Fill in the blanks (2 points each)
1. A put option contains the right to sell a futures contract.
2. A call option contains the right to buy a futures contract.
3. A futures contract is a legally binding contract to make or take delivery of the commodity.
5. If I take a long position in the futures market, then I have bought a futures contract.
6. On Mar. 4, 2016, the March 2016 corn futures price was $3.55 per bushel. If the corn cash price was $3.25 per bushel, then the basis is $-0.30.
7. On Mar. 4, 2016, the July 2016 corn futures price was $3.64 per bushel. If a put option with a $3.60 strike price has a premium of 15 cents, what is the time value of the option?
 $0.15
8. On Mar. 4, 2016, the July 2016 corn futures price was $3.64 per bushel. If a call option with a $3.60 strike price has a premium of 18 cents, what is the intrinsic value of the option?
 $0.04

True or False (2 points each)
9. T F Basis = Cash price – Futures price
10. T F Crop insurance is subsidized by the federal government.
11. T F Put and call option premiums are set by the CME Group, the entity that runs the futures and options markets.
12. T F The main reason crops fail is disease.
13. T F Speculators have no use for the physical commodity.
14. T F A “bull” thinks prices will decline.
15. T F The last 4 soybean crops are the 4 largest soybean crops the U.S. has ever had.
16. **F** The only person guaranteed to make money on an options trade is the broker.

Short Answer (2 points each)

17. How many bushels are in 10 corn futures contracts?

*50,000 bushels (10*5,000 bushels)*

18. What is the settlement price on the April 2016 live cattle futures today (March 8, 2016)?

$137.125/cwt.

Short Answer (4 points each)

19. Below are the futures prices, 9-day, and 40-day moving averages for May 2016 lean hogs.

<table>
<thead>
<tr>
<th>Date</th>
<th>Futures</th>
<th>9-Day Average</th>
<th>40-Day Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/3/2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/3/2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/3/2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/3/2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/3/2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/3/2016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/3/2016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/3/2016</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In looking at the 9-day versus the 40-day average:
How many buy signals have we had since last August?

Two

What was the last signal (buy or sell) we received?

Buy
20. For 2016, you have an expected corn yield of 175 bushels per acre on your farm, based on your previous corn yields. The spring time insurance price for corn is $3.86 per bushel.

a) If you get 75 bushels per acre in 2016 and the harvest time price was $5.00 per bushel, what would be the insurance payment if you bought 80% yield insurance?

\[
\text{Insurance payment for yield insurance} = \max(0, \text{Spring price} \times (\text{Coverage level} \times \text{Expected yield} - \text{Actual yield})) \\
= \max(0, $3.86/\text{bu} \times (80\% \times 175 \text{ bu/acre} - 75 \text{ bu/acre})) \\
= \max(0, $3.86/\text{bu} \times (140 \text{ bu/acre} - 75 \text{ bu/acre})) \\
= \max(0, $3.86/\text{bu} \times 65 \text{ bu/acre}) \\
= \max(0, $250.90/\text{acre}) \\
= $250.90/\text{acre}
\]

b) If you got 75 bushels per acre in 2016 and the harvest time price was $5.00 per bushel, what would be the insurance payment if you bought 80% revenue insurance (with the harvest price option)?

\[
\text{Insurance payment for revenue insurance} = \max(0, \max(\text{Spring price, Harvest price}) \times \text{Coverage level} \times \text{Expected yield} - \text{Harvest price} \times \text{Actual yield}) \\
= \max(0, \max($3.86/\text{bu, $5.00/bu}) \times 80\% \times 175 \text{ bu/acre} - $5.00/\text{bu} \times 75 \text{ bu/acre}) \\
= \max(0, $5.00/\text{bu} \times 80\% \times 175 \text{ bu/acre} - $5.00/\text{bu} \times 75 \text{ bu/acre}) \\
= \max(0, $325.00/\text{acre}) \\
= $325.00/\text{acre}
\]

