
PROBABILITY CONCEPTS

1. RELATIVE FREQUENCY AS A INTUITIVE MEASURE OF PROBABILITY

Suppose we conduct an experiment for which the outcome cannot be predicted with
certainty. An example might a tossing a coin, rolling a die, administering an influenza
shot to a 60 year old woman, applying 50 kilograms of nitrogen to an acre of corn, or
increasing the money supply by 1%. For each experiment we define some measurement on
the outcomes in which we are interested. For example it might be whether the coin lands
heads up or tails up, or the amount of nitrogen leaching from the acre of land during the
12 months following the application, or whether the woman contracts a serious (however
measured) case of influenza in the six months following injection. In general, suppose we
repeat the random experiment a number of times, n, under exactly the same circumstances.
If a certain outcome has occurred f times in these n trials; the number f is called the
frequency of the outcome. The ratio f/n us called the relative frequencyof the outcome.
A relative frequency is typically unstable for small values of n, but it often tends to stabilize
about some number, say p, as n increases. The number p is sometimes called the probability
of the outcome.

Suppose a researcher randomly selected 100 households in Tulsa, Oklahoma. She then
asks each household how many vehicles (truck and cars) they own. The data is below.

TABLE 1. Data on number of vehicles per household

1 1 2 5 4 5 2 2 4 0 1 1 2 0 0
2 1 1 2 1 1 1 5 2 2 1 6 4 7 1
5 1 3 4 6 2 1 3 1 4 1 0 1 1 2
2 1 6 1 1 3 5 1 1 4 3 4 3 1 0
3 3 0 2 2 3 2 0 6 3 2 4 4 1 0
4 0 1 3 3 6 5 5 2 2 3 2 0 2 4
3 3 2 0 4 1 0 0 1 1

We can construct a frequency table of the data by listing the all the answers possible (or
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received) and the number of times they occurred as follows.

TABLE 2

Number of vehicles Frequency Relative Frequency
0 7 0.07
1 19 0.19
2 15 0.15
3 11 0.11
4 7 0.07
5 7 0.07
6 4 0.04

7 or more 0 0.00

One might loosely say from this data that the probability of a household having 4 cars
is 7%. Or that the probability of having less than six cars is 96%.

Another way to look at this data is using a histogram. To construct a frequency his-
togram, we center a rectangle with a base of length one at each observed integer value
and make the height equal to the relative frequency of the outcome. The total area of the
relative frequency histogram is then one.

FIGURE 1. Histogram.
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The value that occurs most often in such frequency data is called the mode and is repre-
sented by the rectangle with the greatest height in the histogram.
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2. A REVIEW OF SET NOTATION

2.1. Definition of a Set. A set is any collection of objects which are called its elements. If
x is an element of the set S, we say that x belongs to S and write

x ε S. (1)

If y does not belong to S, we write

y 6∈ S. (2)

The simplest way to represent a set is by listing its members. We use the notation

A = {1, 2, 4} (3)

to denote the set whose elements are the numbers 1, 2 and 4. We can also describe a set by
describing its elements instead of listing them. For example we use the notation

C = {x : x2 + 2x − 3 = 0} (4)

to denote the set of all solutions to the equation x2 + 2x− 3 = 0.

2.2. Subsets.

2.2.1. Definition of a Subset. If all the elements of a set X are also elements of a set Y , then
X is a subset of Y and we write

X ⊆ Y (5)

where ⊆ is the set-inclusion relation.

2.2.2. Definition of a Proper Subset. If all the elements of a set X are also elements of a set
Y , but not all elements of Y are in X , then X is a proper subset of Y and we write

X ⊂ Y (6)

where ⊂ is the proper set-inclusion relation.

2.2.3. Definition of Equality of Sets. Two sets are equal if they contain exactly the same ele-
ments, and we write

X = Y. (7)

2.2.4. Examples of Sets.

(i) All corn farmers in Iowa.
(ii) All firms producing steel.

(iii) The set of all consumption bundles that a given consumer can afford,

B =
[
(x1, x2) ε R2 : x1 ≥ 0, x2 ≥ 0, p1x1 + p2x2 ≤ I

]
(8)

(iv) The set of all combinations of outputs that can be produced by a given set of in-
puts.
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The output set P (x) is the set of all output vectors y ε Rm
+ that are obtainable from the input

vector x ε Rn
+.

P (x) = (y ε Rm
+ : (x, y) ε T ) (9)

where the technology set T is the set of all x ε Rn
+ and y ε Rm

+ such that x will produce y,
i.e.,

T =
(
(x, y) : x ε Rn

+, y ε Rm
+ , such that x will produce y

)
(10)

2.3. Set Operations.

2.3.1. Intersections. The intersection, W , of two sets X and Y is the set of elements that are
in both X and Y . We write

W = X ∩ Y = {x : x ε X and x ε Y } (11)

2.3.2. Empty or Null Sets. The empty set or the null set is the set with no elements. The
empty set is written ∅. For example, if the sets A and B contain no common elements we
can write

A ∩ B = ∅ (12)

and these two sets are said to be disjoint.

2.3.3. Unions. The union of two sets A and B is the set of all elements in one or the other
of the sets. We write

C = A ∪ B = {x : x ε A or x ε B}. (13)

2.3.4. Complements. The complement of a set X is the set of elements of the universal set
U that are not elements of X , and is written XC . Thus

XC = {x : ε U : x 6∈ X} (14)



PROBABILITY CONCEPTS 5

2.3.5. Venn Diagrams. A Venn diagram is a graphical representation that is often useful for
discussing set relationships. Consider for example figure 2 below. Let S be the universal
set, and let A and B be two sets within the universal set.

FIGURE 2

In figure 2, A ⊂ B. Furthermore, A ∩ B = A and A ∪ B = B.
Now consider figure 3.

FIGURE 3

In figure 3 the A is the circle to the left and B is the circle to the right. The shaded
area marked as C is the area that is shared by both A and B. The union of A and B is
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everything in both A and B. The intersection of A and B is C. The complement of C in B
is the non-shaded portion of B.

Now consider figure 4.

FIGURE 4

In figure 3, B ∩ D = ∅ because they have no points in common. A ∩ D 6= ∅.

