1. **Samples, Random Sampling and Sample Statistics**

1.1. **Random Sample.** The random variables X_1, X_2, \ldots, X_n are called a random sample of size n from the population $f(x)$ if X_1, X_2, \ldots, X_n are mutually independent random variables and the marginal probability density function of each X_i is the same function of $f(x)$. Alternatively, X_1, X_2, \ldots, X_n are called independent and identically distributed random variables with pdf $f(x)$. We abbreviate independent and identically distributed as iid.

Most experiments involve $n > 1$ repeated observations on a particular variable, the first observation is X_1, the second is X_2, and so on. Each X_i is an observation on the same variable and each X_i has a marginal distribution given by $f(x)$. Given that the observations are collected in such a way that the value of one observation has no effect or relationship with any of the other observations, the X_1, X_2, \ldots, X_n are mutually independent. Therefore we can write the joint probability density for the sample X_1, X_2, \ldots, X_n as

$$f(x_1, x_2, \ldots, x_n) = f(x_1)f(x_2) \cdots f(x_n) = \prod_{i=1}^{n} f(x_i) \quad (1)$$

If the underlying probability model is parameterized by θ, then we can also write

$$f(x_1, x_2, \ldots, x_n|\theta) = \prod_{i=1}^{n} f(x_i|\theta) \quad (2)$$

Note that the same θ is used in each term of the product, or in each marginal density. A different value of θ would lead to a different properties for the random sample.

1.2. **Statistics.** Let X_1, X_2, \ldots, X_n be a random sample of size n from a population and let $T(x_1, x_2, \ldots, x_n)$ be a real-valued or vector-valued function whose domain includes the sample space of (X_1, X_2, \ldots, X_n). Then the random variable or random vector $Y = (X_1, X_2, \ldots, X_n)$ is called a statistic. A statistic is a map from the sample space of (X_1, X_2, \ldots, X_n)(call it X, to some space of values, usually R^1 or R^n. T is what we compute when we observe the random variable X take on some specific values in a sample. The probability distribution of a statistic $Y = T(X)$ is called the sampling distribution of Y. Notice that $T(\cdot)$ is a function of sample values only, it does not depend on any underlying parameters, θ.

1.3. **Some Commonly Used Statistics.**

1.3.1. **Sample mean.** The sample mean is the arithmetic average of the values in a random sample. It is usually denoted

$$\bar{X}(X_1, X_2, \cdots, X_n) = \frac{X_1 + X_2 + \cdots + X_n}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i \quad (3)$$

The observed value of \bar{X} in any sample is denoted by the lower case letter, i.e., \bar{x}.

Date: February 18, 2008.
1.3.2. Sample variance. The sample variance is the statistic defined by
\[S^2(X_1, X_2, \cdots, X_n) = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 \]
(4)

The observed value of \(S^2 \) in any sample is denoted by the lower case letter, i.e., \(s^2 \).

1.3.3. Sample standard deviation. The sample standard deviation is the statistic defined by
\[S = \sqrt{S^2} \]
(5)

1.3.4. Sample midrange. The sample mid-range is the statistic defined by
\[\max(X_1, X_2, \cdots, X_n) - \min(X_1, X_2, \cdots, X_n) \]
\[\frac{2}{2} \]
(6)

1.3.5. Empirical distribution function. The empirical distribution function is defined by
\[\hat{F}(X_1, X_2, \cdots, X_n)(x) = \frac{1}{n} \sum_{i=1}^{n} I(X_i < x) \]
(7)

where \(\hat{F}(X_1, X_2, \cdots, X_n)(x) \) means we are evaluating the statistic \(\hat{F}(X_1, X_2, \cdots, X_n) \) at the particular value \(x \). The random sample \(X_1, X_2, \cdots, X_n \) is assumed to come from a probability defined on \(R^1 \) and \(I(A) \) is the indicator of the event \(A \). This statistic takes values in the set of all distribution functions on \(R^1 \). It estimates the function valued parameter \(F \) defined by its evaluation at \(x \in R^1 \)
\[F(P)(x) = P[X < x] \]
(8)

2. Distribution of Sample Statistics

2.1. Theorem 1 on squared deviations and sample variances.

Theorem 1. Let \(x_1, x_2, \cdots, x_n \) be any numbers and let \(\bar{x} = \frac{x_1 + x_2 + \cdots + x_n}{n} \). Then the following two items hold.

\(a \): \(\min_a \sum_{i=1}^{n} (x_i - a)^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2 \)

\(b \): \((n-1)s^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - n\bar{x}^2 \)

Part a says that the sample mean is the value about which the sum of squared deviations is minimized. Part b is a simple identity that will prove immensely useful in dealing with statistical data.

Proof. First consider part a of theorem 1. Add and subtract \(\bar{x} \) from the expression on the lefthand side in part a and then expand as follows
\[\sum_{i=1}^{n} (x_i - \bar{x} + \bar{x} - a)^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2 + 2 \sum_{i=1}^{n} (x_i - \bar{x})(\bar{x} - a) + \sum_{i=1}^{n} (\bar{x} - a)^2 \]
(9)

Now write out the middle term in 9 and simplify
\[\sum_{i=1}^{n} (x_i - \bar{x})(\bar{x} - a) = \bar{x} \sum_{i=1}^{n} x_i - a \sum_{i=1}^{n} x_i - \bar{x} \sum_{i=1}^{n} x_i + \bar{x} \sum_{i=1}^{n} a \]
\[= n\bar{x}^2 - an\bar{x} - n\bar{x}^2 + nxa \]
\[= 0 \]
We can then write 9 as
\[
\sum_{i=1}^{n} (x_i - a)^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2 + \sum_{i=1}^{n} (\bar{x} - a)^2
\] (11)
Equation 11 is clearly minimized when \(a = \bar{x}\). Now consider part b of theorem 1. Expand the second expression in part b and simplify
\[
\sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - 2\bar{x} \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} \bar{x}^2
\] (12)
\[
= \sum_{i=1}^{n} x_i^2 - 2n\bar{x}^2 + n\bar{x}^2
\]
\[
= \sum_{i=1}^{n} x_i^2 - n\bar{x}^2
\]
\[
\square
\]
2.2. Theorem 2 on expected values and variances of sums.

Theorem 2. Let \(X_1, X_2, \ldots, X_n\) be a random sample from a population and let \(g(x)\) be a function such that \(E g(X_1)\) and \(Var g(X_1)\) exist. Then following two items hold.

a: \(E \left(\sum_{i=1}^{n} g(X_i) \right) = n (Eg(X_1))\)

b: \(Var \left(\sum_{i=1}^{n} g(X_i) \right) = n (Var g(X_1))\)

Proof. First consider part a of theorem 2. Write the expected value of the sum as the sum of the expected values and then note that \(Eg(X_1) = Eg(X_2) = \ldots Eg(X_i) = \ldots Eg(X_n)\) because the \(X_i\) are all from the same distribution.
\[
E \left(\sum_{i=1}^{n} g(X_i) \right) = \sum_{i=1}^{n} E(g(X_i)) = n(Eg(X_1))
\] (13)
First consider part b of theorem 2. Write the definition of the variance for a variable \(z\) as \(E(z - E(z))^2\) and then combine terms in the summation sign.
\[
Var \left(\sum_{i=1}^{n} g(X_i) \right) = E \left[\left(\sum_{i=1}^{n} g(X_i) \right) - E \left(\sum_{i=1}^{n} g(X_i) \right) \right]^2
\]
\[
= E \left[\sum_{i=1}^{n} g(X_i) - n E(g(X_i)) \right]^2
\] (14)
Now write out the bottom expression in equation 14 as follows
\[\text{Var} \left(\sum_{i=1}^{n} g(X_i) \right) = E \left[g(X_1) - E(g(X_1)) \right]^2 + E \left[g(X_2) - E(g(X_2)) \right]^2 + \cdots \]

