SAMPLE MOMENTS

1. Population Moments

1.1. Moments about the origin (raw moments). The rth moment about the origin of a random variable X, denoted by μ'_r, is the expected value of X^r; symbolically,

$$\mu'_r = E(X^r) = \sum_x x^r f(x)$$

for $r = 0, 1, 2, \ldots$ when X is discrete and

$$\mu'_r = E(X^r) = \int_{-\infty}^{\infty} x^r f(x) \, dx$$

when X is continuous. The rth moment about the origin is only defined if $E[X^r]$ exists. A moment about the origin is sometimes called a raw moment. Note that $\mu'_1 = E(X) = \mu_X$, the mean of the distribution of X, or simply the mean of X. The rth moment is sometimes written as function of θ where θ is a vector of parameters that characterize the distribution of X.

If there is a sequence of random variables, X_1, X_2, \ldots, X_n, we will call the rth population moment of the ith random variable $\mu'_{i,r}$ and define it as

$$\mu'_{i,r} = E(X_i^r)$$

1.2. Central moments. The rth moment about the mean of a random variable X, denoted by μ_r, is the expected value of $(X - \mu_X)^r$ symbolically,

$$\mu_r = E[(X - \mu_X)^r] = \sum_x (x - \mu_X)^r f(x)$$

for $r = 0, 1, 2, \ldots$ when X is discrete and

$$\mu_r = E[(X - \mu_X)^r] = \int_{-\infty}^{\infty} (x - \mu_X)^r f(x) \, dx$$

when X is continuous. The rth moment about the mean is only defined if $E[(X - \mu_X)^r]$ exists. The rth central moment of X about a is defined as $E[(X - a)^r]$. If $a = \mu_X$, we have the rth central moment of X about μ_X.

Note that

Date: February 18, 2008.
\[\mu_1 = E[X - \mu_X] = \int_{-\infty}^{\infty} (x - \mu_X) f(x) \, dx = 0 \]
\[\mu_2 = E[(X - \mu_X)^2] = \int_{-\infty}^{\infty} (x - \mu_X)^2 f(x) \, dx = \text{Var}(X) = \sigma^2 \]

Also note that all odd moments of X around its mean are zero for symmetrical distributions, provided such moments exist.

If there is a sequence of random variables, \(X_1, X_2, \ldots X_n\), we will call the \(r^{th}\) central population moment of the \(i^{th}\) random variable \(\mu_{i,r}\) and define it as

\[\mu_{i,r} = E[X_i^r - \mu_{i,1}^r] \]

When the variables are identically distributed, we will drop the \(i\) subscript and write \(\mu_r\) and \(\mu_r'\).

2. **Sample Moments**

2.1. **Definitions.** Assume there is a sequence of random variables, \(X_1, X_2, \ldots X_n\). The first sample moment, usually called the average is defined by

\[\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i \]

Corresponding to this statistic is its numerical value, \(\bar{x}_n\), which is defined by

\[\bar{x}_n = \frac{1}{n} \sum_{i=1}^{n} x_i \]

where \(x_i\) represents the observed value of \(X_i\). The \(r^{th}\) sample moment for \(X_i\) is defined by

\[\bar{X}_n^r = \frac{1}{n} \sum_{i=1}^{n} X_i^r \]

This too has a numerical counterpart given by

\[\bar{x}_n^r = \frac{1}{n} \sum_{i=1}^{n} x_i^r \]

2.2. **Properties of Sample Moments.**

2.2.1. **Expected value of \(\bar{X}_n^r\).** Taking the expected value of equation 10 we obtain

\[E[\bar{X}_n^r] = E\bar{X}_n^r = \frac{1}{n} \sum_{i=1}^{n} E X_i^r = \frac{1}{n} \sum_{i=1}^{n} \mu_{i,r} \]

If the \(X\)’s are identically distributed, then

\[E[\bar{X}_n^r] = E\bar{X}_n^r = \frac{1}{n} \sum_{i=1}^{n} \mu_r' = \mu_r' \]
2.2.2. Variance of \bar{X}_n^r. First consider the case where we have a sample X_1, X_2, \ldots, X_n.

$$Var(\bar{X}_n^r) = Var\left(\frac{1}{n} \sum_{i=1}^{n} X_i^r\right) = \frac{1}{n^2} Var\left(\sum_{i=1}^{n} X_i^r\right)$$ (14)