2.4. Distributive Laws.

(i) A ∩ (B ∪ C) = (A ∩ B) ∪ (A∩ C)
(ii) A ∪ (B ∩ C) = (A ∪ B) ∩ (A∪ C)

2.5. DeMorgan’s Laws.

(i) (A ∪ B)C = AC ∩ BC

(ii) (A ∩ B)C = AC ∪ BC

Consider a proof of the first law. To show that two sets are equal we need to show that:
(i) α ε X ⇒ αεY

(ii) α ε Y ⇒ α εX
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First prove (i). Suppose that α ε (A ∪ B)C

Then proceed as follows.

α ε (A ∪ B)C

⇒ α 6∈ A ∪ B

⇒ α 6∈ A and α 6∈ B

⇒ α ε A and α ε B

⇒ α ε AC ∩ BC

Now prove (ii). Suppose that
α ε AC ∩ BC

Then proceed as follows.

α ε AC ∩ BC

⇒ α ε AC and α εBC

⇒ α 6∈ A and α 6∈ B

⇒ α 6∈ ε A ∪ B

⇒ α ε (A ∪ B)C

2.6. Examples. Consider the following Venn diagram and see if you can illustrate the fol-
lowing relationships.

FIGURE 5

(i) D ∩ (A ∪ B) = (D ∩ A) ∪ (D ∩ B)
(ii) D ∪ (A ∩ E) = (D ∪ A) ∩ (D ∪ E)

(iii) (A ∩ D)C = AC ∪ DC

(iv) (A ∪ E)C = AC ∩ EC
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2.7. Power Set. For a given set S, define power set of S,

PS = A : A ⊂ S = set of all subsets of S

As an example, consider the set S = {1, 2, 3}

PS = {φ, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

3. BASIC CONCEPTS AND DEFINITIONS OF PROBABILITY

3.1. Experiment. The term experiment will denote doing something or observing some-
thing happen under certain conditions, resulting in some final state of affairs or “outcome”.
It might be said that an experiment is the process by which an observation is made. The
performance of an experiment is called a trial of the experiment. The observed result, on
a trial of the experiment, is formally called an outcome. The experiment may be physical,
biological, social, or otherwise. It may be carried out in a laboratory, in a field trial, or in
real-life surroundings, such as an industry, a community, or an economy.

3.2. Sample Space. The sample space of an experiment is the set of possible outcomes of
the experiment. We denote it by Ω. Its complement, the null or impossible event is denoted
by ∅.

If the experiment consists of tossing a coin, the sample space contains two outcomes,
heads and tails; thus,

Ω = {H, T}
If the experiment consists giving a quiz with a maximum score of 10 points to an economics
student and only integer scores are recorded, the sample space is

Ω = {0, 1, 2, 3, . . . , 10}

Sample spaces can be either countable or uncountable, if a sample space can be put into a
1–1 correspondence with a subset of the integers, the sample space is countable.

3.3. Sample Point. A sample point is any member of Ω and is typically denoted ω.

3.4. Event. A subset of Ω is called an event. An event is any collection of possible out-
comes of an experiment. A sample point ω is called an elementary or simple event. We
can think of a simple event as a set consisting of a single point, the single sample point
associated with the event. We denote events by A, B, and so on, or by a description of
their members. We say the event A occurs, if the outcome of the experiment is in the set A.

3.5. Discrete Sample Space. A discrete sample space is one that contains either a finite or
countable number of distinct sample points.

Consider the experiment of tossing a single die. Each time you toss the die, you will
observe one and only one simple event. So the single sample point E1 associated with
rolling a one and the single sample point E5 associated with rolling a five are distinct, and
the sets E1 and E5 are mutually exclusive. Consider the event denoted A which is rolling
an even number. Thus

A = {E2, E4, E6}
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An event in a discrete sample space S is a collection of sample points — that is, any
subset of S. Consider for example the event B, where B is the event that the number of
the die is four or greater.

B = {E4, E5, E6}
Now let C be the intersection of A and B or

C = {E4, E6}
A Venn diagram might be as follows.

FIGURE 6

3.6. Sigma Algebra. A collection of subsets of Ω is called a sigma algebra (or Borel field),
denoted by ß , if it satisfies the following three properties:

(i) ∅ ε ß (the empty set is an element of ß )
(ii) If A ε ß , then Ac ε ß (ß is closed under complementation)
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(iii) If A1, A2, . . . , ε ß , then
⋃∞

i=1 Ai ε ß (ß is closed under countable unions).
Properties (i) and (ii) together that Ω ε ß . Using DeMorgan’s laws on intersec-

tions and unions we also have
(iv) If A1, A2, . . . , ε ß , then

⋂∞
i=1 Ai ε ß (ß is closed under countable intersections.)

3.7. Examples of Sigma Algebras.

3.7.1. Example 1. If Ω is finite or countable, then ß is easy to define, i.e.

ß = {all subsets of Ω including Ω itself}.
If Ω has n elements, then there are 2n sets in ß. For example if Ω = {1, 2, 3}, then ß is

the following collection of sets:

{1}{1, 2}{1, 2, 3}
{2}{1, 3} {∅}
{3}{2, 3}

3.7.2. Example 2. Consider a sample space Ω containing four points {a, b, c, , d}. Consider
the collection C consisting of two events: {a}, {c, d}. If it is desired to expand this col-
lection to a σ-algebra (Borel field), the complements of each event must be included, so
{b, c, d} and {a, b} must be added to the collection. We then have {a}, {c, d}, {b, c, d}
and {a, b}. Because unions and intersections must be included, the events {a , c, d}, ∅, Ω
and {b} must also be added. In summary, then, a Borel field of sets or events that includes
the events {a} and {c , d} consists of the following eight events:

∅, {a}, {c, d}, {b, c, d}, {a, b}, {a, c, d}, {b}, Ω
Moreover, each of these events is needed, so there is no smaller Borel field that includes

the two given events. This smallest one is called the Borel field generated by {a} and {cd}.
Observe, though, that the collection of all the 24 = 16 events that can be defined on a
sample space with four points is also a Borel field; but it includes the one already defined
and is not then the smallest Borel field containing {a} and {c, d}.

3.7.3. Example 3. Let Ω =(-∞, ∞), the real line. Then we typically choose ß to contain all
sets of the form

[a, b], (a, b], (a, b), [a, b)
for all real numbers a and b. From the properties of ß , it is clear that ß contains all sets that
can be formed by taking unions and intersections of sets of the above varieties.