Each of the squared terms in the summation is a variance, i.e., the variance of \(X_i = \text{var}(X_1) \). Specifically

\[E \left[g(X_i) - E(g(X_i)) \right]^2 = \text{Var} g(X_i) = \text{Var} g(X_1) \]

(16)

The other terms in the summation in (15) are covariances of the form

\[E \left[g(X_i) - E(g(X_i)) \right] E \left[g(X_j) - E(g(X_j)) \right] = \text{Cov} [g(X_i), g(X_j)] \]

(17)

Now we can use the fact that the \(X_1 \) and \(X_j \) in the sample \(X_1, X_2, \ldots, X_n \) are independent to assert that each of the covariances in the sum in (15) is zero. We can then rewrite (15) as

\[\text{Var} \left(\sum_{i=1}^{n} g(X_i) \right) = \text{Var}(g(X_1)) + \text{Var}(g(X_2)) + \text{Var}(g(X_3)) + \cdots \]

(18)

2.3. Theorem 3 on expected values of sample statistics.

Theorem 3. Let \(X_1, X_2, \ldots, X_n \) be a random sample from a population with mean \(\mu \) and variance \(\sigma^2 < \infty \). Then

a: \(E \bar{X} = \mu \)

b: \(\text{Var} \bar{X} = \frac{\sigma^2}{n} \)

\[c: E S^2 = \sigma^2 \]
Proof of part a. In theorem 2 let \(g(X) = g(X_i) = \frac{X_i}{n} \). This implies that \(E g(X_i) = \frac{\mu}{n} \). Then we can write

\[
E \bar{X} = E \left(\frac{1}{n} \sum_{i=1}^{n} X_i \right) = \frac{1}{n} E \left(\sum_{i=1}^{n} X_i \right) = \frac{1}{n} (nE X_1) = \mu
\] (19)

Proof of part b.
In theorem 2 let \(g(X) = g(X_i) = X_i \). This implies that \(\text{Var} g(X_i) = \frac{\sigma^2}{n} \). Then we can write

\[
\text{Var} \bar{X} = \text{Var} \left(\frac{1}{n} \sum_{i=1}^{n} X_i \right) = \frac{1}{n^2} \text{Var} \left(\sum_{i=1}^{n} X_i \right) = \frac{1}{n^2} (n \text{Var} X_1) = \frac{\sigma^2}{n}
\] (20)

Proof of part c.
As in part b of theorem 1, write \(S^2 \) as a function of the sum of square of \(X_i \) minus \(n \) times the mean of \(X_i \) squared and then simplify

\[
E S^2 = E \left(\frac{1}{n-1} \left[\sum_{i=1}^{n} X_i^2 - n \bar{X}^2 \right] \right)
\]

\[
= \frac{1}{n-1} \left(nEX_1^2 - nE \bar{X}^2 \right)
\]

\[
= \frac{1}{n-1} \left(n(\sigma^2 + \mu^2) - n \left(\frac{\sigma^2}{n} + \mu^2 \right) \right) = \sigma^2
\] (21)

The last line follows from the definition of the variance of a random variable, i.e.,

\[
\text{Var} X = \sigma_X^2 = E X^2 - (EX)^2 = EX^2 - \mu_X^2
\]

\[
\Rightarrow E X^2 = \sigma_X^2 + \mu_X^2
\]

2.4. **Unbiased Statistics.** We say that a statistic \(T(X) \) is an unbiased statistic for the parameter \(\theta \) of the underlying probability distribution if \(E T(X) = \theta \). Given this definition, \(\bar{X} \) is an unbiased statistic for \(\mu \), and \(S^2 \) is an unbiased statistic for \(\sigma^2 \) in a random sample.

3. **METHODS OF ESTIMATION**

Let \(Y_1, Y_2, \cdots, Y_n \) denote a random sample from a parent population characterized by the parameters \(\theta_1, \theta_2, \cdots, \theta_k \). It is assumed that the random variable \(Y \) has an associated density function \(f(\cdot; \theta_1, \theta_2, \cdots, \theta_k) \).

3.1. **Method of Moments.**

3.1.1. **Definition of Moments.** If \(Y \) is a random variable, the \(r^{th} \) moment of \(Y \), usually denoted by \(\mu'_r \), is defined as

\[
\mu'_r = E(Y^r)
\]

\[
= \int_{-\infty}^{\infty} y^r f(y; \theta_1, \theta_2, \cdots, \theta_k) \, dy
\] (22)

if the expectation exists. Note that \(\mu'_1 = E(Y) = \mu_Y \), the mean of \(Y \). Moments are sometimes written as functions of \(\theta \).

\[
E(Y^r) = \mu'_r = g_r(\theta_1, \theta_2, \cdots, \theta_k)
\] (23)
3.1.2. Definition of Central Moments. If \(Y \) is a random variable, the \(r \)th central moment of \(Y \) about \(a \) is defined as \(E[(Y - a)^r] \). If \(a = \mu_Y \), we have the \(r \)th central moment of \(Y \) about \(\mu_Y \), denoted by \(\mu_{Yr} \), which is

\[
\mu_r = E[(Y - \mu_Y)^r] = \int_{-\infty}^{\infty} (y - \mu)^r f(y; \theta_1, \theta_2, \cdots \theta_k) \, dy
\]

(24)

Note that \(\mu_1 = E[(Y - \mu_Y)] = 0 \) and \(\mu_2 = E[(Y - \mu_Y)^2] = \text{Var}[Y] \). Also note that all odd numbered moments of \(Y \) around its mean are zero for symmetrical distributions, provided such moments exist.

3.1.3. Sample Moments about the Origin. The \(r \)th sample moment about the origin is defined as

\[
\hat{\mu}_r = \frac{1}{n} \sum_{i=1}^{n} y_i^r
\]

(25)

3.1.4. Estimation Using the Method of Moments. In general \(\mu'_r \) will be a known function of the parameters \(\theta_1, \theta_2, \cdots \theta_k \) of the distribution of \(Y \), that is \(\mu'_r = g_r(\theta_1, \theta_2, \cdots \theta_k) \). Now let \(y_1, y_2, \cdots, y_n \) be a random sample from the density \(f(y; \theta_1, \theta_2, \cdots \theta_k) \). Form the \(K \) equations

\[
\mu'_1 = g_1(\theta_1, \theta_2, \cdots \theta_k) = \hat{\mu}_1 = \frac{1}{n} \sum_{i=1}^{n} y_i^1
\]

\[
\mu'_2 = g_2(\theta_1, \theta_2, \cdots \theta_k) = \hat{\mu}_2 = \frac{1}{n} \sum_{i=1}^{n} y_i^2
\]

\[
\vdots
\]

\[
\mu'_K = g_K(\theta_1, \theta_2, \cdots \theta_k) = \hat{\mu}_K = \frac{1}{n} \sum_{i=1}^{n} y_i^K
\]

(26)

The estimators of \(\theta_1, \theta_2, \cdots \theta_k \), based on the method of moments, are obtained by solving the system of equations for the \(K \) parameter estimates \(\hat{\theta}_1, \hat{\theta}_2, \cdots \hat{\theta}_K \).

