For the following questions use the attached futures and options data. Assume historical expected basis of -$0.30 per bushel and a commission of $0.01 per bushel for both crops. **Show the math and draw the graph.**

1. A speculator buys a $4.00 put option on Dec. 2014 corn futures. What does she pay for the option? At what price does she breakeven (where her return is equal to zero)? If the Dec. 2014 corn futures price falls to $3, what is her return?

She pays the $0.12 premium and the $0.01 commission for a total of $0.13

Her breakeven price is equal to

\[
\text{Strike Price} - \text{Premium} - \text{Commission} = 4.00 - 0.12 - 0.01 = 3.87
\]

If the Dec. 2014 corn futures price falls to $3, her return is:

\[
\text{Max}(0, \text{Strike Price} - \text{Futures Price}) - \text{Premium} - \text{Commission} = \text{Max}(0, 4.00 - 3.00) - 0.12 - 0.01 = \text{Max}(0, 1.00) - 0.12 - 0.01 = 1.00 - 0.12 - 0.01 = 0.87
\]
2. A hedger (producer) buys a $4.00 put option on Dec. 2014 corn futures. What is her floor price with the option in place? If the Dec. 2014 corn futures price falls to $3, what is her net price?

\[
\text{Floor Price} = \text{Strike Price} + \text{Basis} - \text{Premium} - \text{Commission} \\
= $4.00 - $0.30 - $0.12 - $0.01 \\
= $3.57
\]

If the Dec. 2014 corn futures price falls to $3, her net price is equal to her floor price, $3.57. To see this, look at the graph. She receives $2.70 from the cash market ($3.00 - $0.30, futures + basis) and she receives $0.87 from the put option (see the return from put option in question 1).
3. Instead of buying that $4.00 put option, the hedger does a short hedge. What is her floor price with the short hedge in place? If the Dec. 2014 corn futures price falls to $3, what is her net price?

Floor price with a short hedge is the expected price with a short hedge.

Expected Price = Futures Price + Basis – Commission
= $4.60 - $0.30 - $0.01
= $4.29

If the Dec. 2012 corn futures price falls to $3, her net price is $4.29.
4. If the speculator in question 1 also sold a $5.00 call option on Dec. 2014 corn futures, does that change her breakeven price? If so, what is the new breakeven price?

Yes, her breakeven price changed. From question 1, her original breakeven price was $3.87. The change is due to selling the call option. At her old breakeven price, she now receives the premium on the call minus the commission ($0.20 = $0.21 - $0.01). In fact, by selling the call, she continues to receive that $0.20 until the futures price exceeds $5. Remember her return is the sum of the put and call returns. At a $5 futures price, her put option return is -$0.13 (the $0.12 premium plus the $0.01 commission) and her call option return is $0.20 (as she receives the $0.21 premium from selling the call less the $0.01 commission), so her total return is $0.07. For each penny the futures price moves above $5, her put option return stays at -$0.13, but her call option return decreases by a penny. So her new breakeven price is now at $5.07.
5. If the hedger in question 2 also sold a $5.00 call option on Dec. 2014 corn futures, does that change her floor price? If so, what is the new floor price?

Yes, her floor price changed with the addition of the call option premium less the commission.

\[
\text{New Floor Price} = \text{Old Floor Price} + \text{Call Option Premium} - \text{Commission}
\]

\[
= $3.57 + $0.21 - $0.01 = $3.77
\]
6. A speculator buys a $5.00 call option on Dec. 2014 corn futures. What does she pay for the option? At what price does she breakeven? If the Dec. 2014 corn futures price falls to $4, what is her return? If the Dec. 2014 corn futures price rises to $6, what is her return?

She pays the premium and commission, $0.21 + $0.01. So she pays $0.22.

Her breakeven price is equal to:

\[\text{Strike Price} + \text{Premium} + \text{Commission} = 5.00 + 0.21 + 0.01 = 5.22 \]

Her return is:

\[\max(0, \text{Futures Price} - \text{Strike Price}) - \text{Premium} - \text{Commission} \]

At $4 futures, her return is:

\[\max(0, 4.00 - 5.00) - 0.21 - 0.01 = \max(0, -1.00) - 0.21 - 0.01 = -0.22 \]

At $6 futures, her return is:

\[\max(0, 6.00 - 5.00) - 0.21 - 0.01 = \max(0, 1.00) - 0.21 - 0.01 = 0.78 \]
7. A hedger (processor) buys a $5.00 call option on Dec. 2014 corn futures. What is her ceiling price with the option in place? If the Dec. 2014 corn futures price falls to $4, what is her net price?