3.8. Probability Defined for a Discrete Sample Space.

Axiom 1. The probability of an event is a non-negative number; that is, P (A) ≥ 0 for any subset
A of S.

Axiom 2. P (S) = 1.

Axiom 3. If A1, A2, A3, . . . is a finite or infinite sequence of mutually exclusive events of S, then

P (A1 ∪ A2 ∪ A3 ∪ · · · ) = P (A1) + P (A2) + P (A3) + · · ·
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The second axiom makes sense because one of the possibilities in S must occur. For a
discrete sample space we can assign a probability to each simple event satisfying the above
axioms to completely characterize the probability distribution. Consider, for example, the
experiment of tossing a die. If the die is balanced, it seems reasonable to assign a probabil-
ity of 1/6 to each of the possible simple outcomes. This assignment agrees with Axiom 1.
Axiom 3 indicates that

P (E1 ∪ E2 ∪ E3) = P (E1) + P (E2) + P (E3)

And using Axiom 3, it is clear that Axiom 2 holds.

3.9. Probability Measure. Let F denote a sigma algebra of subsets of Ω, i.e. a class of
subsets of Ω to which we assign probabilities. A probability measure is a non-negative
function P on F having the following properties:

(i) P (Ω) = 1.
(ii) If A1, A2, . . . are pairwise disjoint sets in F , then

P

( ∞⋃

i=1

Ai

)
=

∞∑

i=1

P (Ai)

We often refer to the triple (Ω, F , P ) as a probability model. Only elements of
Ω that are members of F are considered to be events.

3.10. Elementary Properties of Probability.
(i) If A ⊂ B, then P (B − A) = P (B) − P (A), where − in the case of sets or events

denotes the set theoretic difference.

(ii) P (Ac) = 1 − P (A), P (∅) = 0.

(iii) If A ⊂ B, P (B) ≥ P (A).

(iv) 0 ≤ P (A) ≤ 1.

(v) P (
⋃∞

i=1 Ai) ≤
∑∞

i=1 P (Ai) .

(vi) If A1 ⊂ A2 ⊂ . . . An, . . . , then P (
⋃∞

i=1 Ai) = limn→∞ P (An) .

(vii) P
(⋃k

i=1 Ai

)
≥ 1 −

∑k
i=1 P (Ac

i) .

3.11. Discrete Probability Models. A probability model is called discrete if Ω is finite or
countably infinite and every subset of Ω is assigned a probability. That is, we can write
Ω = {ω1, ω2, . . .} and F is the collection of subsets of Ω. In this case using 3.9 (ii), we can
write

P (A) =
∑

ωi ε A

P ({ωi}) (15)

We can state this as a theorem.



12 PROBABILITY CONCEPTS

Theorem 1. Let Ω = {ω1, ω2, . . . , ωn} be a finite set. Let F be any sigma algebra of subsets of
Ω. Let p1, p2, . . . , pn be non-negative numbers such that

n∑

i=1

pi = 1

For any A εF , define P (A) by

P (A) =
∑

(i: ωi ε A)

pi. (16)

Then P is a probability function on F .

4. CALCULATING THE PROBABILITY OF AN EVENT USING THE SAMPLE POINT METHOD
(DISCRETE SAMPLE SPACE)

4.1. Steps to Compute Probability.

(i) Define the experiment and determine how to describe one simple event.
(ii) List the simple events associated with the experiment and test each one to ensure

that it cannot be decomposed.
(iii) Assign reasonable probabilities to the sample points in S, making certain that

P (Ei) ≥ 0 and ΣP (Ei) = 1.
(iv) Define the event of interest, A, as a specific collection of sample points. (A point

is in A if A occurs when the sample point occurs. Test all sample points in S to
identify those in A.)

(v) Find P (A) by summing the probabilities of the sample points in A.

4.2. Example. A fair coin is tossed three times. What is the probability that exactly two of
the three tosses results in heads?

Proceed with the steps as follows.
(i) The experiment consists of observing what happens on each toss. A simple event

is symbolized by a three letter sequence made up of H ’s and T ’s. The first letter in
the sequence is the result of the first toss and so on.

(ii) The eight simple events in S are:

E1 : HHH E2: HHT E3 : HTH E4: HTT

E5 : THH E6 : THT E7 : TTH E8 : TTT

(iii) Given that the coin is fair, we expect that the probability of each event is equally
likely; that is,

P (Ei) =
1
8
, i = 1, 2, 3 . . .

(iv) The event of interest, A, is that exactly two of the tosses result in heads. This
implies that

A = {E2 E3 E5}
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(v) We find P (A) by summing as follows

P (A) = P (E2) + P (E3) + P (E5) =
1
8

+
1
8

+
1
8

=
3
8

5. TOOLS FOR COUNTING SAMPLE POINTS

5.1. Probability with Equiprobable Events. If a sample space contains N equiprobable
sample points and an event A contains na sample points, then P (A) = na/N .

5.2. mn Rule.

5.2.1. Theorem.

Theorem 2. With m elements a1, a2, a3, . . . , am and n elements b1, b2, b3, . . . , bn it is possible
to form mn = m × n pairs containing one element from each group.

Proof of the theorem can be can be seen by observing the rectangular table below. There
is one square in the table for each ai, bj pair and hence a total of m × n squares.

FIGURE 7. mn rule

a1 a2 a3 a4 . . . am

b1

b2

b3

b4

�

bn

5.2.2. The mn rule can be extended to any number of sets. Given three sets of elements,
a1, a2, a3, . . . , am, b1, b2, b3 . . . , , bn and c1, c2, c3, . . . , c`, the number of distinct triplets
containing one element from each set is equal to mn`.
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5.2.3. Example 1. Consider an experiment where we toss a red die and a green die and
observe what comes up on each die.

We can describe the sample space as

S1 = {(x, y)|x = 1, 2, 3, 4, 5, 6; y = 1, 2, 3, 4, 5, 6}
where x denotes the number turned up on the red die and y represents the number turned
up on the green die. The first die can result in six numbers and the second die can result
in six numbers so the total number of sample points in S is 36.