This principle of estimation is based upon the convention of picking the estimators of \(\theta_i \) in such a manner that the corresponding population (theoretical) moments are equal to the sample moments. These estimators are consistent under fairly general regularity conditions, but are not generally efficient. Method of moments estimators may also not be unique.

3.1.5. Example using density function \(f(y) = (p + 1) y^p \). Consider a density function given by

\[
f(y) = (p + 1) y^p \quad 0 \leq y \leq 1
\]

\[
= 0 \quad \text{otherwise}
\]

(27)

Let \(Y_1, Y_2, \cdots, Y_n \) denote a random sample from the given population. Express the first moment of \(Y \) as a function of the parameters.
\[
E(Y) = \int_{-\infty}^{\infty} y f(y) \, dy
\]
\[
= \int_{0}^{1} y (p + 1) y^p \, dy
\]
\[
= \int_{0}^{1} y^{p+1} (p + 1) \, dy
\]
\[
= \frac{y^{p+2} (p + 1)}{(p + 2)} \bigg|_{0}^{1}
\]
\[
= \frac{p + 1}{p + 2}
\]

Then set this expression of the parameters equal to the first sample moment and solve for \(p \).

\[
\mu'_1 = E(Y) = \frac{p + 1}{p + 2}
\]
\[
\Rightarrow \frac{p + 1}{p + 2} = 1 \sum_{i=1}^{n} y_i = \bar{y}
\]
\[
\Rightarrow p + 1 = (p + 2) \bar{y} = p \bar{y} + 2 \bar{y}
\]
\[
\Rightarrow p - p \bar{y} = 2 \bar{y} - 1
\]
\[
\Rightarrow p(1 - \bar{y}) = 2 \bar{y} - 1
\]
\[
\Rightarrow \hat{p} = \frac{2 \bar{y} - 1}{1 - \bar{y}}
\]

3.1.6. Example using the Normal Distribution. Let \(Y_1, Y_2, \cdots Y_n \) denote a random sample from a normal distribution with mean \(\mu \) and variance \(\sigma^2 \). Let \((\theta_1, \theta_2) = (\mu, \sigma^2)\). The moment generating function for a normal random variable is given by

\[
M_X(t) = e^{\mu t + \frac{\sigma^2 t^2}{2}}
\]

The moments of \(X \) can be obtained from \(M_X(t) \) by differentiating with respect to \(t \). For example the first raw moment is

\[
E(X) = \frac{d}{dt} \left(e^{\mu t + \frac{\sigma^2 t^2}{2}} \right) \bigg|_{t = 0}
\]
\[
= (\mu + t \sigma^2) \left(e^{\mu t + \frac{\sigma^2 t^2}{2}} \right) \bigg|_{t = 0}
\]
\[
= \mu
\]

The second raw moment is
\[E(x^2) = \frac{d^2}{dt^2} \left(e^{\mu t + \frac{t^2 \sigma^2}{2}} \right) \bigg|_{t=0} \]
\[= \frac{d}{dt} \left((\mu + t \sigma^2) \left(e^{\mu t + \frac{t^2 \sigma^2}{2}} \right) \right) \bigg|_{t=0} \]
\[= \left((\mu + t \sigma^2)^2 \left(e^{\mu t + \frac{t^2 \sigma^2}{2}} \right) + \sigma^2 \left(e^{\mu t + \frac{t^2 \sigma^2}{2}} \right) \right) \bigg|_{t=0} \]
\[= \mu^2 + \sigma^2 \]

So we have \(\mu = \mu_1' \) and \(\sigma^2 = E[Y^2] - E^2[Y] = \mu_2' - (\mu_1')^2 \). Specifically,

\[
\begin{align*}
\mu_1' &= E(Y) = \mu \\
\mu_2' &= E(Y^2) = \sigma^2 + E^2[Y] = \sigma^2 + \mu^2
\end{align*}
\]

Now set the first population moment equal to its sample analogue to obtain

\[
\mu = \frac{1}{n} \sum_{i=1}^{n} y_i = \bar{y}
\]

\[
\Rightarrow \hat{\mu} = \bar{y}
\]

Now set the second population moment equal to its sample analogue

\[
\sigma^2 + \mu^2 = \frac{1}{n} \sum_{i=1}^{n} y_i^2
\]

\[
\Rightarrow \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} y_i^2 - \mu^2
\]

\[
\Rightarrow \sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} y_i^2 - \mu^2}
\]

Now replace \(\mu \) in equation 35 with its estimator from equation 34 to obtain

\[
\hat{\sigma} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2}
\]

\[
\Rightarrow \hat{\sigma} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2}
\]

This is, of course, different from the sample standard deviation defined in equations 4 and 5.

3.1.7. Example using the Gamma Distribution. Let \(X_1, X_2, \ldots, X_n \) denote a random sample from a gamma distribution with parameters \(\alpha \) and \(\beta \). The density function is given by

\[
f(x; \alpha, \beta) = \frac{1}{\beta^\alpha \Gamma(\alpha)} x^{\alpha-1} e^{-\frac{x}{\beta}} \quad 0 \leq x < \infty
\]

\[
= 0 \quad \text{otherwise}
\]

(37)
Find the first moment of the gamma distribution by integrating as follows

\[E(X) = \int_0^\infty x^{\alpha - 1} e^{-\frac{x}{\beta}} \, dx \]

\[= \frac{1}{\beta^\alpha \Gamma(\alpha)} \int_0^\infty x^{(\alpha + 1) - 1} e^{-\frac{x}{\beta}} \, dx \] (38)

If we multiply equation 38 by \(\beta^{1+\alpha} \Gamma(1 + \alpha) \) we obtain

\[E(X) = \frac{\beta^{1+\alpha} \Gamma(1 + \alpha)}{\beta^\alpha \Gamma(\alpha)} \int_0^\infty \frac{1}{\Gamma(1 + \alpha)} x^{(1+\alpha) - 1} e^{-\frac{x}{\beta}} \, dx \] (39)

The integrand of equation 39 is a gamma density with parameters \(\beta \) and \(1 - \alpha \) This integrand will integrate to one so that we obtain the expression in front of the integral sign as the \(E(X) \).

\[E(X) = \frac{\beta^{1+\alpha} \Gamma(1 + \alpha)}{\beta^\alpha \Gamma(\alpha)} \]

\[= \frac{\beta \Gamma(1 + \alpha)}{\Gamma(\alpha)} \] (40)

The gamma function has the property that \(\Gamma(t) = (t - 1)\Gamma(t - 1) \) or \(\Gamma(v + 1) = v\Gamma(v) \). Replacing \(\Gamma(1 + \alpha) \) with \(\alpha \Gamma(\alpha) \) in equation 40, we obtain

\[E(X) = \frac{\beta \alpha \Gamma(\alpha)}{\Gamma(\alpha)} \]

\[= \beta \alpha \] (41)

We can find the second moment by finding \(E(X^2) \). To do this we multiply the gamma density in equation 38 by \(x^2 \) instead of \(x \). Carrying out the computation we obtain

\[E(X^2) = \int_0^\infty x^2 \frac{1}{\beta^\alpha \Gamma(\alpha)} x^{\alpha - 1} e^{-\frac{x}{\beta}} \, dx \]

\[= \frac{1}{\beta^\alpha \Gamma(\alpha)} \int_0^\infty x^{(2+\alpha) - 1} e^{-\frac{x}{\beta}} \, dx \] (42)

