SAMPLE MOMENTS

1. POPULATION MOMENTS

1.1. Moments about the origin (raw moments). The rth moment about the origin of a random
variable X, denoted by ., is the expected value of X"; symbolically,

pr. =E(X") @
=Y 2" f(x) )
forr=0,1,2,...when Xis discrete and
W =E(X")
; ®

when X is continuous. The rth moment about the origin is only defined if E[ X" ] exists. A mo-
ment about the origin is sometimes called a raw moment. Note that pf = E(X) = px, the mean of
the distribution of X, or simply the mean of X. The rth moment is sometimes written as function of
6 where 0 is a vector of parameters that characterize the distribution of X.

If there is a sequence of random variables, X;, X, . . . X,, we will call the rth population moment
of the ith random variable 1 ,. and define it as

Wi =E(X7) 4)

1.2. Central moments. The rth moment about the mean of a random variable X, denoted by ., is
the expected value of ( X — p1x )" symbolically,

e =E[(X — px)"]
=" (@ px) flz) ©)
forr=0,1,2,...when Xis discrete and

pr =E[(X — px)"]
=% (z — px) f(z)dz )

when X is continuous. The rth moment about the mean is only defined if E[ (X - ux)*] exists. The
rth moment about the mean of a random variable X is sometimes called the rth central moment of
X. The rth central moment of X about a is defined as E[ (X - a)* ]. If a = ux, we have the rth central
moment of X about px.

Date: August 9, 2004.



2 SAMPLE MOMENTS

Note that 7 = E[(X - ux)] = 0 and ps = E[(X - ux)?] = Var[X]. Also note that all odd moments of
X around its mean are zero for symmetrical distributions, provided such moments exist.

If there is a sequence of random variables, Xi, Xa, . . . X,,, we will call the rth central population
moment of the ith random variable 1 ; , and define it as

Wi =F (sz'_ﬂ/i,l)r @)
When the variables are identically distributed, we will drop the i subscript and write 4/, and p .

2. SAMPLE MOMENTS

2.1. Definitions. Assume there is a sequence of random variables, X, Xs, . . . X,,. The first sample
moment, usually called the average is defined by

_ 1 <&
X, =— X, 8
- ; @®)
Corresponding to this statistic is its numerical value, z,,, which is defined by
=ty ®
n — _ X
’ n 1=1
where x; represents the observed value of X;. The rth sample moment for any t is defined by
oIy w0
n n — [

This too has a numerical counterpart given by

n

> ap (11)

1=1

—r
X, =

S|

2.2. Properties of Sample Moments.
2.2.1. Expected value of X,". Taking the expected value of equation 10 we obtain
E[X’“]:EX’“:lzn: EX?”:lzn: W (12)
n n n [ n 1,7

1=1 1=1
If the X’s are identically distributed, then

E[X}] = EX}, = % S o= (13)
i=1
2.2.2. Variance of X.
BIX)|=EXp =23 o= (14)
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2.2.3. Variance of )_(};. First consider the case where we have a sample X;, X», . . . X,.

Var (X7) Var< Z X’”) = %Var <zn: X{) (15)

i=1 1=1

If the X’s are independent, then

Var (X]) = Z Var (X7 (16)

i=1
If the X’s are independent and identically distributed, then
= 1
Var (X]) = —~ Var (X7) 17)

where X denotes any one of the random variables (because they are all identical). In the case
where r =1, we obtain

Var (X,) = %VCLT(X )= — (18)

3. SAMPLE CENTRAL MOMENTS

3.1. Definitions. Assume there is a sequence of random variables, X, Xa, . . . X,,. We define the
sample central moments as

;:% 27:1 (X,L'—/,L,L-71)T,T:1,2,3’...’

1 1 n /
:>Cn:R Z’L:l (Xi_ﬂz‘,l)Q (19)
=Cy :% i (Xi_//z 1)

These are only defined if /; ; is known.
3.2. Properties of Sample Moments.
3.2.1. Expected value of C},. The expected value of C}, is given by
E(Ch) =g Xy (Xi—pin) =500 i (20)
The last equality follows from equation 7.