Ceiling Price = Strike Price + Basis + Premium + Commission
= $5.00 - $0.30 + $0.21 + $0.01
= $4.92

If the Dec. 2014 corn futures price falls to $4, her option will expire worthless and her net price is:

Net Price = Cash + Premium + Commission
= Futures + Basis + Premium + Commission
= $4.00 - $0.30 + $0.21 + $0.01
= $3.92
All prices and premiums are listed in dollars per bushel

Dec. 2014 Corn Futures

<table>
<thead>
<tr>
<th>Options</th>
<th>Strike Price</th>
<th>Premium</th>
<th>Options</th>
<th>Strike Price</th>
<th>Premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Put</td>
<td>3.50</td>
<td>0.03</td>
<td>Call</td>
<td>3.50</td>
<td>1.12</td>
</tr>
<tr>
<td>Put</td>
<td>3.60</td>
<td>0.04</td>
<td>Call</td>
<td>3.60</td>
<td>1.03</td>
</tr>
<tr>
<td>Put</td>
<td>3.70</td>
<td>0.05</td>
<td>Call</td>
<td>3.70</td>
<td>0.95</td>
</tr>
<tr>
<td>Put</td>
<td>3.80</td>
<td>0.07</td>
<td>Call</td>
<td>3.80</td>
<td>0.87</td>
</tr>
<tr>
<td>Put</td>
<td>3.90</td>
<td>0.09</td>
<td>Call</td>
<td>3.90</td>
<td>0.79</td>
</tr>
<tr>
<td>Put</td>
<td>4.00</td>
<td>0.12</td>
<td>Call</td>
<td>4.00</td>
<td>0.71</td>
</tr>
<tr>
<td>Put</td>
<td>4.10</td>
<td>0.15</td>
<td>Call</td>
<td>4.10</td>
<td>0.64</td>
</tr>
<tr>
<td>Put</td>
<td>4.20</td>
<td>0.18</td>
<td>Call</td>
<td>4.20</td>
<td>0.58</td>
</tr>
<tr>
<td>Put</td>
<td>4.30</td>
<td>0.22</td>
<td>Call</td>
<td>4.30</td>
<td>0.51</td>
</tr>
<tr>
<td>Put</td>
<td>4.40</td>
<td>0.26</td>
<td>Call</td>
<td>4.40</td>
<td>0.46</td>
</tr>
<tr>
<td>Put</td>
<td>4.50</td>
<td>0.31</td>
<td>Call</td>
<td>4.50</td>
<td>0.41</td>
</tr>
<tr>
<td>Put</td>
<td>4.60</td>
<td>0.36</td>
<td>Call</td>
<td>4.60</td>
<td>0.36</td>
</tr>
<tr>
<td>Put</td>
<td>4.70</td>
<td>0.42</td>
<td>Call</td>
<td>4.70</td>
<td>0.32</td>
</tr>
<tr>
<td>Put</td>
<td>4.80</td>
<td>0.48</td>
<td>Call</td>
<td>4.80</td>
<td>0.28</td>
</tr>
<tr>
<td>Put</td>
<td>4.90</td>
<td>0.54</td>
<td>Call</td>
<td>4.90</td>
<td>0.25</td>
</tr>
<tr>
<td>Put</td>
<td>5.00</td>
<td>0.61</td>
<td>Call</td>
<td>5.00</td>
<td>0.21</td>
</tr>
<tr>
<td>Put</td>
<td>5.10</td>
<td>0.68</td>
<td>Call</td>
<td>5.10</td>
<td>0.19</td>
</tr>
<tr>
<td>Put</td>
<td>5.20</td>
<td>0.76</td>
<td>Call</td>
<td>5.20</td>
<td>0.16</td>
</tr>
<tr>
<td>Put</td>
<td>5.30</td>
<td>0.84</td>
<td>Call</td>
<td>5.30</td>
<td>0.14</td>
</tr>
<tr>
<td>Put</td>
<td>5.40</td>
<td>0.92</td>
<td>Call</td>
<td>5.40</td>
<td>0.12</td>
</tr>
<tr>
<td>Put</td>
<td>5.50</td>
<td>1.00</td>
<td>Call</td>
<td>5.50</td>
<td>0.11</td>
</tr>
</tbody>
</table>