If we then multiply and divide 42 by \(\beta^{2+\alpha} \Gamma(2 + \alpha) \) we obtain
\[E(X^2) = \frac{\beta^{2+\alpha} \Gamma(2+\alpha)}{\beta^\alpha \Gamma(\alpha)} \int_0^\infty \frac{1}{\beta^{2+\alpha} \Gamma(2+\alpha)} x^{(2+\alpha)-1} e^{-x/\beta} \, dx \]

\[= \frac{\beta^{2+\alpha} \Gamma(2+\alpha)}{\beta^\alpha \Gamma(\alpha)} \]

\[= \frac{\beta^2 (\alpha + 1) \Gamma(1 + \alpha)}{\Gamma(\alpha)} \]

\[= \frac{\beta^2 \alpha (\alpha + 1) \Gamma(\alpha)}{\Gamma(\alpha)} \]

\[= \beta^2 \alpha (\alpha + 1) \quad (43) \]

Now set the first population moment equal to the sample analogue to obtain

\[\beta \alpha = \frac{1}{n} \sum_{i=1}^{n} x_i = \bar{x} \]

\[\Rightarrow \hat{\alpha} = \frac{\bar{x}}{\beta} \quad (44) \]

Now set the second population moment equal to its sample analogue

\[\beta^2 \alpha (\alpha + 1) = \frac{1}{n} \sum_{i=1}^{n} x_i^2 \]

\[\Rightarrow \beta^2 = \frac{\sum_{i=1}^{n} x_i^2}{n \alpha (\alpha + 1)} \]

\[\Rightarrow \beta^2 = \frac{\sum_{i=1}^{n} x_i^2}{n \left(\frac{\bar{x}}{\beta} \right) \left(\left(\frac{\bar{x}}{\beta} \right) + 1 \right)} \]

\[\Rightarrow \beta^2 = \frac{\sum_{i=1}^{n} x_i^2}{\frac{\bar{x}^2}{\beta^2} + \left(\frac{\bar{x}}{\beta} \right)} \quad (45) \]

\[\Rightarrow n \bar{x}^2 + n \bar{x} \beta = \sum_{i=1}^{n} x_i^2 \]

\[\Rightarrow n \bar{x} \beta = \sum_{i=1}^{n} x_i^2 - n \bar{x}^2 \]

\[\Rightarrow \beta = \frac{\sum_{i=1}^{n} x_i^2 - n \bar{x}^2}{n \bar{x}} \]

\[= \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n \bar{x}} \]

3.1.8. Example with unknown distribution but known first and second moments. Let \(Y_1, Y_2, \cdots Y_n \) denote a random sample from an unknown distribution with parameters \(\beta \) and \(\sigma \). We know the following about the distribution of \(Y \).
\[Y = \beta + u \]

\[E(u) = 0 \]

\[E(u^2) = \text{Var}(u) = \sigma^2 \]

Consider estimators for \(\beta \) and \(\sigma^2 \). In a given sample

\[y_i = \hat{\beta} + \hat{u}_i \]

\[\Rightarrow \hat{u}_i = y_i - \hat{\beta} \] (47)

The sample moments are then as follows

- **First sample moment**
 \[\sum_{i=1}^{n} \hat{u}_i \]

- **Second sample moment**
 \[\sum_{i=1}^{n} \hat{u}_i^2 \]

Substituting from expression 47 we obtain

- **First sample moment**
 \[\sum_{i=1}^{n} \left(y_i - \hat{\beta} \right) \]

- **Second sample moment**
 \[\sum_{i=1}^{n} \left(y_i - \hat{\beta} \right)^2 \]

If we set the first sample moment equal to the first population moment we obtain

\[\sum_{i=1}^{n} \left(y_i - \hat{\beta} \right) \]

\[= 0 \]

\[\Rightarrow \sum_{i=1}^{n} y_i = n\hat{\beta} \] (50)

\[\Rightarrow \frac{\sum_{i=1}^{n} y_i}{n} = \hat{\beta} \]

If we set the second sample moment equal to the second population moment we obtain

\[\sum_{i=1}^{n} \left(y_i - \hat{\beta} \right)^2 \]

\[= \sigma^2 \]

\[\Rightarrow \hat{\sigma}^2 = \frac{\sum_{i=1}^{n} \left(y_i - \hat{\beta} \right)^2}{n} \] (51)
3.2. Method of least squares estimation.

3.2.1. Example with one parameter. Consider the situation in which the Y_i from the random sample can be written in the form

$$Y_i = \beta + \epsilon_i = \hat{\beta} + e_i$$ \hspace{1cm} (52)

where $E(\epsilon_i) = 0$ and $\text{Var}(\epsilon_i) = \sigma^2$ for all i. This is equivalent to stating that the population from which y_i is drawn has a mean of β and a variance of σ^2.

The least squares estimator of $\hat{\beta}$ is obtained by minimizing the sum of squares errors, SSE, defined by

$$SSE = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{\beta})^2 \hspace{1cm} (53)$$

The idea is to pick the value of $\hat{\beta}$ to estimate β which minimizes SSE. Pictorially we select the value of $\hat{\beta}$ which minimizes the sum of squares of the vertical deviations in figure 1.

FIGURE 1. Least Squares Estimation

The solution is obtained by finding the value of β that minimizes equation 53.
\[\frac{\partial SSE}{\partial \beta} = 2 \sum_{i=1}^{n} (y_i - \hat{\beta})(-1) = 0 \]

\[\Rightarrow \hat{\beta} = \frac{1}{n} \sum_{i=1}^{n} y_i = \bar{y} \hspace{1cm} (54) \]

This method chooses values of the parameters of the underlying distribution, \(\beta \), such that the distance between the elements of the random sample and "predicted" values are minimized.

3.2.2. Example with two parameters

Consider the model

\[y_t = \beta_1 + \beta_2 x_t + \epsilon_t = \hat{\beta}_1 + \hat{\beta}_2 x_t + e_t \]

\[\Rightarrow e_t = y_t - \hat{\beta}_1 - \hat{\beta}_2 x_t \]

where \(E(\epsilon_t) = 0 \) and \(\text{Var}(\epsilon_t) = \sigma^2 \) for all \(t \). This is equivalent to stating that the population from which \(y_t \) is drawn has a mean of \(\beta_1 + \beta_2 x_t \) and a variance of \(\sigma^2 \).

Now if these estimated errors are squared and summed we obtain

\[SSE = \sum_{t=1}^{n} e_t^2 = \sum_{t=1}^{n} (y_t - \hat{\beta}_1 - \hat{\beta}_2 x_t)^2 \hspace{1cm} (56) \]

This sum of squares of the vertical distances between \(y_t \) and the predicted \(y_t \) on the sample regression line is abbreviated SSE. Different values for the parameters give different values of SSE. The idea is to pick values of \(\beta_1 \) and \(\beta_2 \) that minimize SSE. This can be done using calculus. Specifically

\[\frac{\partial SSE}{\partial \beta_1} = \sum_{t} (y_t - \hat{\beta}_1 - \hat{\beta}_2 x_t)(-1) = -2 \sum_{t} e_t = 0 \]

\[\frac{\partial SSE}{\partial \beta_2} = \sum_{t} (y_t - \hat{\beta}_1 - \hat{\beta}_2 x_t) (-x_t) \]

\[= -2 \sum_{t} (y_t x_t - \hat{\beta}_1 x_t - \hat{\beta}_2 x_t^2) = -2 \sum_{t} e_t x_t = 0 \hspace{1cm} (57) \]

Setting these derivatives equal to zero implies

\[\sum_{t} e_t = 0 \]

\[\sum_{t} e_t x_t = 0 \hspace{1cm} (58) \]

