How broad should the scope of patent protection be?

Klemperer
1990, RAND

• What is the optimal breadth of patent protection?

• Patents of optimal length and breadth that allocate a given profit to the innovator at the least social cost.
Sketch of the model:

- horizontal differentiation,
- a patentholder (H) and competitors,
- **Breadth**: distance of the product spectrum away from the patentholder’s product where competing firms are allowed,
- Consumers prefer the patented products at equal prices,
- H and consumers are located at 0,
- Consumers’ have
 a. travel cost per unit of distance, t;
 b. reservation price, m.
Graph: 3 consumers, identical m, different t

- Consumer 1 is indifferent between
 - buying H’s product located at 0 at price p^*,
 - and buying the product from a competitor; the travel cost is t_1b.

- Consumer 2 buys from a competitor because $p^* > t_2b$, i.e., it is cheaper to travel to b and buy from a competitor.

- Consumer 3 buys from H because $p^* < t_3b$, i.e., it is cheaper to buy the patented product rather than travelling to b.
1. A simple illustration of Klemperer (van Dijk, 1994)
• If perfect competition: maximum welfare, no loss.
• Comparison of the patent situation with the perfectly competitive situation.

Two kinds of welfare losses (WL):
• WL_1: consumers who shift to less preferred varieties. These consumers face travel costs (e.g., consumer 2, who incurs travel cost t_2b)

• WL_1: consumers drop out of the market; too low reservation price.
 – e.g., if the reservation price of consumer 3 is below the price charged by H ($p^* > m$) he will not buy.
 – Or if $t_2b > m$, consumer 2 will not buy.
• Assumption: there is a minimum profit level that makes H invest in R&D.

• Patent policy maker have two instruments:
 – patent breadth,
 – patent length;

• A long but narrow patent can provide as much profit as a short but broad patent.

• **Problem**: How to determine the optimal mixture of breadth and length that is optimal from a social viewpoint?

• The distribution of t, and the distribution of m turn out to be decisive for the optimal mix.
• **Extreme cases:**
 – narrow patents with long life are optimal when consumers face identical travel costs;
 – broad patents with adjusted life are optimal when the reservation prices are identical.

• **Why?**

• **A1:** all consumers face identical travel costs.

 \[H \text{ sets } p^* = tb - \varepsilon. \]

 Suppose that all consumers have the same travel cost \(t_1 \) (see graph), thus \(p^* < t_1 b \). No consumers will buy from competitors. \(WL? \)

 – \(WL_1 = 0 \)

 – \(WL_2 > 0 \)

• **Objective of policy maker:** reduce \(WL_2 \);

 set very narrow patent to force \(H \) to reduce the price.

 The lifetime will be adjusted such as to give the given reward to \(H \).
• A2: all consumers have identical reservation prices.

\[p^* = m \] (comparable to perfect price discrimination which is commonly known to cause no welfare loss, compared to perfect competition).

\[WL? \]
- \[WL_1 > 0 \]
- \[WL_2 = 0 \]

• **Objective of the policy maker:** reduce \(WL_1 \); set very broad patent in order to reduce \(WL_1 \).

The lifetime must be adjusted in order to provide the minimum profit level required.