If the X; are identically distributed, then

(21)
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3.2.2. Variance of C'},. First consider the case where we have a sample Xy, X, . . . Xy.

Var (C;)=Var <%Z (Xi_ﬂ/i,l)r> :% Var<z (Xi_ﬂ/i,l)r> (22)

=1 1=1

If the X’s are independently distributed, then
Var( Z Var — i 1 )T] (23)
If the X’s are independent and identically distributed, then

Var(CZ):%Var[(X—;ﬂl)r] (24)

where X denotes any one of the random variables (because they are all identical). In the case
where r =1, we obtain

Var (Ch) =L Var[ X — p/,]

:% VQT[X_N] (25)

=202 —-2Cov[X, pl+ Var[p]

:io'Q

4. SAMPLE ABOUT THE AVERAGE
4.1. Definitions. Assume there is a sequence of random variables, X;, Xo, . . . X,,. Define the rth
sample moment about the average as
M:;:% Z?:l (Xi_Xn)raT: 132333"'3 (26)

This is clearly a statistic of which we can compute a numerical value. We denote the numerical
value by, m , and define it as

=3 @)

In the special case where r = 1 we have

L7
Il

- Xn)
X, (28)

:><.:|~:|~
|
=3
it

3 = =

4.2. Properties of Sample Moments about the Average when r = 2.
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4.2.1. Alternative ways to write M;,. We can write M, in an alternative useful way by expanding the
squared term and then simplifying as follows

My, :% i1 (X - X )
= ME=p Sl (oK)t
=5 (i [XP -2 XX, + X7]) (29)
:% Y1 X7 - 2_% Z_?:lXi + % Z?:IX?l
= 2 X7 _2X721_+ X2
=y (X0, X)) - X3
4.2.2. Expected value of M,. The expected value of M, is then given by
E(Mg) E[Zz*l XiQ]_E[_?z]
_isnT p[x2] (B[ X,])? - Var(X,) (30)

n
2 _
:% Z?:l /L/z',2 - (%27:1 /L/i,l ) - VC”"(Xn)
The second line follows from the alternative definition of variance

Var( ) E(XQ)—[E(X)]Q
E(X?)=[E(X)]+Var(X) @31)

:>E(Xn ):[E()_(n)]Q—l—Var(Xn)

and the third line follows from equation 12. If the X; are independent and identically distributed,
then

E (M) =3 B[X, X?|-B[X?]
=n Tio1 /42_2(711 i1 :u/i,l) ~Var(Xy)
=pp— ()" = % (32)
=g2 - 142
—n—1"y2

where pj and pf are the first and second population moments, and i is the second central
population moment for the identically distributed variables. Note that this obviously implies

B[Si (=X =n £ (1)
A (33

4.2.3. Variance of M?. By definition,
Var (M2) =B [(M2)*] - (B M2)’ (34)

The second term on the right on equation 34 is easily obtained by squaring the result in equation
32.

E(M2) ="
o O B - 5

n2

(35)
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Now consider the first term on the right hand side of equation 34. Write it as

o2
E [(Mﬁ )2} =E [(% i (X —Xn)Q) ] (36)
Now consider writing £ 7| (X; — X,,)” as follows
PO (G- X) = Sy (X - - (X =)’
:% Z?: 1 (Yl - ) (37)
where Y; =X; — p
Y =X —pu
Obviously,
Sy (Xl- —)_()2 =" (Yi - }7)2, where Vi =X; —p,Y =X —p (38)

Now consider the properties of the random variable Y; which is a transformation of X;. First the
expected value.

Yi=X; —p
=p—p
=0
The variance of Y; is
Y, =X; —
Var (Y;) =Var (X;) (40)
=c?if X; are independently and identically distributed
Also consider E(Y;*). We can write this as
B(Y")=[" y* f(z)da
1% (2= W)t fl@)da (41)
:lLL4
Now write equation 36 as follows
2 [ n N
Bl -2 [(3 £y - x)7)]
L i L\
£|(3 T, (x-07)|
(42)

5|t £, m-7))]
4 8|S - 7))

