Instructor: Prof. Wallace Huffman
TA: Yanni Chen
382A Heady Hall
4-6359
whuffman@iastate.edu

TA: Yanni Chen
69 Heady Hall
4-5051
chenyn@iastate.edu

Office Hours: T, Th 1-2, F 2-3
and by appointment

Class Meeting: Lecture: MW 9:30-10:40, F 10:00-10:50
Lab: F 9:00-9:50
Location: 272 Heady Hall

A. Course Objective: To provide students with an in depth treatment of the classical and
general multiple regression models, including deriving common estimators and their
properties, hypothesis testing, forecasting, and implementations of misspecification. Some
practical experience fitting models and interpreting results will be obtained.

B. Grading: Homework 20%
Test 1 40%
Test 2 40%
Total 100%

C. Textbooks

I. Introduction

II. Linear Multiple Regression Model
 A. The Classical Model
 1. Estimators and Properties (OLS, MLE, Bayesian)
 a. Greene, ch. 1-5, and pp. 425-439
 b. Ruud, ch. 1, 2 (pp. 19-33)
 B. Inference, Hypothesis Testing and Confidence Intervals
 1. Simple Hypothesis
 a. Greene, pp. 50-53
 2. Composite Hypotheses and Linear Restrictions
 a. Intriligator, Bodkin, and Hsiao, pp. 86-97
 b. Greene, pp. 93-104
 3. Prediction/Forecasting
 a. Greene, pp. 111-114
 C. Extensions
 1. Multicollinearity
 a. Greene, pp. 56-57
 b. Intriligator, Bodkin, and Hsiao, pp. 150-156
 2. Omitted and Irrelevant Variables
 a. Greene, pp. 148-151
 3. Proxy Variables
 a. Greene, p. 86-90

III. General Linear Model
 A. Estimators and Their Properties
 1. Ordinary least squares, generalized least squares, and feasible generalized least squares
 B. Extension to Seemingly Unrelated Regression Model
 1. Greene, pp. 339-365