These equations are often referred to as the normal equations. Note that the normal equations imply that the sample mean of the residuals is equal to zero and that the sample covariance between the residuals and \(x \) is zero since the mean of \(e_t \) is zero. The easiest method of solution is to solve the first normal equation for \(\beta_1 \) and then substitute into the second. Solving the first equation gives
\[
\sum_t (y_t - \hat{\beta}_1 - \hat{\beta}_2 X_t) = 0
\]
\[
\Rightarrow \sum_t y_t = n \hat{\beta}_1 + \hat{\beta}_2 \sum_t x_t
\]
\[
\Rightarrow \hat{\beta}_1 = \frac{\sum_t y_t}{n} - \hat{\beta}_2 \frac{\sum_t x_t}{n} = \bar{y} - \hat{\beta}_2 \bar{x}
\]

This implies that the regression line goes through the point \((\bar{y}, \bar{x})\). The slope of the sample regression line is obtained by substituting \(\beta_1\) into the second normal equation and solving for \(\beta_2\). This will give

\[
\sum_t (y_t x_t - \hat{\beta}_1 x_t - \hat{\beta}_2 x_t^2) = 0
\]
\[
\Rightarrow \sum_t y_t x_t = \hat{\beta}_1 \sum_t x_t + \hat{\beta}_2 \sum_t x_t^2
\]
\[
= (\bar{y} - \hat{\beta}_2 \bar{x}) \sum_t x_t + \hat{\beta}_2 \sum_t x_t^2
\]
\[
= (\bar{y} - \hat{\beta}_2 \bar{x}) n \bar{x} + \hat{\beta}_2 \sum_t x_t^2
\]
\[
= n \bar{y} \bar{x} - n \hat{\beta}_2 \bar{x}^2 + \hat{\beta}_2 \sum_t x_t^2
\]
\[
\Rightarrow \hat{\beta}_2 = \frac{\sum_t y_t x_t - n \bar{x} \bar{y}}{\sum_t x_t^2 - n \bar{x}^2}
\]

3.2.3. Method of moments estimation for example in 3.2.2. Let \(Y_1, Y_2, \cdots, Y_n\) denote a random sample from an unknown distribution with parameters \(\beta_1, \beta_2, \) and \(\sigma\). We know the following about the distribution of \(Y\).

\[
Y = \beta_1 + \beta_2 X + u
\]
\[
E(u) = 0
\]
\[
E(u^2) = Var(u) = \sigma^2
\]
\[
E(u \cdot x) = 0
\]

Consider estimators for \(\beta_1, \beta_2, \) and \(\sigma^2\). In a given sample

\[
y_i = \hat{\beta}_1 + \hat{\beta}_2 x_i + \hat{u}_i
\]
\[
\Rightarrow \hat{u}_i = y_i - \hat{\beta}_1 - \hat{\beta}_2 x_i
\]

(60)
The sample moments are then as follows

First sample moment \[= \frac{\sum_{i=1}^{n} \hat{u}_i}{n} \]
Second sample moment \[= \frac{\sum_{i=1}^{n} \hat{u}_i^2}{n} \]
Cross sample moment \[= \frac{\sum_{i=1}^{n} x_i \hat{u}_i}{n} \] \hspace{1cm} (63)

Substituting from equation 62 we obtain

First sample moment \[= \frac{\sum_{i=1}^{n} \left(y_i - \hat{\beta}_1 - \hat{\beta}_2 x_i \right)}{n} \] \hspace{1cm} (64a)
Second sample moment \[= \frac{\sum_{i=1}^{n} \left(y_i - \hat{\beta}_1 - \hat{\beta}_2 x_i \right)^2}{n} \] \hspace{1cm} (64b)
Cross sample moment \[= \frac{\sum_{i=1}^{n} x_i \left(y_i - \hat{\beta}_1 - \hat{\beta}_2 x_i \right)}{n} \] \hspace{1cm} (64c)

If we set the first sample moment equal to the first population moment we obtain

\[\frac{\sum_{i=1}^{n} \left(y_i - \hat{\beta}_1 - \hat{\beta}_2 x_i \right)}{n} = 0 \]
\[\Rightarrow \sum_{i=1}^{n} y_i = n\hat{\beta}_1 + \hat{\beta}_2 \sum_{i=1}^{n} x_i \] \hspace{1cm} (65)
\[\Rightarrow \sum_{i=1}^{n} y_i - \hat{\beta}_2 \sum_{i=1}^{n} x_i = n\hat{\beta}_1 \]
\[\Rightarrow \bar{y} - \hat{\beta}_2 \bar{x} = \hat{\beta}_1 \]

Now use equation 64c to solve for $\hat{\beta}_2$.
\[\sum_{i=1}^{n} x_i y_i = \hat{\beta}_1 \sum_{i=1}^{n} x_i + \hat{\beta}_2 \sum_{i=1}^{n} x_i^2 \]
\[= (\bar{y} - \hat{\beta}_2 \bar{x}) \sum_{i=1}^{n} x_i + \hat{\beta}_2 \sum_{i=1}^{n} x_i^2 \]
\[= \bar{y} \sum_{i=1}^{n} x_i - \hat{\beta}_2 \bar{x} \sum_{i=1}^{n} x_i + \hat{\beta}_2 \sum_{i=1}^{n} x_i^2 \]
\[= n\bar{y}\bar{x} - \hat{\beta}_2 \bar{x} \bar{y} + \hat{\beta}_2 \sum_{i=1}^{n} x_i^2 \]
\[= n\bar{y}\bar{x} + \hat{\beta}_2 \left(\sum_{i=1}^{n} x_i^2 - n \bar{x}^2 \right) \]
\[\Rightarrow \hat{\beta}_2 \left(\sum_{i=1}^{n} x_i^2 - n \bar{x}^2 \right) = \sum_{i=1}^{n} x_i y_i - n\bar{y}\bar{x} \]
\[\Rightarrow \hat{\beta}_2 = \frac{\sum_{i=1}^{n} x_i y_i - n\bar{y}\bar{x}}{\sum_{i=1}^{n} x_i^2 - n \bar{x}^2} \]
\[= \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} \]

We obtain an estimate for \(\sigma^2 \) from equation 64b
\[\frac{\sum_{i=1}^{n} \left(y_i - \hat{\beta}_1 - \hat{\beta}_2 x_i \right)^2}{n} = \sigma^2 \]
\[\Rightarrow \hat{\sigma}^2 = \frac{\sum_{i=1}^{n} \left(y_i - \hat{\beta}_1 - \hat{\beta}_2 x_i \right)^2}{n} \]
3.3. **Method of maximum likelihood estimation (MLE).** Least squares is independent of a specification of a density function for the parent population. Now assume that

\[y_i \sim f(\cdot; \theta = (\theta_1, \ldots, \theta_K)), \forall i. \]

(68)

3.3.1. **Motivation for the MLE method.** If a random variable \(Y \) has a probability density function \(f(\cdot; \theta) \) characterized by the parameters \(\theta = (\theta_1, \ldots, \theta_k) \), then the maximum likelihood estimators (MLE) of \((\theta_1, \ldots, \theta_k)\) are the values of these parameters which would have most likely generated the given sample.