5.2.4. Example 2. Consider the event of tossing a coin three times. The sets here are iden-
tical and consist of two possible elements, H or T . So we have 2 × 2 × 2 possible sample
points. Specifically

S2 = {(x, y, z)|x = 1, 2; y = 1, 2; z = 1, 2}

5.2.5. Example 3. Consider an experiment that consists of recording the birthday for each
of 20 randomly selected persons. Ignoring leap years and assuming that there are only
365 possible distinct birthdays, find the number of points in the sample space S for this
experiment. If we assume that each of the possible sets of birthdays is equiprobable, what
is the probability that each person in the 20 has a different birthday?

Number the days of the year 1, 2, . . . , 365. A sample point for this experiment can
be represented by an ordered sequence of 20 numbers, where the first number denotes
the number of the day that is the first person’s birthday, the second number denotes the
number of the day that is the second person’s birthday, and so on. We are concerned
with the number of twenty-tuples that can be formed, selecting a number representing
one of the 365 days in the year from each of 20 sets. The sets are all identical, and each
contains 365 elements. Repeated applications of the mn rule tell us there are (365)20 such
twenty-tuples. Thus the sample space S contains N = (365)20 sample points. Although
we could not feasibly list all the sample points, if we assume them to be equiprobable,
P (Ei) = 1/(365)20 for each simple event.

If we denote the event that each person has a different birthday by A, the probability of
A can be calculated if we can determine na, the number of sample points in A. A sample
point is in A if the corresponding 20-tuple is such that no two positions contain the same
number. Thus the set of numbers from which the first element in a 20-tuple in A can
be selected contains 365 numbers, the set from which the second element can be selected
contains 364 numbers (all but the one selected for the first element), the set from which the
third can be selected contains 363 (all but the two selected for the first two elements), . . . ,
and the set from which the twentieth element can be selected contains 346 elements (all
but those selected for the first 19 elements). An extension of the mn rule yields

na = (365)× (364)× . . .× (346).
Finally, we may determine that

P (A) =
na

N
=

365× 364 × . . .× 346
(365)20

= .5886
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5.3. Permutations.

5.3.1. Definition. A ordered arrangement of r distinct objects is called a permutation. The
number of ways of ordering n distinct objects taken r at a time is distinguished by the
symbol Pn

r

5.3.2. Theorem.

Theorem 3.

Pn
r = n(n − 1)(n − 2)(n − 3) · · · (n − r + 1) =

n!
(n − r)!

5.3.3. Proof of Theorem. Apply the extension of the mn rule and note that the first object can
be chosen in one of n ways. After the first is chosen, the second can be chosen in (n − 1)
ways, the third in (n − 2) ways, and the

Pn
r = n(n − 1)(n − 2)(n − 3) · · · (n − r + 1)

Expressed in terms of factorials, this is given by

Pn
r = n(n − 1)(n − 2)(n − 3) · · · (n − r + 1) =

n!
(n − r)!

where

n! = n(n − 1!)(n− 2!)(n− 3!) · · · (2)(1)

and

0! = 1

5.3.4. Example 1. Consider a bowl containing six balls with the letters A, B, C, D, E, F on
the respective balls. Now consider an experiment where I draw one ball from the bowl and
write down its letter and then draw a second ball and write down its letter. The outcome
is than an ordered pair. According to theorem 3 the number of distinct ways of doing this
is given by

P 6
2 =

6!
4!

=
6 × 5 × 4× 3 × 2 × 1

4 × 3× 2 × 1
= 6 × 5 = 30

We can also see this by enumeration.



16 PROBABILITY CONCEPTS

TABLE 3. Ways of selecting two letters from six in a bowl.

AB AC AD AE AF

BA BC BD BE BF
CA CB CD CE CF

DA DB DC DE DF
EA EB EC ED EF

FA FB FC FD FE

5.3.5. Example 2. Suppose that a club consists of 25 members, and that a president and a
secretary are to be chosen from the membership. We shall determine the total possible
number of ways in which these two positions can be filled. Since the positions can be
filled by first choosing one of the 25 members to be president and then choosing one of the
remaining 24 members to be secretary, the possible number of choices is

P 25
2 =

n!
(n − r)!

=
25 × 24 × 23 × · · · × 1
23 × 22 × 21 × · · · × 1

= 25× 24 = 600

5.3.6. Example 3. Suppose that six different books are to be arranged on a shelf. The num-
ber of possible permutations of the books is

P 6
6 =

n

(n − r)
=

6 × 5 × 4× · · · × 1
0!

= 6! = 720

5.3.7. Example 4. Consider the following experiment: A box contains n balls numbered
1, . . . , n. First, one ball is selected at random from the box and its number is noted. This
ball is then put back in the box and another ball is selected (it is possible that the same
ball will be selected again). As many balls as desired can be selected in this way. This
process is called sampling with replacement. It is assumed that each of the n balls is equally
likely to be selected at each stage and that all selections are made independently of each
other. Suppose that a total of k selections are to be made, where k is a given positive
integer. Then the sample space S of this experiment will contain all vectors of the form
(x1, . . . , xk), where xi is the outcome of the ith selection (i = l, . . . , k). Since there are
n possible outcomes for each of the k selections, we can use the mn rule to compute the
number of sample points. The total number of vectors in S is nk. Furthermore, from our
assumptions it follows that S is a simple sample space. Hence, the probability assigned to
each vector in S is 1/nk.

5.4. Partitioning n Distinct Objects into k Distinct Groups.

5.4.1. Theorem.

Theorem 4. The number of ways of partitioning n distinct objects into k distinct groups contain-
ing n1, n2, n3, . . . , nk objects, respectively, where each object appears in exactly one group and
Σk

i=1ni = n , is
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N =
(

n
n1 n2 n3 . . . nk

)
=

n!
n1! n2! n3! . . . nk !

5.4.2. Proof of Theorem 4. N is the number of distinct arrangements of n objects in a row
for a case in which the rearrangement of the objects within a group does not count. For
example, the letters a to ` can be arranged into three groups, where n1 = 3, n2 = 4 and
n3 = 5:

a b c| d e f g| h i j k `

is one such arrangement. Another arrangement in three groups is

a b d| c e f g| h i k `

The number of distinct arrangements of n objects, assuming all objects are distinct, is
Pn

n = n! from theorem 3. Then Pn
n equals the number of ways of partitioning the n objects

into k groups (ignoring order within groups) multiplied by the number of ways of ordering
the n1, n2, . . . and nk elements within each group. This application of the mn rule gives

Pn
n = n! = (N) (n1! n2! n3! . . . nk!)