If the X's are independent, then

$$Var(\bar{X}_n^r) = \frac{1}{n^2} \sum_{i=1}^{n} Var(X_i^r)$$ (15)

If the X's are independent and identically distributed, then

$$Var(\bar{X}_n^r) = \frac{1}{n} Var(X^r)$$ (16)

where X denotes any one of the random variables (because they are all identical). In the case where $r = 1$, we obtain

$$Var(\bar{X}_n) = \frac{1}{n} Var(X) = \frac{\sigma^2}{n}$$ (17)

3. Sample Central Moments

3.1. Definitions. Assume there is a sequence of random variables, X_1, X_2, \ldots, X_n. We define the sample central moments as

$$C_n^r = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu'_{i,1})^r, r = 1, 2, 3, \ldots,$$

$$\Rightarrow C_n^1 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu'_{i,1})$$

$$\Rightarrow C_n^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu'_{i,1})^2$$ (18)

These are only defined if $\mu'_{i,1}$ is known.

3.2. Properties of Sample Central Moments.

3.2.1. Expected value of C_n^r. The expected value of C_n^r is given by

$$E(C_n^r) = \frac{1}{n} \sum_{i=1}^{n} E(X_i - \mu'_{i,1})^r = \frac{1}{n} \sum_{i=1}^{n} \mu_{i,r}$$ (19)

The last equality follows from equation 7.

If the X_i are identically distributed, then

$$E(C_n^r) = \mu_r$$

$$E(C_n^1) = 0$$ (20)
3.2.2. Variance of C_r^n. First consider the case where we have a sample X_1, X_2, \ldots, X_n.

\[
\text{Var} \left(C_r^n \right) = \text{Var} \left(\frac{1}{n} \sum_{i=1}^{n} (X_i - \mu'_i)^r \right) = \frac{1}{n^2} \text{Var} \left(\sum_{i=1}^{n} (X_i - \mu'_{i,1})^r \right) \tag{21}
\]

If the X's are independently distributed, then

\[
\text{Var} \left(C_r^n \right) = \frac{1}{n^2} \sum_{i=1}^{n} \text{Var} \left[(X_i - \mu'_{i,1})^r \right] \tag{22}
\]

If the X's are independent and identically distributed, then

\[
\text{Var} \left(C_r^n \right) = \frac{1}{n} \text{Var} \left[(X - \mu'_1)^r \right] \tag{23}
\]

where X denotes any one of the random variables (because they are all identical). In the case where $r = 1$, we obtain

\[
\text{Var} \left(C_1^n \right) = \frac{1}{n} \text{Var} \left[X - \mu'_1 \right] = \frac{1}{n} \text{Var} \left[X - \mu \right] = \frac{1}{n} \sigma^2 - 2 \text{Cov} \left[X, \mu \right] + \text{Var} \left[\mu \right] = \frac{1}{n} \sigma^2 \tag{24}
\]

4. Sample About the Average

4.1. Definitions. Assume there is a sequence of random variables, X_1, X_2, \ldots, X_n. Define the rth sample moment about the average as

\[
M_r^n = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n)^r, \quad r = 1, 2, 3, \ldots, \tag{25}
\]

This is clearly a statistic of which we can compute a numerical value. We denote the numerical value by, m_r^n, and define it as

\[
m_r^n = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}_n)^r \tag{26}
\]

In the special case where $r = 1$ we have

\[
M_1^n = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n) = \frac{1}{n} \sum_{i=1}^{n} X_i - \bar{X}_n = \bar{X}_n - \bar{X}_n = 0 \tag{27}
\]

4.2. Properties of Sample Moments about the Average when $r = 2$.
4.2.1. *Alternative ways to write M^r_n.* We can write M^2_n in an alternative useful way by expanding the squared term and then simplifying as follows

$$M^r_n = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n)^r$$

$$\Rightarrow M^2_n = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2$$

$$= \frac{1}{n} \left(\sum_{i=1}^{n} [X_i^2 - 2 X_i \bar{X}_n + \bar{X}_n^2] \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} X_i^2 - \frac{2 \bar{X}_n}{n} \sum_{i=1}^{n} X_i + \frac{1}{n} \sum_{i=1}^{n} \bar{X}_n^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} X_i^2 - 2 \bar{X}_n^2 + \bar{X}_n^2$$

$$= \frac{1}{n} \left(\sum_{i=1}^{n} X_i^2 \right) - \bar{X}_n^2$$

(28)