3.3.2. **Theoretical development of the MLE method.** The joint density of a random sample \(y_1, y_2, \ldots, y_n \) is given by

\[L = g(y_1, \ldots, y_n; \theta) = f(y_1; \theta) \cdot f(y_2; \theta) \cdot f(y_3; \theta) \cdots f(y_n; \theta). \]

Given that we have a random sample, the joint density is just the product of the marginal density functions. This is referred to as the **likelihood function**. The MLE of the \(\theta_i \) are the \(\theta_i \) which maximize the likelihood function.

The necessary conditions for an optimum are:

\[\frac{\partial L}{\partial \theta_i} = 0, \quad i = 1, 2, \ldots, k \]

(69)

This gives \(k \) equations in \(k \) unknowns to solve for the \(k \) parameters \(\theta_1, \ldots, \theta_k \). In many instances it will be convenient to maximize \(\ell = \ln L \) rather than \(L \) given that the log of a product is the sum of the logs.

3.3.3. **Example 1.** Let the random variable \(X_i \) be distributed as a normal \(N(\mu, \sigma^2) \) so that its density is given by

\[f(x_i; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x_i - \mu)^2} \]

(70)

Its likelihood function is given by

\[L = \prod_{i=1}^{n} f(x_i; \mu, \sigma^2) = f(x_1) f(x_2) \cdots f(x_n) \]

\[= \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right)^n e^{-\frac{1}{2\sigma^2}(x_1 - \mu)^2} e^{-\frac{1}{2\sigma^2}(x_2 - \mu)^2} \cdots e^{-\frac{1}{2\sigma^2}(x_n - \mu)^2} \]

\[= \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right)^n e^{\frac{1}{2\sigma^2} \sum_{i=1}^{n}(x_i - \mu)^2} \]

(71)

\[\Rightarrow \ln L = \ell = -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n}(x_i - \mu)^2 \]

The MLE of \(\mu \) and \(\sigma^2 \) are obtained by taking the partial derivatives of equation 71
\[\frac{\partial \ell}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - \mu) = 0 \Rightarrow \hat{\mu} = \frac{\sum_{i=1}^{n} x_i}{n} = \bar{x} \]

\[\frac{\partial \ell}{\partial \sigma^2} = -\frac{n}{2} \left[\frac{2\pi}{2\pi \sigma^2} \right] - \left(\frac{1}{2} \right) (-1)(\sigma^2)^{-2} \sum_{i=1}^{n} (x_i - \hat{\mu})^2 = 0 \]

\[\Rightarrow \frac{n}{2 \sigma^2} = \frac{1}{(2\sigma^2)^2} \sum_{i=1}^{n} (x_i - \hat{\mu})^2 \]

\[\Rightarrow n = \frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - \hat{\mu})^2 \] \hspace{1cm} (72)

\[\Rightarrow \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 \]

\[\Rightarrow \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 \]

\[= \left(\frac{n - 1}{n} \right)s^2 \]

The MLE of \(\sigma^2 \) is equal to the sample variance and not \(S^2 \); hence, the MLE is not unbiased as can be seen from equation 21. The MLE of \(\mu \) is the sample mean.

3.3.4. Example 2 - Poisson. The random variable \(X_i \) is distributed as a Poisson if the density of \(X_i \) is given by

\[f(x_i; \lambda) = \begin{cases}
\frac{e^{-\lambda} \lambda^{x_i}}{x_i!} & \text{if } x_i \text{ is a non-negative integer} \\
0 & \text{otherwise}
\end{cases} \]

mean \((X) = \lambda \)

\(\text{Var} \ (X) = \lambda \)

The likelihood function is given by

\[L = \left[\frac{e^{-\lambda} \lambda^{x_1}}{x_1!} \right] \left[\frac{e^{-\lambda} \lambda^{x_2}}{x_2!} \right] \cdots \left[\frac{e^{-\lambda} \lambda^{x_n}}{x_n!} \right] = \frac{e^{-\lambda n} \sum_{i=1}^{n} x_i \lambda^{x_i} x_i!}{\prod_{i=1}^{n} x_i!} \] \hspace{1cm} (74)

\[\Rightarrow \ln L = \ell = -\lambda n + \sum_{i=1}^{n} x_i \ln \lambda - \ln \left(\prod_{i=1}^{n} x_i! \right) \]

To obtain a MLE of \(\lambda \), differentiate \(\ell \) with respect to \(\lambda \):
3.3.5. Example 3. Consider the density function

\[f(y) = \begin{cases}
(p + 1)y^p & 0 \leq y \leq 1 \\
0 & \text{otherwise}
\end{cases} \]

(76)

The likelihood function is given by

\[L = \prod_{i=1}^{n} (p + 1)y_i^p \]

\[\ln L = \ell = \sum_{i=1}^{n} \ln [(p + 1)y_i^p] \]

(77)

To obtain the MLE estimator differentiate 77 with respect to p

\[\frac{\partial \ell}{\partial p} = \sum_{i=1}^{n} \left(\frac{1}{p + 1} + \ln y_i \right) = 0 \]

\[\Rightarrow \sum_{i=1}^{n} \frac{1}{p + 1} = \sum_{i=1}^{n} (-\ln y_i) \]

\[\Rightarrow \frac{n}{p + 1} = \sum_{i=1}^{n} (-\ln y_i) \]

(78)

\[\Rightarrow p + 1 = \frac{n}{\sum_{i=1}^{n} \ln y_i} \]

\[\Rightarrow \hat{p} = \frac{n}{\sum_{i=1}^{n} \ln y_i} - 1 \]

3.3.6. Example 4. Consider the density function

\[f(y_i) = p^y_i (1 - p)^{1 - y_i} \quad 0 \leq p \leq 1 \]

(79)

The likelihood function is given by
\[
L = \prod_{i=1}^{n} p^{y_i} (1 - p)^{1 - y_i} \\
= p^{\sum_{i=1}^{n} y_i} (1 - p)^{n - \sum_{i=1}^{n} y_i} \\
\ln L = \ell = \sum_{i=1}^{n} y_i \ln p + \left(n - \sum_{i=1}^{n} y_i\right) \ln(1 - p)
\]

To obtain the MLE estimator differentiate (80) with respect to \(p\) where we assume that \(0 < p < 1\).

\[
\frac{\partial \ell}{\partial p} = \frac{\sum_{i=1}^{n} y_i}{p} - \frac{(n - \sum_{i=1}^{n} y_i)}{1 - p} = 0 \\
\Rightarrow \frac{\sum_{i=1}^{n} y_i}{p} = \frac{(n - \sum_{i=1}^{n} y_i)}{1 - p} \\
\Rightarrow \sum_{i=1}^{n} y_i - p \sum_{i=1}^{n} y_i = n p - p \sum_{i=1}^{n} y_i \\
\Rightarrow \sum_{i=1}^{n} y_i = n p \\
\Rightarrow \frac{\sum_{i=1}^{n} y_i}{n} = \hat{p}
\]

3.3.7. **Example 5.** Let \(Y_1, Y_2, \cdots, Y_n\) denote a random sample from an unknown distribution with parameters \(\beta_1, \beta_2, \) and \(\sigma\). We know the following about the distribution of \(Y_i\).

\[
Y_i = \beta_1 + \beta_2 X_i + u_i \\
E(u_i) = 0 \\
E(u_i^2) = \text{Var}(u_i) = \sigma^2
\]

\(u_i\) and \(u_j\) are independent for all \(i \neq j\)

\(u_i\) and \(x_j\) are independent for all \(i\) and \(j\)

\(u_i\) are distributed normally for all \(i\)