⇒ N =
n!

n1! n2! n3! . . . nk !
≡
(

n
n1 n2 n3 . . . nk

)

where ni! is the number of distinct arrangements of ni objects in group i.

5.4.3. Example 1. Consider the letters A, B, C, D. Now consider all the ways of grouping
them into two groups of two. Using the formula we obtain

N =
n!

n1! n2! n3! · · · nk!

=
4!

2! 2!

=
4 × 3× 2 × 1
2 × 1× 2 × 1

= 6

Enumerating we obtain
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TABLE 4. Ways of selecting two groups of two letters from four distinct letters.

Group 1 Group 2

AB CD
AC BD
AD BC
BC AD
BD AC
CD AB

5.4.4. Example 2. In how many ways can two paintings by Monet, three paintings by
Renoir and two paintings by Degas be hung side by side on a museum wall if we do
not distinguish between paintings by the same artists. Substituting n = 7, n1 = 2, n2 = 3
and n3 = 2 into the formula of theorem 4, we obtain

N =
n!

n1! n2! n3!

=
7!

2! 3! 2!

=
7× 6 × 5 × 4 × 3 × 2 × 1
2× 1 × 3 × 2 × 1 × 2 × 1

= 210

5.5. Combinations (Arrangement of Symbols Representing Sample Points does not
Matter).

5.5.1. The number of combinations of n objects taken r at a time is the number of subsets,
each of size r, that can be formed from the n objects. This number will be denoted by

Cn
r or

(
n
r

)

5.5.2. Theorem.

Theorem 5. The number of unordered subsets of size r chosen (without replacement) from n avail-
able objects is (

n
r

)
= Cn

r =
Pn

r

r!
=

n!
r! (n− r)!
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5.5.3. Proof of Theorem 5. The selection of r objects from a total of n is equivalent to parti-
tioning the n objects into k = 2 groups, the r selected and the (n − r) remaining. This is a
special case of the general partitioning problem of theorem 4. In the present case, k = 2,
n1 = r and n2 = (n − r). Therefore we have,

(
n
r

)
=
(

n

r n − r

)
=

n!
r!(n− r)!

The terms
(

n
r

)
are generally referred to as binomial coefficients because they occur in

the binomial expansion

(x + y)n =
(

n
0

)
xny0 +

(
n
1

)
xn−1y1 +

(
n
2

)
xn−2y2 + · · · +

(
n
n

)
x0y0

=
n∑

i=0

(
n
i

)
xn−iyi

Consider the case of (x + y)2:

(x + y)2 =
(

2
0

)
x2 y0 +

(
2
1

)
x1y1 +

(
2
2

)
x0y2

= x2 + 2xy + y2

Consider the case of (x + y)3:

(x + y)3 =
(

3
0

)
x3y0 +

(
3
1

)
x2y1 +

(
3
2

)
x1y2 +

(
3
3

)
x1y3

= x3 + 3x2y + 3xy2 + y3

5.5.4. Example 1. Consider a bowl containing six balls with the letters A, B, C, D, E, F on
the respective balls. Now consider an experiment where I draw two balls from the bowl
and write down the letter on each of them, not paying any attention to the order in which
I draw the balls so that AB is the same as BA. According to theorem 5 the number of
distinct ways of doing this is given by

C6
2 =

6!
2!4!

=
6 × 5 × 4 × 3× 2 × 1
2 × 1 × 4 × 3× 2 × 1

=
6 × 5

2
= 15

We can also see this by enumeration.
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TABLE 5. Ways of selecting two letters from six in a bowl.

AB AC AD AE AF

BC BD BE BF
CD CE CF

DE DF
FE

5.5.5. Example 2. Suppose that a club consists of 25 members, and that two of them are to
be chosen to go to a special meeting with the regional president. We can determine the
total possible combinations of individuals who may be chosen to attend the meeting with
the formula for a combination.

C25
2 =

25!
2! 23!

=
25 × 24 × 23 × 22 × · · · × 1
2 × 1 × 23× 22× · · · × 1

=
25 × 24

2
= 300

5.5.6. Example 3. Eight politicians meet at a fund raising dinner. How many greetings
can be exchanged if each politician shakes hands with every other politician exactly once.
Shaking hands with one self does not count. The pairs of handshakes are an unordered
sample of size two from a set of eight. We can determine the total possible number of
handshakes using the formula for a combination.

C8
2 =

8!
2! 6!

=
8× 7 × 6 × 5 × · · · × 1
2× 1 × 6 × 5 × · · · × 1

=
8 × 7

2
= 28

6. CONDITIONAL PROBABILITY

6.1. Definition. Given an event B such that P (B) > 0 and any other event A, we define
the conditional probability of A given B, which is written P (A|B), by

P (A|B) =
P (A ∩ B)

P (B)
(17)

6.2. Simple Multiplication Rule.

P (A ∩ B) = P (B)P (A|B)

= P (A)P (B|A)
(18)

6.3. Consistency of Conditional Probability with Relative Frequency Notion of Proba-
bility. Consistency of the definition with the relative frequency concept of probability can
be obtained from the following construction. Suppose that an experiment is repeated a
large number, N , of times, resulting in

both A and B, A ∩ B, n11 times;
A and not B, A ∩ B̄, n21 times;
B and not A, Ā ∩ B, n12 times;
and neither A nor B, Ā ∩ B̄, n22 times.
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These results are contained in table 6.

TABLE 6. Frequencies of A and B.

A Ā

B n11 n12 n11 + n12

B̄ n21 n22 n21 + n22

n11 + n21 n12 + n22 N

Note that n11 + n12 + n21 + n22 = N .
Then it follows that with large N

P (A) ≈ n11 + n21

N
, P (B) ≈ n11 + n12

N
, P (A|B) ≈ n11

n11 + n12
(19)

where ≈ is read approximately equal to.
Now consider the conditional probabilities

P (A|B) ≈ n11

n11 + n12
, P (B|A) ≈ n11

n11 + n21
, and P (A ∩ B) ≈ n11

N
(20)

With these probabilities it is easy to see that

P (B|A) ≈ P (A ∩ B)
P (A)

and P (A|B) ≈ P (A ∩ B)
P (B)

(21)

6.4. Examples.

6.4.1. Example 1. Suppose that a balanced die is tossed once. Use the definition to find the
probability of a 1, given that an odd number was obtained. Define these events:

A: Observe a 1.
B: Observe an odd number.