4.2.2. *Expected value of M^2_n.* The expected value of M^r_n is then given by

$$E \left(M^2_n \right) = \frac{1}{n} E \left[\sum_{i=1}^{n} X_i^2 \right] - E \left[\bar{X}_n^2 \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} E \left[X_i^2 \right] - \left(E \left[\bar{X}_n \right] \right)^2 - Var(\bar{X}_n)$$

(29)

The second line follows from the alternative definition of variance

$$Var \left(X \right) = E \left(X^2 \right) - \left[E \left(X \right) \right]^2$$

$$\Rightarrow E \left(X^2 \right) = \left[E \left(X \right) \right]^2 + Var \left(X \right)$$

(30)

$$\Rightarrow E \left(\bar{X}_n^2 \right) = \left[E \left(\bar{X}_n \right) \right]^2 + Var(\bar{X}_n)$$

and the third line follows from equation 12. If the X_i are independent and identically distributed, then
\[
E \left(\frac{M_n^2}{n} \right) = \frac{1}{n} E \left[\sum_{i=1}^{n} X_i^2 \right] - E \left[\bar{X}_n^2 \right]
\]

\[
= \frac{1}{n} \sum_{i=1}^{n} \mu_{i,2} - \left(\frac{1}{n} \sum_{i=1}^{n} \mu_{i,1} \right)^2 - \text{Var}(\bar{X}_n)
\]

\[
= \mu_2' - (\mu_1')^2 - \frac{\sigma^2}{n}
\]

\[
= \sigma^2 - \frac{1}{n} \sigma^2
\]

\[
= \frac{n-1}{n} \sigma^2
\]

(31)

where \(\mu_1' \) and \(\mu_2' \) are the first and second population moments, and \(\mu_2 \) is the second central population moment for the identically distributed variables. Note that this obviously implies

\[
E \left[\sum_{i=1}^{n} (X_i - \bar{X})^2 \right] = n E \left(\frac{M_n^2}{n} \right)
\]

\[
= n \left(\frac{n-1}{n} \right) \sigma^2
\]

\[
= (n-1) \sigma^2
\]

(32)

4.2.3. Variance of \(\frac{M_n^2}{n} \). By definition,

\[
\text{Var} \left(\frac{M_n^2}{n} \right) = E \left[\left(\frac{M_n^2}{n} \right)^2 \right] - (E \left(\frac{M_n^2}{n} \right))^2
\]

(33)

The second term on the right on equation 33 is easily obtained by squaring the result in equation 31.

\[
E \left(\frac{M_n^2}{n} \right) = \frac{n-1}{n} \sigma^2
\]

\[
\Rightarrow \left(E \left(\frac{M_n^2}{n} \right) \right)^2 = (E \left(\frac{M_n^2}{n} \right))^2 = \frac{(n-1)^2}{n^2} \sigma^4
\]

(34)

Now consider the first term on the right hand side of equation 33. Write it as

\[
E \left[\left(\frac{M_n^2}{n} \right)^2 \right] = E \left[\left(\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2 \right)^2 \right]
\]

(35)

Now consider writing \(\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2 \) as follows
\[
\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2 = \frac{1}{n} \sum_{i=1}^{n} ((X_i - \mu) - (\bar{X} - \mu))^2 \\
= \frac{1}{n} \sum_{i=1}^{n} (Y_i - \bar{Y})^2
\]

where \(Y_i = X_i - \mu \)
\(\bar{Y} = \bar{X} - \mu \)

Obviously,

\[
\sum_{i=1}^{n} (X_i - \bar{X})^2 = \sum_{i=1}^{n} (Y_i - \bar{Y})^2, \text{ where } Y_i = X_i - \mu, \bar{Y} = \bar{X} - \mu
\]

Now consider the properties of the random variable \(Y_i \) which is a transformation of \(X_i \). First the expected value.

\[
E(Y_i) = E(X_i) - E(\mu) \\
= \mu - \mu \\
= 0
\]

The variance of \(Y_i \) is

\[
Y_i = X_i - \mu \\
Var(Y_i) = Var(X_i) \\
= \sigma^2 \text{ if } X_i \text{ are independently and identically distributed}
\]

Also consider \(E(Y_i^4) \). We can write this as

\[
E(Y^4) = \int_{-\infty}^{\infty} y^4 f(x) \, dx \\
= \int_{-\infty}^{\infty} (x - \mu)^4 f(x) \, dx \\
= \mu_4
\]

