Y 2
i

)2

− 2 n E

[
Ȳ 2

n∑

i = 1

Y 2
i

]
+ n2 E

(
Ȳ 4
)

Now consider the first term on the right of 43 which we can write as

E



(

n∑

i = 1

Y 2
i

)2

 =E




n∑

i= 1

Y 2
i

n∑

j = 1

Y 2
j




=E

[
n∑

i = 1

Y 4
i +

∑∑
i 6= j

Y 2
i Y 2

j

]

=
n∑

i = 1

E Y 4
i +

∑∑
i 6= j

E Y 2
i E Y 2

j (44)

=n µ4 + n (n − 1 ) µ2
2

=n µ4 + n (n − 1 ) σ4

Now consider the second term on the right of 43 (ignoring 2n for now) which we can write as
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E

[
Ȳ 2

n∑

i= 1

Y 2
i

]
=

1
n2

E




n∑

j = 1

Yj

n∑

k = 1

Yk

n∑

i= 1

Y 2
i


 (45)

=
1
n2

E




n∑

i= 1

Y 4
i +

∑∑
i 6= j

Y 2
i Y 2

j +
∑∑

j 6= k
YjYk

∑

i 6= j
i 6= k

Y 2
i




=
1
n2




n∑

i= 1

E Y 4
i +

∑∑
i 6= j

E Y 2
i E Y 2

j +
∑∑

j 6= k
E YjE Yk

∑

i 6= j
i 6= k

E Y 2
i




=
1
n2

[
n µ4 + n (n − 1) µ2

2 + 0
]

=
1
n

[
µ4 + (n − 1 )σ4

]

The last term on the penultimate line is zero because E(Yj) = E(Yk) = E(Yi) = 0.

Now consider the third term on the right side of 43 (ignoring n2 for now) which we can write as

E
[
Ȳ 4
]

=
1
n4

E




n∑

i = 1

Yi

n∑

j = 1

Yj

n∑

k = 1

Yk

n∑

` = 1

Y`


 (46)

=
1
n2

E




n∑

i = 1

Y 4
i +

∑∑
i 6= k

Y 2
i Y 2

k +
∑∑

i 6= j
Y 2

i Y 2
j +

∑

i 6= j

Y 2
i Y 2

j + · · ·




where for the first double sum (i = j 6= k = `), for the second (i = k 6= j = `), and for the last (i = ` 6=
j = k) and ... indicates that all other terms include Yi in a non-squared form, the expected value of
which will be zero. Given that the Yi are independently and identically distributed, the expected
value of each of the double sums is the same, which gives

E
[
Ȳ 4
]

= 1
n4 E

[∑n
i= 1 Y 4

i +
∑∑

i 6= k Y 2
i Y 2

k +
∑∑

i 6= j Y 2
i Y 2

j +
∑

i 6= j Y 2
i Y 2

j + · · ·
]

= 1
n4

[∑n
i = 1 E Y 4

i + 3
∑∑

i 6= j Y 2
i Y 2

j + terms containing E Xi

]

= 1
n4

[∑n
i = 1 E Y 4

i + 3
∑∑

i 6= j Y 2
i Y 2

j

]

= 1
n4

[
n µ4 + 3 n (n − 1) ( µ2 )2

]

= 1
n4

[
n µ4 + 3 n (n − 1) σ4

]

= 1
n3

[
µ4 + 3 (n − 1 ) σ4

]

(47)

Now combining the information in equations 45, 46, and 47 we obtain
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E



(

n∑

i = 1

(
Yi − Ȳ

)2
)2

 =E



(

n∑

i= 1

(
Y 2

i − 2 YiȲ + Ȳ 2
)
)2

 (48)

=E



(

n∑

i= 1

Y 2
i

)2

− 2 n E

[
Ȳ 2

n∑

i= 1

Y 2
i

]
+ n2 E

(
Ȳ 4

)

=nµ4 + n(n − 1 )µ2
2 − 2n

[
1
n

[
µ4 + (n − 1 ) µ2

2

] ]
+ n2

[
1

n3

[
µ4 + 3 (n − 1 ) µ2

2

]]

=n µ4 + n (n − 1 ) µ2
2 − 2

[
µ4 + (n − 1 ) µ2

2

]
+
[

1
n

[
µ4 + 3 (n − 1 ) µ2

2

]]