We seek the probability of A given that the event B has occurred. The event A∩B requires
the observance of both a 1 and an odd number. In this instance, A ⊂ B so A ∩ B = A and
P (A ∩ B) = P (A) = 1/6. Also, P (B) = 1/2 and, using the definition,

P (A|B) ≈ P (A ∩ B)
P (B)

=
1/6
1/2

=
1
3

6.4.2. Example 2. Suppose a box contains r red balls labeled 1, 2, 3, . . . , r and b black
balls labeled 1, 2, 3, . . . , b. Assume that the probability of drawing any particular ball
is (b + r)−1 = 1

b+r . If a ball from the box is known to be red, what is the probability it is
the red ball labeled 1?

First find the probability of A. This is given by

P (A) =
r

b + r
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where A is the event that the ball is red. Then compute probability that the ball is the red
ball with the number 1 on it. This is given by

P (A ∩ B ) =
1

b + r

where B is the event that the ball has a 1 on it. Then the probability that the ball is red and
labeled 1 given that it is red is given by

P (B|A) =
P (A ∩ B)

P (A)
=

1
b+r
r

b+r

=
1
r

This differs from the probability of B (a 1 on the ball) which is given by

P (B) =
2

b + r

6.4.3. Example 3. Suppose that two identical and perfectly balanced coins are tossed once.

(i) What is the conditional probability that both coins show a head given that the first
coin shows a head?

(ii) What is the conditional probability that both coins show a head given that at least
one of them shows a head?

Let the sample space be given by

Ω = {HH, HT, TH, TT}

where each point has a probability of 1/4. Let A be the event the first coin results in a head
and B be the event that the second coin results in a head. First find the probabilities of A
and B.

P (A) =
1
2
, P (B) =

1
2

Then find the probability of the intersection and union of A and B.

P (A ∩ B) =
1
4
, P (A ∪ B) =

3
4

Now we can find the relevant probabilities. First for (i).

P (A ∩ B|A) =
P (A ∩ B ∩ A)

P (A)
=

P (A ∩ B)
P (A)

=
1
4
1
2

=
2
4

=
1
2

Now for (ii).

P (A ∩ B|A ∪ B) =
P (A ∩ B ∩ A)

P (A ∪ B)
=

P (A ∩ B)
P (A ∪ B)

=
1
4
3
4

=
1
3
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6.5. Summation Rule. If B1, B2, . . . , Bn are (pairwise) disjoint events of positive proba-
bility whose union is Ω, the identity

A =
n⋃

j=1

(A ∩ Bj)

??, and (18) yield

P (A) =
n∑

j=1

P (A|Bj)P (Bj), (22)

Consider rolling a die. Let the sample space be given by

Ω = {1, 2, 3, 4, 5, 6}

Now consider a partition B1, B2, B3, given by

B1 = {1, 2} B2 = {3, 4} B3 = {5, 6}

Now let A be the event that the number on the die is equal to one or greater than or
equal to four. This gives

A = {1, 4, 5, 6}

The probability of A is 4/6 = 2/3. We can also compute this using the formula in (22) as
follows

P (A) = P (A|B1)P (B1) + P (A|B2)P (B2) + P (A|B3)P (B3)

=
(

1
2

)(
1
3

)
+
(

1
2

)(
1
3

)
+ (1)

(
1
3

)

=
1
6

+
1
6

+
1
3

=
2
3

(23)

6.6. Bayes Rule.

P (Bi|A) =
P (A|Bi)P (Bi)∑n
j=1 P (A|Bj)P (Bj)

(24)

Consider the same example as in 6.5. First find the probability for B1.
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P (B1|A) =
P (A|B1) P (B1)∑n
j=1 P (A|Bj)P (Bj)

=

(
1
2

) (
1
3

)
2
3

=
1
6
2
3

=
1
4

(25)

Now for B2.

P (B2|A) =
P (A|B2) P (B2)∑n
j=1 P (A|Bj)P (Bj)

=

(
1
2

) (
1
3

)
2
3

=
1
6
2
3

=
1
4

(26)

And finally for B3.

P (B3|A) =
P (A|B3) P (B3)∑n
j=1 P (A|Bj)P (Bj)

=
(1)
(

1
3

)
2
3

=
1
3
2
3

=
1
2

(27)

6.7. Conditional Probability Given Multiple Events. The conditional probability of A
given B1, B2, . . . , Bn, is written P (A|B1, B2, . . . , Bn) and is defined by

P (A|B1, B2, . . . , Bn) = P (A|B1 ∩ B2 ∩ B3 · · · ∩ Bn) (28)
for any events A, B1, B2, . . . , Bn such that P (B1 ∩ B2 ∩ · · · ∩ Bn) > 0.

6.8. More Complex Multiplication Rule.

P (B1 ∩ B2 ∩ B3 · · · ∩ Bn)

= P (B1)P (B2|B1)P (B3|B1B2) · · ·P (Bn|B1, B2, · · ·Bn−1) (29)

7. INDEPENDENCE

7.1. Definition. Two events are said to be independent if

P (A ∩ B) = P (A)P (B) (30)

If P (B) > 0 (or P (A) > 0), this can be written in terms of conditional probability as

P (A|B) = P (A)

P (B|A) = P (B) (31)

The events A and B are independent if knowledge of B does not affect the probability of
A.
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7.2. Examples.

7.2.1. Example 1. Suppose that two identical and perfectly balanced coins are tossed once.
Let the sample space be given by

Ω = {HH, HT, TH, TT}
where each point has a probability of 1/4. Let A be the event the first coin results in a head,
B be the event that the second coin results in a tail, and C the event that both flips in tails.
First find the probabilities of A, B, and C.

P (A) =
1
2
, P (B) =

1
2
, P (C) =

1
4

Now find the probability of the intersections of A, B and C.