Ignoring % for now, expand equation 42 as follows

n
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n 2 r n 2
E <Z (K-—Y)2> —E <Z(Yf—2nf/+f/2)>
1=1 1=1
: n n n 2
-F <Z Y22V > Y+ > 172)
1=1 1=1 1=1
- )
=F <Z Yl2—2n}72+n}72>
1=1
- )
=F <Z Yf‘-%fﬂ) (43)
1=1
: n 2 n
=F <Z Yf) —ZHYQZ Y2 +n?y?
1=1 1=1
: n 2 n
=FE <Z Yf‘) —2nE Y2 Y Y2 | +n*E (YY)
1=1 1=1
Now consider the first term on the right of 43 which we can write as
n 2 n n
E|(Sw) |5 |y v
i=1 i=1 j=1
- 4 2 y2
AP RS » IR
- 4 2 py?
_; EY; +Zzi¢j EY? EY, (44)

=nps+n(n — 1)

=nps+n(n — 1)c

Now consider the second term on the right of 43 (ignoring 2n for now) which we can write as
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n n

Z%E R IR DIRG (45)

j=1 k=1 i=1

1=1 i

1 n
1 SRS 5 SR CED ) SR DRRT
#
#

1
== [nps+n(n — 1)p3+0]

:% [lu4+(n — 1)0’4]

The last term on the penultimate line is zero because E(Y;) = E(Yx) = E(Y;) =0.

Now consider the third term on the right side of 43 (ignoring n? for now) which we can write as

BV = B[ %Y % 3 %y v e
[i=1 j=1 k=1 (=1

ZLE Z YfJFZZ#kYiQ YkQJFZZ#j YiQYJQ—i_Z Y2 Yj2+"'

i=1 i

where for the first double sum (i =j # k = /), for the second (i = k # j = ), and for the last (i=¢ #
j=Kk) and ... indicates that all other terms include Y; in a non-squared form, the expected value of
which will be zero. Given that the Y; are independently and identically distributed, the expected
value of each of the double sums is the same, which gives

E[Yﬂ :%E [Z?:l Yf"‘ZZi;ﬁkYiQ Yk2+ZZi¢j Yz‘2 YjQ"‘Zi;éj Yz‘2 Yj2+"'
S E}/1-4—1-532:2:1-;&]-Yl-2 Yf—i—terms containing F X;

el DO
&[T BV 4sTY,,, VY 47)
:% g +3n(n — 1)(@2)2]
4 mpg+3n(n — 1) o]
L [pa+3(n — 1) o?]

Now combining the information in equations 45, 46, and 47 we obtain
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E (zn: (1@--17)2>2 -E (im2_2m7“72)> (48)

1=1

" 2
=E (Z Yf) —2nE

1=1

n

=npus+n(n—1)u3 —2n [1 [pa + (n — 1),u§]} + n? [n—lg[m +3(n — 1)@3]}
=nps +nn — 1)p3 —2[ps + (n — 1) 3] + [% [a + 3(n — 1);@]}

n? 2n 1 n?(n—1 2n(n—1 3(n—1
S—pa = ——pa+ —pa ( )#3— ( )#§+ ( >#§
n n n n n n
n?—2n+1 n—1)n*-2n+3
_ s =D ) 2
n n
22 1 -1 22 3
gl (1) (P24
n n
Now rewrite equation 42 including - as follows
1 S ’
21\2 >\ 2
()] < | (3 077 )
1=1
1 /n?-2n+1 n— 1) (n?-2n+3
L e =D ( )o,)
n n n
n?—2n+1 n—1)n?-2n+3
S U R UEEY 1L Lo, 49)
n n
n—1)>2 n—1)n?>-2n+3
S VN VU ) o,
n n
Now substitute equations 35 and 49 into equation 34 to obtain
Var (M2) =E [(M2)* | - (B M2)* 50)