=
n2

n
µ4 −

2 n

n
µ4 +

1
n

µ4 +
n2(n − 1 )

n
µ2

2 −
2 n (n − 1 )

n
µ2

2 +
3(n − 1 )

n
µ2

2

=
n2 − 2 n + 1

n
µ4 +

(n − 1 ) (n2 − 2 n + 3 )
n

µ2
2

=
n2 − 2 n + 1

n
µ4 +

(n − 1 ) (n2 − 2 n + 3 )
n

σ4

Now rewrite equation 42 including 1
n2 as follows

E
[(

M2
n

)2 ]
=

1
n2

E



(

n∑

i = 1

(
Yi − Ȳ

)2
)2



=
1
n2

(
n2 − 2 n + 1

n
µ4 +

(n − 1) (n2 − 2 n + 3 )
n

σ4

)

=
n2 − 2 n + 1

n3
µ4 +

(n − 1 ) (n2 − 2 n + 3)
n3

σ4 (49)

=
( n − 1 )2

n3
µ4 +

(n − 1 ) (n2 − 2 n + 3)
n3

σ4

Now substitute equations 35 and 49 into equation 34 to obtain

V ar
(
M2

n

)
=E

[(
M2

n

)2 ]−
(
E M2

n

) 2

= (n−1 )2

n3 µ4 + (n − 1 ) (n2−2 n+3)
n3 σ4 − ( n − 1 )2

n2 σ4
(50)

We can simplify this as
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V ar
(
M2

n

)
=E

[ (
M2

n

)2]−
(
E M2

n

)2
(51)

=
( n − 1 )2

n3
µ4 +

(n − 1 ) (n2 − 2 n + 3 )
n3

σ4 − n ( n − 1 ) 2

n3
σ4

=
µ4 ( n − 1) 2 +

[
( n − 1 ) σ4

] (
n2 − 2 n + 3 − n ( n − 1)

)

n3

=
µ4 ( n − 1) 2 +

[
( n − 1 ) σ4

] (
n2 − 2 n + 3 − n2 + n

)

n3

=
µ4 ( n − 1) 2 +

[
( n − 1 ) σ4

]
(3− n )

n3

=
µ4 ( n − 1) 2 −

[
( n − 1 ) σ4

]
(n − 3 )

n3

=
( n − 1) 2 µ4

n3
− ( n − 1 ) (n − 3 ) σ4

n3

5. SAMPLE VARIANCE

5.1. Definition of sample variance. The sample variance is defined as

S2
n = 1

n − 1

∑n
i= 1

(
Xi − X̄n

)2 (52)

We can write this in terms of moments about the mean as

S2
n = 1

n − 1

∑n
i= 1

(
Xi − X̄n

)2

= n
n − 1

M2
n where M2

n = 1
n

∑n
i = 1

(
Xi − X̄n

)2 (53)

5.2. Expected value of S2. We can compute the expected value of S2 by substituting in from equa-
tion 32 as follows

E
(
S2

n

)
= n

n − 1 E
(
M2

n

)

= n
n − 1

n − 1
n σ2

=σ2

(54)

5.3. Variance of S2. We can compute the variance of S2 by substituting in from equation 51 as
follows

V ar
(
§2n
)

= n2

( n − 1 )2
V ar

(
M2

n

)

= n2

( n − 1 )2

(
(n − 1) 2 µ4

n3 − ( n − 1) (n−3) σ4

n3

)

=µ4
n − (n−3) σ4

n ( n − 1 )

(55)

5.4. Definition of σ̂2. One possible estimate of the population variance is σ̂2 which is given by

σ̂2 = 1
n

∑n
i= 1

(
Xi − X̄n

)2
=M2

n

(56)
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5.5. Expected value of σ̂2. We can compute the expected value of σ̂2 by substituting in from equa-
tion 32 as follows

E
(
σ̂2
)

=E
(
M2

n

)
(57)

=
n − 1

n
σ2

5.6. Variance of σ̂2. We can compute the variance of σ̂2 by substituting in from equation 51 as
follows

V ar
(
σ̂2
)

=V ar
(
M2

n

)