P (A ∩ B) =
1
4
, P (A ∩ C) = ∅, P (B ∩ C) =

1
4

Now find the probability of B given A and B given C.
First find the probability of B given A

P (B|A) =
P (A ∩ B)

P (A)
=

1
4
2
4

=
1
2

This is the same as P (B) so A and B are independent. Now find

P (B|C) =
P (B ∩ C)

P (C)
=

1
4
1
4

= 1

7.2.2. Example 2. Roll a red die and a green die. Let A = {4 on the red die) and B =
{sum of the dice is odd}. Find P (A), P (B), and P (A ∩ B). Are A and B independent?

There are 36 points in the sample space.

TABLE 7. Possible outcomes of rolling a red die and a green die. First num-
ber in pair is number on red die.

Green (A) 1 2 3 4 5 6
Red (D)

1 1 1 1 2 1 3 1 4 1 5 1 6
2 2 1 2 2 2 3 2 4 2 5 2 6
3 3 1 3 2 3 3 3 4 3 5 3 6
4 4 1 4 2 4 3 4 4 4 5 4 6
5 5 1 5 2 5 3 5 4 5 5 5 6
6 6 1 6 2 6 3 6 4 6 5 6 6

The probability of A is 6/36 = 1/6. The probability of B is 18/36 = 1/2 and the prob-
ability of A ∩ B is 3/36 = 1/12. To check for independence multiply P (A) and P (B) as
follows
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P (A)P (B) =
(

1
6

)(
1
2

)
=

1
12

The events A and B are thus independent.

7.2.3. Example 3. For example 2 compute P (A|B). Are A and B independent?
There are 18 sample points associated with B. Of these three belong to A so that

P (A|B) =
3
18

=
1
6

Using the relationship that

P (A|B) = P (A)
under independence, we can see that A and B are independent.

7.2.4. Example 4. Now consider the same experiment. Let C = {5 on the red die) and
D = {sum of the dice is eleven}.

Find P (C), P (D) and P (C ∩ D). Are C and D independent? Can you show the same
thing using conditional probabilities?

The probability of C is 6/36 = 1/6. The probability of D is 2/36 = 1/18 and the proba-
bility of C ∩ D is 1/36. To check for independence multiply P (C) and P (D) as follows:

P (C)P (D) =
(

1
6

)(
1
18

)
=

1
108

The events A and B are thus not independent.
To show dependance using conditional probability, compute the of conditional proba-

bility C given D.
There are two ways that D can occur. Given that D has occurred, there is one way that

C can occur so that

P (C|D) =
1
2

This is not equal to the probability of C so C and D are not independent.

7.2.5. Example 5. Die A has orange on one face and blue on five faces; die B has orange on
two faces and blue on four faces; die C has orange on three faces and blue on three faces.
The dice are fair. If the three dice are rolled, what is the probability that exactly two of the
dice come up orange.

There are three ways that two of the dice can come up orange: AB, AC and BC. Because
the events are mutually exclusive we can compute the probability of each and then add
them up. Consider first the probability that A is orange, B is orange and C is not orange.
This is given by

P (AB) =
(

1
6

)(
2
6

)(
3
6

)
=

6
216

because the chance of an orange face on A is 1/6, the chance of an orange face on B is
2/6 and the chance of blue on C is 3/6 and the events are independent.
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Now consider the probability that A is orange, B is blue and C is orange. This is given
by

P (AC) =
(

1
6

)(
4
6

)(
3
6

)
=

12
216

because the chance of an orange face on A is 1/6, the chance of an blue face on B is 4/6
and the chance of orange on C is 3/6 and the events are independent.

Now consider the probability that A is blue, B is orange and C is orange. This is given
by

P (BC) =
(

5
6

)(
2
6

)(
3
6

)
=

30
216

because the chance of an blue face on A is 5/6, the chance of an orange face on B is 2/6
and the chance of orange on C is 3/6 and the events are independent. Now add these up
to obtain the probability of two orange dice.

P (two orange dice) =
6

216
+

12
216

+
30

216
=

48
216

=
2
9

7.3. More General Definition of Independence. The events A1, A2, . . . , An are said to
be independent if

P (Ai1 ∩ Ai2 · · · ∩ Aik) =
k∏

j=1

P
(
Aij

)
(32)

for any subset {i1, i2, . . . , ik} of the integers {1, 2, . . . , , n}. If all the P (Ai) are positive,
we can rewrite this in terms of conditional probability as

P (Aj |Ai1 , Ai2 , . . . , Aik) = P (Aj) (33)

for any j and {i1, i2, . . . , ik} such that j 6∈ {i1, i2, . . . , ik).

7.4. Additive Law of Probability. The probability of the union of two events A and B is
given by

P (A ∪ B) = P (A) + P (B) − P (A ∩ B) (34)

If A and B are mutually exclusive events, P (A ∩ B) = ∅ and

P (A ∪ B) = P (A) + P (B) (35)

which is the same as Axiom 3 for probability defined for a discrete sample space or prop-
erty two of a probability measure defined on a sigma algebra of subsets of a sample space
Ω. Similarly for three events, A, B and C we find

P (A ∪ B ∪ C)

= P (A) + P (B) + P (C) − P (A ∩ B) − P (A ∩ C) − P (B ∩ C) + P (A ∩ B ∩ C) (36)
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8. RANDOM VARIABLES

8.1. Somewhat Intuitive Definition of a Random Variable. Consider an experiment with
a sample space Ω. Then consider a function X that assigns to each possible outcome in an
experiment (ω ∈ Ω) one and only one real number, X(ω) = x. The space of X is the set of
real numbers {x : X(ω) = x, ω ∈ Ω}, where ω ∈ Ω means that the element ω belongs to the
set Ω. If X may assume any value in some given interval I (the interval may be bounded
or unbounded), it is called a continuous random variable. If it can assume only a number
of separated values, it is called a discrete random variable.

An even simpler (but less precise) definition of a random variable is as follows. A ran-
dom variable is a real-valued function for which the domain is a sample space.

Alternatively one can think of a random variable as a set function, it assigns a real num-
ber to a set. Consider the following example.

Roll a red die and a green die. Let the random variable assigned to each outcome be
the sum of the numbers on the dice. There are 36 points in the sample space. In table 8
the outcomes are listed along with the value of the random variable associated with each
outcome.

TABLE 8. Possible outcomes of rolling a red die and a green die. First num-
ber in pair is number on red die.

