Course Objectives:

This course is a continuation of the standard graduate curriculum in econometrics. The course provides a systematic approach to econometric theory and techniques associated with single and multiple equation econometric models, with special emphasis on qualitative and censored data, panel data, multiple endogenous variables, and time-series data. The emphasis will be to provide an intuitive, yet rigorous, theoretical understanding of the statistical methods used to analyze such data and models. There will be “hands on” experience using statistical software and actual data analysis. The course will provide students with exposure to selected empirical applications.

The student should be able to apply econometric tools to a wide range of economic problems. There will be regular exercises that allow the student to develop skills in formulating and estimating models. Some exercises will be analytical in nature, while others will involve estimation of models and interpretation of results.

Grading:

- Homework and classroom participation: 20%
- Midterm: 35%
- Final Exam: 45%

Textbooks:

I. Qualitative and censored dependent variable model
 A. Discrete dependent variable
 Linear probability model
 Probit model
 Logit model
 B. Limited dependent variable and non-random sample selection models
 Tobit model
 Non-random sample selection effects
 Heckman’s method
 Other methods
 C. Duration models: Waiting time or Hazard functions

II. Properties of estimators and M-estimation
 A. Large Sample
 Convergence in probability
 Limiting distributions
 Convergence in distribution
 Asymptotic distributions
 B. M-estimators

III. Estimating Systems of Equations by OLS and GLS
 Multivariate Linear Model
 Seemingly unrelated regressions (SUR)
 Linear unobserved effects in panel data

IV. Stochastic regressors and systems of regression equations
 A. General issues and identification in simultaneous equation models (SEM)
 Rank and order conditions
 Methods to achieve: normalization, identities, restrictions on coefficients and covariances
 B. Estimation
 Single equation: IV, 2SLS
 Systems of equations: 3SLS, FIML
 C. Testing—generally and for endogeneity/exogeneity
 D. Forecasting in SEM

V. Time-Series Models
 A. Definitions and examples of stationary time-series models
 1. General processes
 Autoregressive, AR(r)
 Moving average, MA(s)
 Autoregressive—moving average, ARMA(r,s)
 2. Covariance stationarity
 Meaning
 Fitting models
 B. Nonstationary time-series models
 1. Models
 Definition
 Importance
 Fitting
 2. Testing
 Unit root (Dickey-Fuller and others)
 Methods to induce stationarity (differencing, structural breaks)
 Spurious regressors
 Cointegration
 C. Forecasting with time-series models
I. Qualitative and Censored Dependent Variables
 A. Discrete dependent variable models
 B. Limited dependent variable, censored regression and nonrandom selection
 Greene, W. H. *Econometric Analysis*, Ch 22, pp 756-802
 Wooldridge, J. *Econometric Analysis*, Ch 16-17, pp 517-602
 C. Duration Models

II. Large Sample Properties of Estimators and M-estimators
 Ruud, P. A. *Classical Econometrics*, Ch 13, pp 245-280

III. Estimating Systems of Equations by OLS and GLS: SUR and Panel Data Models
 Greene, W.H. Econometrics Analysis, Ch 14, pp 339-357, 363-369
 Wooldridge, J. *Econometrics Analysis*, Ch 7& 10, pp 143-182 & 247-298
 Greene, W.H. *Econometric Analysis*, Ch 13, pp 283-338

IV. Stochastic Regressors and Systems of Regression Equations
 A. General Issues and Identification
 Wooldridge, J. *Econometric Analysis*, Ch 9, pp 209-245
 Ruud, P.A. *Classical Econometric Theory*, Ch 26, pp 697-717
B. Limited Information Estimation
 Wooldridge, *J. Econometric Analysis*, Ch 8, pp 183-208

C. Full Information Estimation and Testing
 Wooldridge, *J. Econometric Analysis*, Ch 9, pp 209-246

V. Time-Series Models
 A. Stationary Time-Series Models
 B. Nonstationary Time-Series Models and Cointegration
 C. Forecasting