This implies that the \(Y_i\) are independently and normally distributed with respective means \(\beta_1 + \beta_2 X_i\) and a common variance \(\sigma^2\). The joint density of the set of observations, therefore, is
\[L = \prod_{i=1}^{n} f(y_i; \beta_1, \beta_2, \sigma^2) = f(y_1) f(y_2) \cdots f(y_n) \]
\[= \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right)^n e^{-\frac{1}{2\sigma^2} (y_1 - \beta_1 - \beta_2 x_1)^2} e^{-\frac{1}{2\sigma^2} (y_2 - \beta_1 - \beta_2 x_2)^2} \cdots e^{-\frac{1}{2\sigma^2} (y_n - \beta_1 - \beta_2 x_n)^2} \]
\[= \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right)^n e^{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \beta_1 - \beta_2 x_i)^2} \]

(83)

\[\Rightarrow \ln L = \ell = -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \beta_1 - \beta_2 x_i)^2 \]
\[= -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \beta_1 - \beta_2 x_i)^2 \]

The MLE of \(\beta_1, \beta_2, \) and \(\sigma^2 \) are obtained by taking the partial derivatives of equation 83

\[\frac{\partial \ell}{\partial \beta_1} = \frac{1}{\sigma^2} \sum_{i} (y_i - \beta_1 - \beta_2 x_i) = 0 \]

(84a)

\[\frac{\partial \ell}{\partial \beta_1} = \frac{1}{\sigma^2} \sum_{i} (y_i - \beta_1 - \beta_2 x_i) (x_i) = 0 \]

(84b)

\[\frac{\partial \ell}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{(2\sigma^2)^2} \sum_{i=1}^{n} (y_i - \beta_1 - \beta_2 x_i)^2 = 0 \]

(84c)

Solving equation 84 for \(\beta_1 \) we obtain

\[\sum_{i} (y_i - \beta_1 - \beta_2 x_i) = 0 \]
\[\Rightarrow \sum_{i} y_i = n \beta_1 + \beta_2 \sum_{i} x_i \]

(85)

\[\Rightarrow \hat{\beta}_1 = \frac{\sum_{i} y_i}{n} - \hat{\beta}_2 \frac{\sum_{i} x_i}{n} = \bar{y} - \hat{\beta}_2 \bar{x} \]

We can find \(\beta_2 \) by substituting \(\beta_1 \) into equation 84b and then solving for \(\beta_2 \). This will give
\[\sum \left(y_i x_i - \beta_1 x_i - \beta_2 x_i^2 \right) = 0 \]

\[\Rightarrow \sum y_i x_i = \beta_1 \sum x_i + \beta_2 \sum x_i^2 \]

\[= (\bar{y} - \beta_2 \bar{x}) \sum x_i + \beta_2 \sum x_i^2 \]

\[= (\bar{y} - \beta_2 \bar{x}) n \bar{x} + \beta_2 \sum x_i^2 \]

\[= n \bar{y} \bar{x} - n \beta_2 \bar{x}^2 + \beta_2 \sum x_i^2 \]

\[\Rightarrow \hat{\beta}_2 = \frac{\sum y_i x_i - n \bar{y} \bar{x}}{\sum x_i^2 - n \bar{x}^2} \]

\[= \frac{\sum (y_i - \bar{y})(x_i - \bar{x})}{\sum (x_i^2 - \bar{x}^2)} \] (86)

From equation we obtain 84c

\[\frac{\partial \ell}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{(2\sigma^2)^2} \sum_{i=1}^{n} (y_i - \beta_1 - \beta_2 x_i)^2 = 0 \]

\[\Rightarrow \frac{n}{2 \sigma^2} = \frac{1}{(2\sigma^2)^2} \sum_{i=1}^{n} (y_i - \beta_1 - \beta_2 x_i)^2 \]

\[\Rightarrow n = \frac{1}{\sigma^2} \sum_{i=1}^{n} (y_i - \beta_1 - \beta_2 x_i)^2 \] (87)

\[\Rightarrow \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{\beta}_1 - \hat{\beta}_2 x_i)^2 \]

\[\Rightarrow \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \hat{\beta}_1 - \hat{\beta}_2 x_i \right)^2 \]

3.4. Principle of Best Linear Unbiased Estimation (BLUE).

3.4.1. Principle of Best Linear Unbiased Estimation. Start with some desired properties and deduce an estimator satisfying them. For example suppose that we want the estimator to be linear in the observed random variables. This means that if the observations are \(y_1, \ldots, y_n \), an estimator of \(\theta \) must satisfy
\[
\hat{\theta} = \sum_{i=1}^{n} a_i y_i
\]
(88)

where the \(a_i\) are to be determined.

3.4.2. Some required properties of the estimator (arbitrary).

1: \(E(\hat{\theta}) = \theta\) (unbiased)
2: \(\text{Var}(\hat{\theta}) \leq \text{VAR}(\tilde{\theta})\) (minimum variance) where \(\tilde{\theta}\) is any other linear combination of the \(y_i\) that also produces an unbiased estimator.

3.4.3. Example. Let \(Y_1, Y_2, \ldots, Y_n\) denote a random sample drawn from a population having a mean \(\mu\) and variance \(\sigma^2\). Now derive the best linear unbiased estimator (BLUE) of \(\mu\).

Let the proposed estimator be denoted by \(\hat{\theta}\). It is linear so we can write it as follows.

\[
\hat{\theta} = \sum_{i=1}^{n} a_i y_i
\]
(89)

If the estimator is to be unbiased, there will be restrictions on the \(a_i\). Specifically

\[
\text{Unbiasedness } \Rightarrow E(\hat{\theta}) = E\left(\sum_{i=1}^{n} a_i y_i \right)
\]
\[
= \sum_{i=1}^{n} a_i E(y_i)
\]
\[
= \sum_{i=1}^{n} a_i \mu
\]
\[
= \mu \sum_{i=1}^{n} a_i
\]
\[
\Rightarrow \sum_{i=1}^{n} a_i = 1
\]
(90)

Now consider the variance of \(\hat{\theta}\).

\[
\text{Var}(\hat{\theta}) = \text{Var}\left(\sum_{i=1}^{n} a_i y_i \right)
\]
\[
= \sum_{i=1}^{n} a_i^2 \text{Var}(y_i) + \sum_{i \neq j} a_i a_j \text{Cov}(y_i, y_j)
\]
\[
= \sum_{i=1}^{n} a_i^2 \sigma^2
\]
(91)

because the covariance between \(y_i\) and \(y_j\) \((i \neq j)\) is equal to zero due to the fact that the \(y\)'s are drawn from a random sample.