Now write equation 35 as follows
Ignoring $\frac{1}{n^2}$ for now, expand equation 41 as follows

$$E \left[\left(\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n) \right)^2 \right] = E \left[\left(\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}) \right)^2 \right]$$ \hspace{1cm} (41a)

$$= E \left[\left(\frac{1}{n} \sum_{i=1}^{n} (Y_i - \bar{Y}) \right)^2 \right]$$ \hspace{1cm} (41b)

$$= \frac{1}{n^2} E \left[\sum_{i=1}^{n} (Y_i - \bar{Y})^2 \right]$$ \hspace{1cm} (41c)

$$= \frac{1}{n^2} E \left[\sum_{i=1}^{n} (Y_i - \bar{Y})^2 \right] = \frac{1}{n^2}$$ \hspace{1cm} (41d)

Ignoring $\frac{1}{n^2}$ for now, expand equation 41 as follows

$$E \left[\left(\sum_{i=1}^{n} (Y_i - \bar{Y}) \right)^2 \right] = E \left[\left(\sum_{i=1}^{n} (Y_i^2 - 2 Y_i \bar{Y} + \bar{Y}^2) \right)^2 \right]$$ \hspace{1cm} (42a)

$$= E \left[\sum_{i=1}^{n} Y_i^2 - 2 \bar{Y} \sum_{i=1}^{n} Y_i + \bar{Y}^2 \right]^2$$ \hspace{1cm} (42b)

$$= E \left[\left(\sum_{i=1}^{n} Y_i^2 \right) - 2 n \bar{Y}^2 + n \bar{Y}^2 \right]^2$$ \hspace{1cm} (42c)

$$= E \left[\left(\sum_{i=1}^{n} Y_i^2 \right) - n \bar{Y}^2 \right]^2$$ \hspace{1cm} (42d)

$$= E \left[\sum_{i=1}^{n} Y_i^2 \right]^2 - 2 n \bar{Y}^2 \sum_{i=1}^{n} Y_i^2 + n^2 \bar{Y}^4$$ \hspace{1cm} (42e)

$$= E \left[\sum_{i=1}^{n} Y_i^2 \right]^2 - 2 \bar{Y}^2 \sum_{i=1}^{n} Y_i^2 + n^2 E (\bar{Y}^4)$$ \hspace{1cm} (42f)

Now consider the first term on the right of 42 which we can write as
\[E \left[\left(\sum_{i=1}^{n} Y_i^2 \right)^2 \right] = E \left[\sum_{i=1}^{n} Y_i^2 \sum_{j=1}^{n} Y_j^2 \right] \]

\[= E \left[\sum_{i=1}^{n} Y_i^4 + \sum_{i \neq j} Y_i^2 Y_j^2 \right] \]

\[= \sum_{i=1}^{n} E Y_i^4 + \sum_{i \neq j} E Y_i^2 E Y_j^2 \]

\[= n \mu_4 + n (n - 1) \mu_2^2 \]

\[= n \mu_4 + n (n - 1) \sigma^4 \] \hspace{1cm} (43c)

Now consider the second term on the right of 42 (ignoring 2n for now) which we can write as

\[E \left[\sum_{i=1}^{n} Y_i^2 \sum_{j=1}^{n} Y_j \sum_{k=1}^{n} Y_k \right] = \frac{1}{n^2} E \left[\sum_{j=1}^{n} Y_j \sum_{k=1}^{n} Y_k \sum_{i=1}^{n} Y_i^2 \right] \]

\[= \frac{1}{n^2} \left[\sum_{i=1}^{n} E Y_i^4 + \sum_{i \neq j} E Y_i^2 Y_j^2 + \sum_{j \neq k} E Y_j Y_k \sum_{i \neq j} Y_i^2 \right] \]

\[= \frac{1}{n^2} \left[\sum_{i=1}^{n} E Y_i^4 + \sum_{i \neq j} E Y_i^2 E Y_j^2 + \sum_{j \neq k} E Y_j E Y_k \sum_{i \neq j} E Y_i^2 \right] \]

\[= \frac{1}{n^2} \left[n \mu_4 + n (n - 1) \mu_2^2 + 0 \right] \] \hspace{1cm} (44d)

\[= \frac{1}{n} \left[\mu_4 + (n - 1) \sigma^4 \right] \] \hspace{1cm} (44e)

