IS-LM

The IS-LM model: bringing it all together

Equilibrium in the IS-LM Model

The IS curve represents equilibrium in the goods market.

\[Y = C(Y - T) + I(r) + G \]

The LM curve represents money market equilibrium.

\[\bar{M}/\bar{P} = L(r, Y) \]

The intersection determines the unique combination of \(Y \) and \(r \) that satisfies equilibrium in both markets.

Policy analysis with the IS-LM Model

Policymakers can affect macroeconomic variables with

- fiscal policy: \(G \) and/or \(T \)
- monetary policy: \(M \)

We can use the IS-LM model to analyze the effects of these policies.

Change in G

- \(Y = C + I + G; C = a + b \ (Y-T); \) b is MPC
- \(I = z - dr; T \) is fixed
- Equation of IS curve:
 \[Y = C + I + G \]
 \[Y = a + b \ (Y-T) + z - dr + G \]
 \[dr = (a - bT + z + G)/(1-b) + (b/(1-b))Y \]
 \[r = [(a - bT + z + G)/d] - [(1-b)/d)]Y \]
IS curve

- \(r = \frac{(a - bT + z + G)}{d} - \frac{(1-b)}{d}Y \)
- \(r = Q - FY \)

When G increases, Q increases. IS curve shifts out.

An increase in government purchases

1. IS curve shifts right causing output & income to rise.

2. This raises money demand, causing the interest rate to rise...

3. ...which reduces investment, so the final increase in Y is smaller than in (1).

IS curve

- \(r = \frac{(a - bT + z + G)}{d} + \frac{(1-b)}{d}Y \)
- \(r = Q - FY \)

When T increases, Q falls. T increase implies IS curve shifts inwards.

A tax cut shifts IS outwards; similar to G increase.

A tax cut

Tax cut raises consumption, raises Y. Higher Y raises money demand and raises interest rates, which reduces investment, and brings the increase in Y down [from (1) to (3)].
Equilibrium

\[\frac{M^s}{P} = \left(\frac{M}{P} \right)^d = L(i, Y) \]

The supply of real money balances

Real money demand

Equilibrium in the money market gives us the other equation connecting \(r \) and \(Y \)

LM curve

- \(\frac{M}{P} = L(Y,r) = hY - qr \)
- \(r = \left(\frac{h}{q} \right)Y - \left(\frac{M}{P} \right)/q \)
- LM curve; positively sloped

An increase in \(M \) shifts LM down

Monetary Policy: an increase in \(M \)

1. \(\Delta M > 0 \) shifts the \(LM \) curve down (or to the right)
2. ...causing the interest rate to fall
3. ...which increases investment, causing output & income to rise.

Algebra of ISLM

- IS curve:
 \[r = \left[\frac{(a - bT + z + G)}{d} \right] + \left[\frac{(1 - b)}{d} \right]Y \]
- LM curve: \(r = \left(\frac{h}{q} \right)Y - \left(\frac{M}{P} \right)/q \)
Algebra -2

\[
\frac{a-bT+z+G}{d} + \frac{(1-b)Y}{Pq} = \frac{h}{p} - \frac{M}{Pq}
\]

\[
\Rightarrow \frac{a-bT+z+G}{d} + \frac{M}{Pq} = Y + \left[\frac{h}{p} - \frac{(1-b)}{Pq} \right]
\]

\[
\Rightarrow Y = \frac{a-bT+z+G}{d} + \frac{M}{Pq} \left[\frac{h}{p} - \frac{(1-b)}{Pq} \right]
\]

\[
r = \frac{h}{q} \left\{ \frac{a-bT+z+G}{d} + \frac{M}{Pq} \right\} - \frac{M}{Pq}
\]

Example: problem 3, pg. 305

- \(C = 200 + 0.75 (Y - T)\)
- \(I = 200 - 25 r\)
- \(G = T = 100\)
- \((M/P)^d = Y - 100 r\)
- \(M = 1000; P = 2\)

Summary

- Increase in \(G\) (ceteris paribus) shifts IS curve to the right; no effect on LM
- **Cut** in taxes has same general effect as above (ceteris paribus); no effect on LM
- Increase in M (money supply) shifts LM curve down (ceteris paribus); no effect on IS