S12 _ 2_ 152
:(nngl) [+ (n 1)(711'g 2n+3)a4 _ (nn21) 4

We can simplify this as
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Var (M2) =B | (M2 )*] = (B M2)’ (51)
:(n;31)2 ot (n — 1)(22—271—1—3)04 _n(nn—3 1)2 a
_ (n — 1?2+ [(n—1)c*] (n? = 2n 4+ 3—n(n — 1))

n3

Cpa(n — 1) + [(n —1)o*] (n* — 2n + 3—n?+n)
= —
_ (n — 1)%2 + [(n — 1)04] 3—mn)

n3
(n =12 = [(n = 1)o'] m=3)

n3
:(n - 1%y _(n - 1)(n—3)o*

n3 n3

5. SAMPLE VARIANCE

5.1. Definition of sample variance. The sample variance is defined as

2L (X, —X,)° (52)

n—1

We can write this in terms of moments about the mean as

S2=do v (Xi- X))

-1
" n o \2 (53)
M? where M3:% doiq (Xi_Xn)

n—1

5.2. Expected value of S?. We can compute the expected value of S? by substituting in from equa-
tion 32 as follows

E(S)) =5t E (M)

T n-—1
:nzln;la2 (54)
=0

5.3. Variance of S?. We can compute the variance of S? by substituting in from equation 51 as
follows

Var () =2 Var (M2)

—1)?2 n — n—3) o*
:(nizl)z( (n nla) pa 1)71(3 3) ) (55)
_pa  (n=3) ot
T n n(n—1)

5.4. Definition of 62. One possible estimate of the population variance is % which is given by

A2 1 n S 2
o ;]7(4;1:1 (Xi — Xn) (56)
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5.5. Expected value of 52. We can compute the expected value of 6% by substituting in from equa-
tion 32 as follows

E (6%) =E (M}) (57)

n — 1
= 0’2
n

5.6. Variance of 62. We can compute the variance of 62 by substituting in from equation 51 as
follows

Var (&2) =Var (Mﬁ)
2 4
—(n-D7m  (n-1)(n3) o (58)

n n
k4 k5 2(pma = 2p5) | pa = 3p
- n n2 n3

We can also write this in an alternative fashion

Var (62) =Var ( Mg)

_(n=1%p  (n—1)(n=3)0c*

= 3 3

_(n—-1D?py  (n—1)(n=3) 43

= 3 3

_on® pa—2npatps n? ,u% —4n p3+3 3 (59)
- 3

2 n 2 2 n3 2
_n” (pa—p5)—2n (Ha—2p5 )+pa—3 15
3

oy
pa —p3 2(pa — 243) 4ok 33
n n? n3

6. NORMAL POPULATIONS

6.1. Central moments of the normal distribution. For a normal population we can obtain the cen-
tral moments by differentiating the moment generating function. The moment generating function
for the central moments is as follows

2,2

Mx(t) = e (60)
The moments are then as follows. The first central moment is
d 12 52
E(X = p)=4 (¢"F) li=o
=t 0> (") li=o (61)
=0
The second central moment is
2 t2 o2
E(X—N)QZ:? (6 ) t=0
d 2 t2 a2
= (to (i : ) li=o 62)
—(t204 (e 5 )+02 e )) le—o
i0.2

The third central moment is
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It_

2 52

500 () 202 () e
(Pt () Lava () 1ot ()
(0ot () ratet () b

=0

The fourth central moment is

dat t2 o2

E(X — #)4 =@z \¢ 2 lt=0
d 3 6 262 4 t2a2
=z (t o (e +3to (e 2 )) le=0
t2 52 t2 o2 2o 2o
=(tto® ( )+3t2 6(e™=")+3¢t%0" ie 22) +30t (e 222)) o (64)

2 U2 2 U2 U2
= t408(e 2 )+6t206 e +3U4(et2 )) le=0
=30
6.2. Variance of S%. Let Xi, Xo, . . . X,, be a random sample from a normal population with mean

1 and variance 02 < oo.
We know from equation 55 that

Var ( 8721 ) :ﬁ Var (Mg)

—1)2 n — n—3) ot
_(n7121)2 ((" nla) na 1)71(3 3) ) (65)
_pa _ (n=3)o*
n n(n—1)

Var (S} ) =4+ — 7(1"(;37) clr)
7&_ (7173)04
T n n(n—1)

<3<n71(> (n )3>>o4

_ (3n—3—n+3)) o* (66)

n(n—1)

__2no

R

T (n-1)

6.3. Variance of 2. It is easy to show that

20 (n — 1)

Var (6%) = 5

n