The last term on the penultimate line is zero because \(E(Y_j) = E(Y_k) = E(Y_i) = 0 \).
Now consider the third term on the right side of 42 (ignoring \(n^2 \) for now) which we can write as

\[
E [\bar{Y}^4] = \frac{1}{n^4} E \left[\sum_{i=1}^{n} Y_i \sum_{j=1}^{n} Y_j \sum_{k=1}^{n} Y_k \sum_{\ell=1}^{n} Y_\ell \right]
\]

\[
= \frac{1}{n^2} E \left[\sum_{i=1}^{n} Y_i^4 + \sum_{i \neq k} Y_i^2 Y_k^2 + \sum_{i \neq j} Y_i^2 Y_j^2 + \sum_{i \neq j} Y_i^2 Y_j^2 + \cdots \right]
\]

where for the first double sum (\(i = j \neq k = \ell \)), for the second (\(i = k \neq j = \ell \)), and for the last (\(i = \ell \neq j = k \)) and \(\cdots \) indicates that all other terms include \(Y_i \) in a non-squared form, the expected value of which will be zero. Given that the \(Y_i \) are independently and identically distributed, the expected value of each of the double sums is the same, which gives

\[
E [\bar{Y}^4] = \frac{1}{n^4} E \left[\sum_{i=1}^{n} Y_i^4 + \sum_{i \neq k} Y_i^2 Y_k^2 + \sum_{i \neq j} Y_i^2 Y_j^2 + \sum_{i \neq j} Y_i^2 Y_j^2 + \cdots \right]
\]

\[
= \frac{1}{n^4} \left[\sum_{i=1}^{n} E Y_i^4 + 3 \sum_{i \neq j} Y_i^2 Y_j^2 + \text{terms containing } EX_i \right]
\]

\[
= \frac{1}{n^4} \left[\sum_{i=1}^{n} E Y_i^4 + 3 \sum_{i \neq j} Y_i^2 Y_j^2 \right]
\]

\[
= \frac{1}{n^4} \left[n \mu_4 + 3 n (n - 1) (\mu_2)^2 \right]
\]

\[
= \frac{1}{n^3} \left[n \mu_4 + 3 n (n - 1) \sigma^4 \right]
\]

Now combining the information in equations 44, 45, and 46 we obtain
\[
E \left[\left(\sum_{i=1}^{n} (Y_i - \bar{Y})^2 \right)^2 \right] = E \left[\left(\sum_{i=1}^{n} (Y_i^2 - 2Y_i\bar{Y} + \bar{Y}^2) \right)^2 \right]
\]

\[
= E \left[\left(\sum_{i=1}^{n} Y_i^2 \right)^2 \right] - 2n E \left[\bar{Y}^2 \sum_{i=1}^{n} Y_i^2 \right] + n^2 E (\bar{Y}^4)
\]

\[
= n\mu_4 + n(n-1)\mu_2^2 - 2n \left[\frac{1}{n} \left(\mu_4 + (n-1)\mu_2^2 \right) \right] + n^2 \left[\frac{1}{n^2} \left(\mu_4 + 3(n-1)\mu_2^2 \right) \right]
\]

\[
= n\mu_4 + n(n-1)\mu_2^2 - 2 [\mu_4 + (n-1)\mu_2^2] + \left[\frac{1}{n} \left(\mu_4 + 3(n-1)\mu_2^2 \right) \right]
\]

\[
= \frac{n^2}{n} \mu_4 - \frac{2n}{n} \mu_4 + \frac{n}{n} \mu_4 + \frac{n(n-1)}{n} \mu_2^2 - \frac{2n(n-1)}{n} \mu_2^2 + \frac{3(n-1)}{n} \mu_2^2
\]

\[
= \frac{n^2 - 2n + 1}{n} \mu_4 + \frac{(n-1)(n^2-2n+3)}{n} \mu_2^2
\]

\[
= \frac{n^2 - 2n + 1}{n^3} \mu_4 + \frac{(n-1)(n^2-2n+3)}{n^3} \sigma_4
\]