21. Name 4 of the 5 factors that affect the value of an option premium.

- Strike price of the option
- Price of the underlying futures contract for the option
- Volatility of the underlying futures
- Time to maturity
- Interest rate

22. I put on a short hedge using Nov. 2016 soybean futures on March 4. To do that did I buy or sell a futures contract?

Sell

The futures price was $8.91 per bushel. If my expected basis is -$0.50 per bushel and the broker charges me a 2 cent per bushel commission, what is my expected price under the short hedge?

\[
\text{Expected price} = \text{Futures price} + \text{Basis} - \text{Commission} \\
= $8.91 - 0.50 - 0.02 \\
= $8.39
\]
23. I purchased a Dec. 2016 corn put option with a $4.00 strike price. The premium was 42 cents. If my expected basis is -$0.20 per bushel and my broker charges me a 1 cent per bushel commission, what is my floor price with this option?

\[
\text{Floor price} = \text{Strike price} + \text{Basis} - \text{Premium} - \text{Commission}
\]
\[
= $4.00 - 0.20 - 0.42 - 0.01
\]
\[
= $3.37
\]

The Dec. 2016 corn futures prices was $3.78 when I purchased the option. What is the intrinsic value of the option?

Intrinsic value is the value of the option if we could cash it in today. For a put option, the intrinsic value is:

\[
\text{Max}(0, \text{Strike price} - \text{Futures price}) = \text{Max}(0, $4.00 - $3.78) = \text{Max}(0, 0.22) = 0.22
\]

24. If the government reports that the butter price is $2.15 per pound and the nonfat dry milk price is $0.8216 per pound, what is the Class IV Milk price?

The Class IV Milk price = (Class IV Skim Milk price * 0.965) + (Butterfat price * 3.5)

Class IV Skim Milk price = Nonfat Solids price * 9

Nonfat Solids price = (Nonfat Dry Milk price – 0.1678) * 0.99
\[
= ($0.8216 - 0.1678) * 0.99
\]
\[
= 0.6538 * 0.99
\]
\[
= 0.6473
\]

So the Class IV Skim Milk price = $0.6473 * 9 = $5.83

Butterfat price = (Butter price – 0.1715) * 1.211
\[
= ($2.15 - 0.1715) * 1.211
\]
\[
= 1.9785 * 1.211
\]
\[
= 2.3960
\]

So the Class IV Milk price = ($5.83 * 0.965) + (2.3960 * 3.5)
\[
= 5.63 + 8.39
\]
\[
= $14.02
\]
Matching (1 point each)
Answer questions matching the following action to the appropriate statement. Terms may be used more than once.

a) Sell a call option
 b) Buy a call option

c) Sell a put option
 d) Buy a put option

e) Sell a futures contract
 f) Buy a futures contract

25. F Receive payment into a margin account if futures price increases.

26. E Receive payment into a margin account if futures price decreases.

27. B Have the right, but not the obligation, to buy a futures contract at the strike price.

28. D Have the right, but not the obligation, to sell a futures contract at the strike price.

29. A Receive a premium, but maybe obligated to sell a futures contract at the strike price.

30. C Receive a premium, but maybe obligated to buy a futures contract at the strike price.

Long Answer (6 points each)
31. Given the data below, compute a 14-day Relative Strength Index for Nov. 2016 soybeans.