Green (A) 1 2 3 4 5 6
Red (D)

1
1 1

2
1 2
3

1 3
4

1 4
5

1 5
6

1 6
7

2
2 1

3
2 2
4

2 3
5

2 4
6

2 5
7

2 6
8

3
3 1

4
3 2
5

3 3
6

3 4
7

3 5
8

3 6
9

4
4 1

5
4 2
6

4 3
7

4 4
8

4 5
9

4 6
10

5
5 1

6
5 2
7

5 3
8

5 4
9

5 5
10

5 6
11

6
6 1

7
6 2
8

6 3
9

6 4
10

6 5
11

6 6
12

We then write X = 8 for the subset of Ω given by

{(6, 2)(5, 3)(4, 4)(3, 5)(2, 6)}
Thus, X = 8 is to be interpreted as the set of elements of Ω for which the total is 8.

Or consider another example where a student has 5 pairs of brown socks and 6 pairs of
black socks or 22 total socks. He does not fold his socks but throws them all in a drawer.
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Each morning he draws two socks from his drawer. What is the probability he will choose
two black socks? We will first develop the sample space where we use the letter B to de-
note black and the letter R (for russet) to denote brown. There are four possible outcomes
to this experiment: BB, BR, RB and RR. Let the random variable defined on this sample
space be the number of black socks drawn.

TABLE 9. Sample space, values of random variable and probabilities for
sock experiment

Element of Sample Space Value of Random Variable Probability of Random Variable

BB 2
(

12
22

) (
11
21

)
= 22

77

BR 1
(

12
22

) (
10
21

)
= 20

77

RB 1
(

10
22

) (
12
21

)
= 20

77

RR 0
(

10
22

) (
9
21

)
= 15

77

We can compute the probability of two black socks by multiplying 12/22 by 11/21 to
obtain 22/77. We can compute the other probabilities in a similar manner.

8.2. Note on Borel Fields and Open Rectangles.

8.2.1. Open Rectangles. If (a1, b1), (a2, b2), . . . , (ak, bk) are k open intervals, then the set

(a1, b1) × (a2, b2) × · · · × (ak, bk) = {(x1, x2, . . . , xk) : ai < xi < bi, 1 ≤ I ≤ k}

is called an open k rectangle. If k = 1 then we have an open interval on the real line, if
k = 2, we have a rectangle in R2, and so on.

8.2.2. Borel Fields in Rk. The smallest σ-field having all the open rectangles in Rk as mem-
bers is called the Borel field in Rk and is denoted ßk . ß1 is the smallest σ-field that contains
all the open intervals of the real line.

8.3. Formal Definition of a Random Variable. A random variable X is a function from
the sample space Ω to the real line R such that the set

{ω : X(ω) ε B} = X−1(B)

is in F (the sigma field in our probability model) for every B that is an element of ß1.
The idea (loosely) is that we pick some interval of the real line and insist that when we
map this interval back to the sample space Ω, the elements of Ω so obtained are in F . In
technical terms this means that the function X must be measurable. Formally, a function
X(ω) defined on a sample space is called measurable with respect to F if and only if the
event {ω|X(ω) ≤ λ} is in F for every real λ. The significance of this condition is that when
probabilities have been assigned to events in Ω, the event X(ω) ≤ λ will have a probability,
because it is one of the sets in F .
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Consider the example where a red die and a green die are rolled and the random variable
is the sum of the numbers on the dice. In this case X−1(9) is the set

{(6, 3)(5, 4)(4, 5)(3, 6)}

8.4. Notation. We will normally use uppercase letters, such as X to denote random variables,
and lowercase letters, such as x, to denote particular values that a random variable may
assume. For example, let X denote any one of the six possible values that can result from
tossing a die. After the die is tossed, the number actually observed will be denoted by
the symbol x. Note that X is a random variable, but the specific observed value, s, is not
random. We sometimes write P (X = x) for the probability that the random variable X
takes on the value x.

8.5. Random Vector. A random vector X = (X1, X2, . . . , Xk)′ is a k-tuple of random
variables. Formally it is a function from Ω to Rk such that the set

{ω : X(ω) ε B} = X−1(B)

is in F for every B that is an element of ßk. For k = 1, random vectors are just random
variables. The event X−1(B) (meaning the event that leads to the function X mapping it
into the set B in Rk) is usually written [X ε B]. This means that when we write [X ε B] we
mean that the event that occurred lead to an outcome that mapped into the set B in Rk.
And when we write P [X ε B], we mean the probability of the event that will map into the
set B in Rk.

8.6. Probability Distribution of a Random Vector. The probability distribution of a ran-
dom vector S is defined as the probability measure in the probability model (Rk, ßk , PX ).
This is given by

PX(B) = P ([X ε B]) (37)

9. RANDOM SAMPLING

9.1. Simple Random Sampling. Simple random sampling is the basic sampling technique
where we select a group of subjects (a sample) for study from a larger group (a population).
Each individual is chosen entirely by chance and each member of the population has an
equal chance of being included in the sample. Every possible sample of a given size has
the same chance of selection, i.e. each member of the population is equally likely to be
chosen at any stage in the sampling process.

If, for example, numbered pieces of cardboard are drawn from a hat, it is important that
they be thoroughly mixed, that they be identical in every respect except for the number
printed on them and that the person selecting them be well blindfolded.

Second in order to meet the equal opportunity requirement, it is important that the
sampling be done with replacement. That is, each time an item is selected, the relevant
measure is taken and recorded. Then the item must be replaced in the population and
be thoroughly mixed with the other items before the next item is drawn. If the items are
not replaced in the population, each time an item is withdrawn, the probability of being
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selected, for each of the remaining items, will have been increased. For example, if in the
black sock brown sock problem, we drew two black socks from the drawer and put them
on, and then repeated the experiment, the probability of two black socks would now be
10/20 multiplied by 9/19 rather than 12/22 × 11/21. Of course, this kind of change in
probability becomes trivial if the population is very large.

More formally consider a population with N elements and a sample of size n. If the

sampling is conducted in such a way that each of the
(

N
n

)
samples has an equal probabil-

ity of bring selected, the sampling is said to be random and the result is said to be a simple
random sample.

9.2. Random Sampling. Random sampling is a sampling technique where we select a
group of subjects (a sample) for study from a larger group (a population). Each individual
is chosen entirely by chance and each member of the population has a known, but possibly
non-equal, chance of being included in the sample.
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