Now rewrite equation 41 including \(\frac{1}{n^2} \) as follows

\[
E \left[\left(M_n^2 \right)^2 \right] = \frac{1}{n^2} E \left[\left(\sum_{i=1}^{n} (Y_i - \bar{Y})^2 \right)^2 \right]
\]

\[
= \frac{1}{n^2} \left(\frac{n^2 - 2n + 1}{n} \mu_4 + \frac{(n-1)(n^2-2n+3)}{n} \sigma_4 \right)
\]

\[
= \frac{n^2 - 2n + 1}{n^3} \mu_4 + \frac{(n-1)(n^2-2n+3)}{n^3} \sigma_4
\]

\[
= \frac{(n-1)^2}{n^3} \mu_4 + \frac{(n-1)(n^2-2n+3)}{n^3} \sigma_4
\]

Now substitute equations 34 and 48 into equation 33 to obtain

\[
Var \left(M_n^2 \right) = E \left[\left(M_n^2 \right)^2 \right] - \left(E M_n^2 \right)^2
\]

\[
= \frac{(n-1)^2}{n^3} \mu_4 + \frac{(n-1)(n^2-2n+3)}{n^3} \sigma_4 - \frac{(n-1)^2}{n^2} \sigma_4
\]

We can simplify this as
5. Sample Variance

5.1. Definition of sample variance. The sample variance is defined as

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2$$ (51)

We can write this in terms of moments about the mean as

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2 = \frac{n}{n-1} M_n^2$$ where $M_n^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2$ (52)

5.2. Expected value of S^2. We can compute the expected value of S^2 by substituting in from equation 31 as follows

$$E (S_n^2) = \frac{n}{n-1} E (M_n^2) = \frac{n}{n-1} \frac{n-1}{n} \sigma^2 = \sigma^2$$ (53)

5.3. Variance of S^2. We can compute the variance of S^2 by substituting in from equation 50 as follows
\[\text{Var} \left(S_n^2 \right) = \frac{n^2}{(n - 1)^2} \text{Var} \left(M_n^2 \right) \]
\[= \frac{n^2}{(n - 1)^2} \left(\frac{(n - 1)^2 \mu_4}{n^3} - \frac{(n - 1)(n - 3) \sigma^4}{n^3} \right) \]
(54)
\[= \frac{\mu_4}{n} - \frac{(n - 3) \sigma^4}{n(n - 1)} \]

5.4. Definition of \(\hat{\sigma}^2 \). One possible estimate of the population variance is \(\hat{\sigma}^2 \) which is given by
\[\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} \left(X_i - \bar{X}_n \right)^2 \]
(55)
\[= M_n^2 \]

5.5. Expected value of \(\hat{\sigma}^2 \). We can compute the expected value of \(\hat{\sigma}^2 \) by substituting in from equation 31 as follows
\[E \left(\hat{\sigma}^2 \right) = E \left(M_n^2 \right) \]
\[= \frac{n - 1}{n} \sigma^2 \]
(56)

5.6. Variance of \(\hat{\sigma}^2 \). We can compute the variance of \(\hat{\sigma}^2 \) by substituting in from equation 50 as follows
\[\text{Var} \left(\hat{\sigma}^2 \right) = \text{Var} \left(M_n^2 \right) \]
\[= \frac{(n - 1)^2 \mu_4}{n^3} - \frac{(n - 1)(n - 3) \sigma^4}{n^3} \]
(57)
\[= \frac{\mu_4 - \mu_2^2}{n} - \frac{2(\mu_4 - 2\mu_2^2)}{n^2} + \frac{\mu_4 - 3\mu_2^2}{n^3} \]

We can also write this in an alternative fashion
\[\text{Var} \left(\hat{\sigma}^2 \right) = \text{Var} \left(M_n^2 \right) \]
\[= \frac{(n - 1)^2 \mu_4}{n^3} - \frac{(n - 1)(n - 3) \sigma^4}{n^3} \]
\[= \frac{(n - 1)^2 \mu_4}{n^3} - \frac{(n - 1)(n - 3) \mu_4^2}{n^3} \]
\[= \frac{n^2 \mu_4 - 2n \mu_4 + \mu_4}{n^3} - \frac{n^2 \mu_2^2 - 4n \mu_2^2 + 3 \mu_2^2}{n^3} \]
(58)
\[= \frac{n^2 (\mu_4 - \mu_2^2)}{n^3} - \frac{2(n \mu_4 - 2 \mu_2^2) + \mu_4 - 3 \mu_2^2}{n^3} \]
\[= \frac{\mu_4 - \mu_2^2}{n} - \frac{2(\mu_4 - 2 \mu_2^2)}{n^2} + \frac{\mu_4 - 3 \mu_2^2}{n^3} \]
6. Normal populations