<table>
<thead>
<tr>
<th>Date</th>
<th>Futures Price</th>
<th>Up Moves</th>
<th>Down Moves</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/12/2016</td>
<td>8.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/16/2016</td>
<td>8.91</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>2/17/2016</td>
<td>8.9275</td>
<td>0.0175</td>
<td></td>
</tr>
<tr>
<td>2/18/2016</td>
<td>8.905</td>
<td></td>
<td>0.0225</td>
</tr>
<tr>
<td>2/19/2016</td>
<td>8.885</td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>2/22/2016</td>
<td>8.915</td>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>2/23/2016</td>
<td>8.8225</td>
<td></td>
<td>0.0925</td>
</tr>
<tr>
<td>2/24/2016</td>
<td>8.8275</td>
<td></td>
<td>0.005</td>
</tr>
<tr>
<td>2/25/2016</td>
<td>8.7675</td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>2/26/2016</td>
<td>8.76</td>
<td></td>
<td>0.0075</td>
</tr>
<tr>
<td>2/29/2016</td>
<td>8.735</td>
<td></td>
<td>0.025</td>
</tr>
<tr>
<td>3/1/2016</td>
<td>8.70</td>
<td></td>
<td>0.035</td>
</tr>
<tr>
<td>3/2/2016</td>
<td>8.75</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>3/3/2016</td>
<td>8.78</td>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>3/4/2016</td>
<td>8.91</td>
<td></td>
<td>0.13</td>
</tr>
<tr>
<td>Sum</td>
<td>0.3125</td>
<td>0.2625</td>
<td></td>
</tr>
</tbody>
</table>

\[
Up\ average = 0.0446 \\
Down\ average = 0.0375 \\
RSI = \frac{(Up\ average)}{(Up\ average + Down\ average)}*100 \\
= \frac{(0.0446)}{(0.0446 + 0.0375)}*100 \\
= 54.32
\]
Margins (12 points)

32. I am a hedger that went short on December 2016 corn on Feb. 29, 2016 at $3.7575 per bushel. The initial margin requirement is $1,100. The maintenance margin is $1,000. Fill out my margin account for one futures contract.

<table>
<thead>
<tr>
<th>Date</th>
<th>Futures Price</th>
<th>Gain/Loss</th>
<th>Margin Call</th>
<th>Account Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/29/2016</td>
<td>$3.7575</td>
<td></td>
<td>X</td>
<td>$1,100.00</td>
</tr>
<tr>
<td>3/1/2016</td>
<td>$3.7375</td>
<td>$100.00</td>
<td>X</td>
<td>$1,200.00</td>
</tr>
<tr>
<td>3/2/2016</td>
<td>$3.745</td>
<td>-$37.50</td>
<td>(-$0.0075 * 5,000)</td>
<td>$1,162.50</td>
</tr>
<tr>
<td>3/3/2016</td>
<td>$3.755</td>
<td>-$50.00</td>
<td>(-$0.01 * 5,000)</td>
<td>$1,112.50</td>
</tr>
<tr>
<td>3/4/2016</td>
<td>$3.78</td>
<td>-$125.00</td>
<td>(-$0.025 * 5,000)</td>
<td>$112.50</td>
</tr>
</tbody>
</table>

Math and Graph (16 points, please show your work)

33. A corn producer is using a hedge to protect against price risk. Her broker charges her a commission of 1 cent per bushel for each transaction. At the time, the Dec. 2016 corn futures price was $3.78. She expects a harvest time basis of -$0.25 per bushel.

Please graph the relevant cash price, futures return, and net price lines.

What is her expected price?

\[
\text{Expected price} = \text{Futures price} + \text{Basis} - \text{Commission} \\
= $3.78 - $0.25 - $0.01 \\
= $3.52
\]

If the Dec. 2016 corn futures rises to $4.50, what is her expected net price?

With the hedge, her expected net price is still $3.52.

If futures rise to $4.50 and the basis is -$0.25, then the cash price is $4.25. But the futures return on the hedge will be negative, $3.78 - $4.50 - $0.01 = -$0.73. Her net price is the cash price + the futures return, $4.25 - $0.73 = $3.52.
If the Dec. 2016 corn futures falls to $3.50, but the harvest time basis improves to -$0.10, what is her expected net price?

If the basis changes to -$0.10, then her expected net price also changes. But the expected price formula remains the same.

\[
\text{Expected price} = \text{Original futures price} + \text{Basis} - \text{Commission}
\]
\[
= \$3.78 - \$0.10 - \$0.01
\]
\[
= \$3.67
\]

If futures fall to $3.50 and the basis is -$0.10, then the cash price is $3.40. But the futures return on the hedge will be positive, $3.78 – $3.50 – $0.01 = $0.27. Her net price is the cash price + the futures return, $3.40 + $0.27 = $3.67.