Testing for Cointegration

There are two basic approaches that are commonly used to test for cointegration.

- **Residual Based Tests**
 \(H_0: \) no CI vs. \(H_A: \) CI
 Use single-equation regression residuals
 Engle-Granger; Phillips-Ouliaris

- **Likelihood-Ratio Based Tests**
 \(H_0: \) CI of rank \(r \) vs. \(H_A: \) CI of rank \(r+1 \)
 \(H_0: \) CI of rank \(r \) vs. \(H_A: \) CI of rank \(> r \)
 Use restricted and unrestricted VECMs
 Johansen
Let y_t be an n-dimensional I(1) process.

Consider

$$H_0: y_t \text{ is not CI}$$
$$H_A: y_t \text{ is CI}$$

So, under H_0, $\alpha'y_t \sim I(1)$ for all nonzero α in \mathbb{R}^n.

The Engle-Granger (EG) Test

1. Regress y_{1t} on $1, y_{2t}, \ldots, y_{nt}$ by OLS to get the residual series, \hat{u}_t.
2. Fit \hat{u}_t to an ADF regression (no intercept or trend). That is, regress \hat{u}_t on $\hat{u}_{t-1}, \Delta \hat{u}_{t-1}, \ldots, \Delta \hat{u}_{t-p+1}$
3. Compute the t-statistic for H_0: $\rho=1$.
4. Use the appropriate asymptotic null distribution for this test statistic (which is NOT the DF distribution).
The Phillips-Ouliaris (PO) Test

1. Regress y_{1t} on $1, y_{2t}, \ldots, y_{nt}$ by OLS to get the residual series, \hat{u}_t.

2. Fit \hat{u}_t to a DF regression (no intercept or trend). That is, regress \hat{u}_t on \hat{u}_{t-1}.

3. Compute the t-statistic for $H_0: \rho=1$ and modify it as in the PP procedure.

4. Use the appropriate asymptotic null distribution for this test statistic (which is the same as the asymptotic distribution of the EG stat).
Notes

• The asymptotic distribution of the EG and PO test stat’s does not depend on the normalization chosen, i.e., which element of y is place on the l.h.s. of the regression. But, the test will have low power against alternatives in which y_t is CI but the element of each CI vector corresponding to y_1 (or whichever variable is placed on the l.h.s.) is zero. (For example, if y_{1t}, y_{2t}, y_{3t} are CI but only because y_{2t} and y_{3t} are CI, then a residual-based test with y_{1t} on the l.h.s. will have very low power.)

• Aside from the issue above, the normalization selected may affect the test result in finite samples.

• Suppose $n > 2$ and we reject H_0. What is the CI rank of y?