6.1. Central moments of the normal distribution. For a normal population we can obtain the central moments by differentiating the moment generating function. The moment generating function for the central moments is as follows

\[M_X(t) = e^{\frac{t^2 \sigma^2}{2}}. \]
(59)

The moments are then as follows. The first central moment is

\[E(X - \mu) = \frac{d}{dt} \left(e^{\frac{t^2 \sigma^2}{2}} \right) \bigg|_{t=0} = t \sigma^2 \left(e^{\frac{t^2 \sigma^2}{2}} \right) \bigg|_{t=0} = t \sigma^2 \]
(60)

The second central moment is

\[E(X - \mu)^2 = \frac{d^2}{dt^2} \left(e^{\frac{t^2 \sigma^2}{2}} \right) \bigg|_{t=0} = \frac{1}{2} t^2 \sigma^4 \left(e^{\frac{t^2 \sigma^2}{2}} \right) \bigg|_{t=0} = \sigma^2 \]
(61)

The third central moment is

\[E(X - \mu)^3 = \frac{d^3}{dt^3} \left(e^{\frac{t^2 \sigma^2}{2}} \right) \bigg|_{t=0} = \frac{1}{6} t^3 \sigma^6 \left(e^{\frac{t^2 \sigma^2}{2}} \right) + \frac{1}{2} t^2 \sigma^4 \left(e^{\frac{t^2 \sigma^2}{2}} \right) \bigg|_{t=0} = 0 \]
(62)

The fourth central moment is
\[E(X - \mu)^4 = \frac{d^4}{dt^4} \left(e^{\frac{t^2}{2\sigma^2}} \right) \bigg|_{t=0} \]
\[= \frac{d}{dt} \left(t^3 \sigma^6 \left(e^{\frac{t^2}{2\sigma^2}} \right) + 3 t^4 \sigma^6 \left(e^{\frac{t^2}{2\sigma^2}} \right) \right) \bigg|_{t=0} \]
\[= \left(t^4 \sigma^8 \left(e^{\frac{t^2}{2\sigma^2}} \right) + 3 t^2 \sigma^6 \left(e^{\frac{t^2}{2\sigma^2}} \right) + 3 \sigma^4 \left(e^{\frac{t^2}{2\sigma^2}} \right) \right) \bigg|_{t=0} \]
\[= \left(t^4 \sigma^8 \left(e^{\frac{t^2}{2\sigma^2}} \right) + 6 t^2 \sigma^6 \left(e^{\frac{t^2}{2\sigma^2}} \right) + 3 \sigma^4 \left(e^{\frac{t^2}{2\sigma^2}} \right) \right) \bigg|_{t=0} \]
\[= 3\sigma^4 \]

6.2. Variance of \(S^2 \). Let \(X_1, X_2, \ldots X_n \) be a random sample from a normal population with mean \(\mu \) and variance \(\sigma^2 < \infty \).

We know from equation 54 that
\[
Var \left(S_n^2 \right) = \frac{n^2}{(n-1)^2} Var \left(M_n^2 \right)
\]
\[
= \frac{n^2}{(n-1)^2} \left(\frac{(n-1)^2 \mu_4}{n^3} - \frac{(n-1)(n-3)\sigma^4}{n^3} \right) \tag{64}
\]
\[
= \frac{\mu_4}{n} - \frac{(n-3)\sigma^4}{n(n-1)}
\]

If we substitute in for \(\mu_4 \) from equation 63 we obtain
\[
Var \left(S_n^2 \right) = \frac{\mu_4}{n} \frac{(n-3)\sigma^4}{n(n-1)}
\]
\[
= \frac{3\sigma^4}{n} - \frac{(n-3)\sigma^4}{n(n-1)}
\]
\[
= \frac{(3(n-1)-(n-3))\sigma^4}{n(n-1)}
\]
\[= \frac{(3n-3-n+3)}{n(n-1)} \sigma^4
\]
\[= \frac{2n\sigma^4}{n(n-1)}
\]
\[= \frac{2\sigma^4}{n-1} \]

6.3. Variance of \(\hat{\sigma}^2 \). It is easy to show that
\[
Var \left(\hat{\sigma}^2 \right) = \frac{2\sigma^4(n-1)}{n^2} \tag{66}
\]