The problem of obtaining a BLUE of \(\mu\) becomes that of minimizing \(\sum_{i=1}^{n} a_i^2\) subject to the constraint \(\sum_{i=1}^{n} a_i = 1\). This is done by setting up a Lagrangian
\[
L(a, \lambda) = \sum_{i=1}^{n} a_i^2 - \lambda \left(\sum_{i=1}^{n} a_i - 1 \right) \tag{92}
\]

The necessary conditions for an optimum are

\[
\frac{\partial L}{\partial a_1} = 2a_1 - \lambda = 0
\]

\[
\frac{\partial L}{\partial a_n} = 2a_n - \lambda = 0
\]

\[
\frac{\partial L}{\partial \lambda} = - \sum_{i=1}^{n} a_i + 1 = 0
\tag{93}
\]

The first n equations imply that \(a_1 = a_2 = a_3 = \ldots a_n \) so that the last equation implies that

\[
\sum_{i=1}^{n} a_i - 1 = 0
\]

\[
\Rightarrow n a_i - 1 = 0
\]

\[
\Rightarrow n a_i = 1
\]

\[
\Rightarrow a_i = \frac{1}{n}
\]

\[
\Rightarrow \hat{\theta} = \sum_{i=1}^{n} a_i y_i = \frac{1}{n} \sum_{i=1}^{n} y_i = \bar{y}
\]

Note that equal weights are assigned to each observation.
4. Finite Sample Properties of Estimators

4.1. Introduction to sample properties of estimators. In section 3 we discussed alternative methods of estimating the unknown parameters in a model. In order to compare the estimating techniques we will discuss some criteria which are frequently used in such a comparison. Let \(\theta \) denote an unknown parameter and let \(\hat{\theta} \) and \(\tilde{\theta} \) be alternative estimators. Now define the bias, variance and mean squared error of \(\hat{\theta} \) as

\[
\text{Bias}(\hat{\theta}) = E(\hat{\theta}) - \theta \\
\text{Var}(\hat{\theta}) = E\left((\hat{\theta} - E(\hat{\theta}))^2 \right)
\]

\[
\text{MSE}(\hat{\theta}) = E\left((\hat{\theta} - \theta)^2 \right) = \text{Var}(\hat{\theta}) + (\text{Bias}(\hat{\theta}))^2
\]

The result on mean squared error can be seen as follows

\[
\text{MSE}(\theta) = E\left((\hat{\theta} - \theta)^2 \right)
= E\left((\hat{\theta} - E(\hat{\theta})) + (E(\hat{\theta}) - \theta) \right)^2
= E\left((\hat{\theta} - E(\hat{\theta})) \right)^2 + 2E(\hat{\theta} - \theta)E(\hat{\theta} - E(\hat{\theta})) + E\left((E(\hat{\theta}) - \theta)^2 \right)
= E\left((\hat{\theta} - E(\hat{\theta})) \right)^2 + (E(\hat{\theta}) - \theta)^2 \text{ since } E(\hat{\theta} - E(\hat{\theta})) = 0
= \text{Var}(\hat{\theta}) + (\text{Bias}(\hat{\theta}))^2
\]

4.2. Specific properties of estimators.

4.2.1. Unbiasedness. \(\hat{\theta} \) is said to be an unbiased estimator of \(\theta \) if \(E(\hat{\theta}) = \theta \).

In figure 2, \(\hat{\theta} \) is an unbiased estimator of \(\theta \), while \(\tilde{\theta} \) is a biased estimator.

4.2.2. Minimum variance. \(\hat{\theta} \) is said to be a minimum variance estimator of \(\theta \) if

\[
\text{Var}(\hat{\theta}) \leq \text{Var}(\tilde{\theta})
\]

where \(\tilde{\theta} \) is any other estimator of \(\theta \). This criterion has its disadvantages as can be seen by noting that \(\hat{\theta} = \text{constant} \) has zero variance and yet completely ignores any sample information that we may have. In figure 3, \(\hat{\theta} \) has a lower variance than \(\tilde{\theta} \).
4.2.3. **Mean squared error efficient.** $\hat{\theta}$ is said to be a MSE efficient estimator of θ if

$$MSE (\hat{\theta}) \leq MSE (\tilde{\theta})$$

(98)

where $\tilde{\theta}$ is any other estimator of θ. This criterion takes into account both the variance and bias of the estimator under consideration. Figure 4 shows three alternative estimators of θ.
4.2.4. **Best linear unbiased estimators.** \(\hat{\theta} \) is the best linear unbiased estimator (BLUE) of \(\theta \) if

\[
\hat{\theta} = \sum_{i=1}^{n} a_i y_i \text{ linear}
\]

\[
E(\hat{\theta}) = \theta \quad \text{unbiased}
\]

\[
Var(\hat{\theta}) \leq Var(\tilde{\theta})
\]

where \(\tilde{\theta} \) is any other linear unbiased estimator of \(\theta \).

For the class of unbiased estimators of \(\theta \), the efficient estimators will also be minimum variance estimators.

4.2.5. **Example.** Let \(X_1, X_2, \ldots, X_n \) denote a random sample drawn from a population having a population mean equal to \(\mu \) and a population variance equal to \(\sigma^2 \). The sample mean (estimator of \(\mu \)) is calculated by the formula
\[\bar{X} = \sum_{i=1}^{n} \frac{X_i}{n} \] \hspace{1cm} (100)

and is an unbiased estimator of \(\mu \) from theorem 3 and equation 19.

Two possible estimates of the population variance are

\[\hat{\sigma}^2 = \sum_{i=1}^{n} \frac{(X_i - \bar{X})^2}{n} \]

\[S^2 = \sum_{i=1}^{n} \frac{(X_i - \bar{X})^2}{n-1} \]

We have shown previously in theorem 3 and equation 21 that \(\hat{\sigma}^2 \) is a biased estimator of \(\sigma^2 \); whereas \(S^2 \) is an unbiased estimator of \(\sigma^2 \). Note also that

\[\hat{\sigma}^2 = \left(\frac{n-1}{n} \right) S^2 \]

\[E (\hat{\sigma}^2) = \left(\frac{n-1}{n} \right) E (S^2) \]

\[= \left(\frac{n-1}{n} \right) \sigma^2 \] \hspace{1cm} (101)

Also from theorem 3 and equation 20, we have that

\[\text{Var} (\bar{X}) = \frac{\sigma^2}{n} \] \hspace{1cm} (102)

Now consider the mean square error of the two estimators \(\bar{X} \) and \(S^2 \) where \(X_1, X_2, \ldots X_n \) are a random sample from a normal population with a mean of \(\mu \) and a variance of \(\sigma^2 \).

\[E (\bar{X} - \mu)^2 = \text{Var} (\bar{X}) = \frac{\sigma^2}{n} \]

\[E (S^2 - \sigma^2)^2 = \text{Var} (S^2) = \frac{2 \sigma^4}{n-1} \] \hspace{1cm} (103)

The variance of \(S^2 \) was derived in the lecture on sample moments. The variance of \(\hat{\sigma}^2 \) is easily computed given the variance of \(S^2 \). Specifically,
We can compute the MSE of $\hat{\sigma}^2$ using equations 95, 101, and 104 as follows

\[
MSE \hat{\sigma}^2 = E(\hat{\sigma}^2 - \sigma^2)^2 = \frac{2(n - 1)\sigma^4}{n^2} + \left[\left(\frac{n - 1}{n}\right)\sigma^2 - \sigma^2\right]^2
\]

\[
= \frac{2(n - 1)\sigma^4}{n^2} + \left(\frac{n - 1}{n}\right)^2\sigma^4 - 2\left(\frac{n - 1}{n}\right)\sigma^4 + \sigma^4
\]

\[
= \sigma^4 \left(\frac{2(n - 1)}{n^2} + \frac{(n - 1)^2}{n^2} - \frac{2n(n - 1)}{n^2} + \frac{n^2}{n^2}\right)
\]

\[
= \sigma^4 \left(\frac{2n - 2 + n^2 - 2n + 1 - 2n^2 + 2n + n^2}{n^2}\right)
\]

\[
= \sigma^4 \left(\frac{2n - 1}{n^2}\right)
\]

(105)

Now compare the MSE’s of S^2 and $\hat{\sigma}^2$.

\[
MSE \hat{\sigma}^2 = \sigma^4 \left(\frac{2n - 1}{n^2}\right) < \sigma^4 \left(\frac{2}{n - 1}\right) = MSE S^2
\]

(106)

So $\hat{\sigma}^2$ is a biased estimator of S^2 but has lower mean square error.