= (n − 1) 2 µ4
n3 − ( n − 1 ) (n−3) σ4

n3

=µ4 − µ2
2

n − 2 (µ4 − 2 µ2
2 )

n2 + µ4 − 3µ2
2

n3

(58)

We can also write this in an alternative fashion

V ar
(
σ̂2
)

=V ar
(

M2
n

)

= ( n − 1) 2 µ4
n3 − ( n − 1 ) (n−3 ) σ4

n3

= ( n − 1) 2 µ4
n3 − ( n − 1 ) (n−3 ) µ2

2
n3

= n2 µ4−2n µ4+µ4
n3 − n2 µ2

2 − 4n µ2
2+3 µ2

2
n3

= n2 ( µ4−µ2
2 )−2n (µ4−2µ2

2 )+µ4−3µ2
2

n3

=µ4 − µ2
2

n − 2 (µ4 − 2µ2
2 )

n2 + µ4 − 3µ2
2

n3

(59)

6. NORMAL POPULATIONS

6.1. Central moments of the normal distribution. For a normal population we can obtain the cen-
tral moments by differentiating the moment generating function. The moment generating function
for the central moments is as follows

MX (t) = e
t2 σ2

2 . (60)

The moments are then as follows. The first central moment is

E (X − µ ) = d
dt

(
e

t2 σ2
2

)
|t= 0

=t σ2
(
e

t2 σ2
2

)
|t= 0

=0

(61)

The second central moment is

E (X − µ )2 = d2

dt2

(
e

t2 σ2
2

)
|t= 0

= d
dt

(
t σ2

(
e

t2 σ2
2

))
|t= 0

=
(

t2 σ4
(
e

t2 σ2
2

)
+ σ2

(
e

t2 σ2
2

))
|t= 0

=σ2

(62)

The third central moment is
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E (X − µ )3 = d3

dt3

(
e

t2 σ2
2

)
|t= 0

= d
dt

(
t2 σ4

(
e

t2 σ2
2

)
+ σ2

(
e

t2 σ2
2

))
|t= 0

=
(

t3 σ6
(
e

t2 σ2
2

)
+ 2 t σ4

(
e

t2 σ2
2

)
+ t σ4

(
e

t2 σ2
2

) )
|t= 0

=
(

t3 σ6
(
e

t2 σ2
2

)
+ 3 t σ4

(
e

t2 σ2
2

))
|t= 0

=0

(63)

The fourth central moment is

E (X − µ )4 = d4

dt4

(
e

t2 σ2
2

)
|t= 0

= d
dt

(
t3 σ6

(
e

t2 σ2
2

)
+ 3 t σ4

(
e

t2 σ2
2

))
|t= 0

=
(

t4 σ8
(
e

t2 σ2
2

)
+ 3 t2 σ6

(
e

t2 σ2
2

)
+ 3 t2 σ6

(
e

t2 σ2
2

)
+ 3 σ4

(
e

t2 σ2
2

))
|t= 0

=
(

t4 σ8
(
e

t2 σ2
2

)
+ 6 t2 σ6

(
e

t2 σ2
2

)
+ 3 σ4

(
e

t2 σ2
2

))
|t= 0

=3 σ4

(64)

6.2. Variance of S2. Let X1, X2, . . . Xn be a random sample from a normal population with mean
µ and variance σ2 < ∞.

We know from equation 55 that

V ar
(

S2
n

)
= n2

( n − 1 )2 V ar
(
M2

n

)

= n2

( n − 1)2

(
( n − 1)2 µ4

n3 − ( n − 1) (n−3) σ4

n3

)

=µ4
n − (n−3 ) σ4

n (n − 1 )

(65)

If we substitute in for µ4 from equation 64 we obtain

V ar
(
S2

n

)
= µ4

n − (n−3 ) σ4

n (n − 1 )

= 3σ4

n − (n−3 ) σ4

n ( n − 1 )

= ( 3 (n − 1 )−(n−3 )) σ4

n ( n − 1 )

= ( 3 n−3−n+3 )) σ4

n (n − 1 )

= 2n σ4

n (n − 1 )

= 2 σ4

( n − 1 )

(66)

6.3. Variance of σ̂2. It is easy to show that

V ar (σ̂2 ) =
2 σ4 ( n − 1 )

n2


