Econ 302

Math Review

Function: relationship among two or more variables expressed in mathematical language

\[Y = F(X, Z, W) \quad Y = F(X) \]

\[Y = 5X \]

How to plot this?

(0,0)

\[X = 2 \quad Y = 10 \]

Are (2,5) (3,4) (1,3) (5,25) on this line?

![Graph showing a linear relationship between X and Y]

10

y

1 2

x
Linear functions: straight lines

General form of a linear function:

\[y = f(x) = mx + c \]

- \(m \) is slope
- \(c \) is intercept

By how much does \(y \) go up when \(x \) goes up by 1 unit?

Positive and negative sloped lines

- Tiredness vs exercise
- Interest rates vs time
- Room temp on really cold day in Iowa vs # of hours the central heat runs
\[y = \text{happiness} \]

\[x = \text{hours spent playing video games} \]

Slope = \(\frac{2}{4} = 0.5 \)

Increase in hours spent playing video games increases happiness but less than proportionately

Equation depicting this relationship: \(y = 0.5 \ x \)

What if the relationship was proportional?

\[y = x \]

More than proportional?
\[y = 2x + 5 \]

Compare to \(y = mx + c \)

Slope = 2

Intercept = 5

Two points is enough:

\((x = 0, y = 5) \) \((x = 1, y = 7) \)

Shift versus movement along a line

\[M = 2p + 2I \]

\(M, p \) : variables

Start with \(I = 1 \)

\((p = 0, M = 2), (p = 3, M = 8) \)

Movement along a line

When \(p \) goes down from 3 to 2, \(M \) goes down from 8 to 6

When \(I \) goes up from 1 to 2

\((p = 0, M = 4), (p = 3, M = 10) \) shift
Trickier Example

\[p = -5 + 100q \quad \text{and} \quad p = 100q - 5 \]

\[
\text{Slope} = 100 \\
\text{Intercept} = -5
\]

Compare to \(y = m x + c \)

What if we wanted to draw \(p \) on the horizontal axis?

\[p = -5 + 100q \quad \text{Rewrite as} \quad 100q = p + 5 \]

\[\text{Or } q = \frac{p + 5}{100} \]

\[q = \frac{p}{100} + \frac{5}{100} \quad \text{Slope} = \frac{1}{100} \]

\[\text{Intercept} = \frac{5}{100} \]
$y = \text{happiness}$

$x = \text{hours spent playing video games}$

Non-linear functions

Pleasure from backrubs vs. time

$y = x^2$

$y = 5x^{0.5}$

$y = 2 - x^2$

$y = 3 + x^{25}$

Always a power different from 1; compare to $y = 5x + 12$

Slope keeps changing

Two points no longer enough
Pints of beer vs drunkenness

- # of days with in-laws and my irritability

Effect on health vs hours of exercise in a day

- Hours of exercise in a day
- Effect on health

Effect on grades vs # of hrs spent studying in a night

- Effect on grades
- # of hrs spent studying

Your height vs your age

- Your height
- Your age
\[y = a + b \, x^\alpha \quad \text{a, b are constants} \]

\[\alpha \text{ is a exponent} \]

Formula for slope (derivative)

\[\frac{dy}{dx} = b \alpha \, x^{\alpha - 1} \]

\[y = x^2 \]
\[y = a + b \, x^\alpha \]
\[a = 0 \quad b = 1 \]
\[\alpha = 2 \]
\[\frac{dy}{dx} = 2x \]
\[x = 0, \, y = 0 \]
\[x = 1, \, y = 1 \]
\[x = 2, \, y = 4 \]
\[x = 3, \, y = 9 \]

Solving equations in 1 unknown variable:

\[y = 2x - 5 \]
\[2x = y + 5 \]
\[x = (y + 5)/2 \]
\[y = 25 - 3 \, x^2 \]
\[3x^2 = 25 - y \]
\[x^2 = (25 - y)/3 \]
\[x = \sqrt{\left(\frac{25 - y}{3}\right)} \]
Solving two equations in two unknowns

\[3y + 5x = 15 \]
\[2y + 3x = 10 \]

\[5x = 15 - 3y \]
\[x = \frac{15 - 3y}{5} \]
\[x = 0 \]

Exponents and powers

\[2 \times 2 = 2^2 \]
\[a \times a = a^2 \]

\[\frac{1}{2} = 2^{-1} \]
\[\frac{a}{b} = a b^{-1} \]
\[\frac{2x}{3y^2} = \frac{2}{3} (xy^{-2}) \]
\[\sqrt{2} = 2^{0.5} = 2^{\frac{1}{2}} \]
\[\sqrt{\frac{w y^2}{2q}} = \left(\frac{w y^2}{2q} \right)^{0.5} = \left(0.5 w y^2 q^{-1} \right)^{0.5} \]
Solving non-linear equations in 1 variable

\(3x^2 = 5 \quad \rightarrow \quad x^2 = \frac{5}{3} \quad \text{Raise both to power 1/2} \quad \rightarrow \quad x = \sqrt{\frac{5}{3}}\)

\(4q^2 = 5k \quad \rightarrow \quad q^2 = \frac{5}{4}k \quad \rightarrow \quad q = \sqrt{\frac{5}{4}k}\)

\(3k^{0.3} = 5 \quad \rightarrow \quad k^{0.3} = \frac{5}{3} \quad \text{Raise both to power 1/0.3} \quad \rightarrow \quad k = \left(\frac{5}{3}\right)^{1/0.3}\)

Example:

\[
2 \times k^\alpha = 3k
\]

\[
\frac{k^\alpha}{k} = \frac{3}{2}
\]

\[
k^{\alpha - 1} = \frac{3}{2}
\]

\[
(k^{\alpha - 1})^{\frac{1}{\alpha - 1}} = \left(\frac{\frac{3}{2}}{\alpha - 1}\right)^{\frac{1}{\alpha - 1}}
\]

\[
k = \left(\frac{\frac{3}{2}}{\alpha - 1}\right)^{\frac{1}{\alpha - 1}}
\]