The Welfare Effects of Third-Degree Price Discrimination in Intermediate Good Markets

Michael L. Katz

(The American Economic Review Vol. 77, No. 1, Mar
Two fundamental differences between final and intermediate good markets:

1) The buyers’ demands for the product market are interdependent - Downstream firm’s demand for an input is a function both of the price it pays for the input and of the prices that the buyer’s product market rivals.

2) Buyer’s ability of (vertical) integration

=> Because of above two reasons, the analysis of third-price discrimination market can not be applied to intermediate-goods market
Analytical Framework

- Homogenous final good → perfect substitute
- One unit of input produces one unit of output

Upstream Firm
- Initially, the output is produced by the single incumbent upstream producer
- Marginal cost is constant, c

Downstream Firm: *There are two types of sellers in each region*
1) One store in each market is a branch of a chain that sells the final good in the market
2) A local store that operates solely in *that* market

- Downstream firms are Cournot competitors
Definition

- \(P(\cdot) \): the inverse demand function in that market

- \(x_1[m_1, m_2], x_2[m_1, m_2] \) are the equilibrium output of firm 1 and firm 2, respectively, and \(m_i \) indicates the marginal input cost of firm \(i \)

- \(X \) is the total output in a single market:
 \[
 \Rightarrow X[m_1, m_2] = x_1[m_1, m_2] + x_2[m_1, m_2]
 \]

- Firm \(i \)'s profit in a single market
 \[
 \pi_i[m_i, m_j] = x_i[m_i, m_j] \{ P[X(m_i, m_j)] \}
 \]

 \[
 \frac{\partial X}{\partial m_i} < 0, \quad \frac{\partial \pi_i[m_i, m_j]}{\partial m_i} < 0, \quad \frac{\partial \pi_i[m_i, m_j]}{\partial m_j} \geq 0
 \]

- \(w_i \) is price that upstream producer charges firm \(i \)
 \[
 \Rightarrow \text{if firm } i \text{ purchases the input from the upstream producer}
 \]
Cost of producing input by final good firm

\[F + vy, \text{ where } F \text{ is positive and fixed cost that must be sunk for production to take place, and } v \text{ is positive constant with } V \geq C \]

\[\Rightarrow \text{For the integration by firm } i, \ m_i = v, \quad \pi[v, m_j] - \frac{F}{k_i}, \text{ where } k_i \text{ is number of downstream markets in which firm } i \text{ is present} \]

Additional Assumption

- Local store does not have option of integration because it’s not profitable.
- Even though chain produces intermediate good, it can’t sell to local store.
The Integration Decision

The chain’s integration decision based on expected profits with and without integration is given by:

\[\left\{ \pi^e [w_1, w_2] - \frac{F}{K} \right\} - \pi [w_1, w_2] \geq 0 \quad (1) \]

Definition: \(I[w_2] \) is the value of \(w_1 \) such that this price pair satisfies (1) with equal profits.

Note: \(I[w_2] \) (or integration frontier) can have either upward or downward slope depending on whether changes in \(w_1 \) and \(w_2 \) raise or lower the left-hand side of equation (1).

\[\Rightarrow \text{For example: suppose } w_1 \text{ is the input price the chain pays. Then, } w_1 \text{ will reduce the chain’s integration incentive but increase in } w_2 \text{ raises it.} \]
The Upstream Supplier’s Choice of Prices

It will choose \(w_1 \) and \(w_2 \), taking the chain’s integration rule into consider-

\[\max_{w_1, w_2} U^m [w_1, w_2] \]

\[\equiv (w_1 - c)x[w_1, w_2] + (w_2 - c)x[w_1, w_2] \]

subject to

\[\pi[w_1, w_2] \geq \pi^e[w_1, w_2] - \frac{F}{K} \]
Welfare Analysis

Two types of welfare effects

1) Total amount of the intermediate good or final good

2) Production efficiency

Case I: integration in both regimes

If upstream finds it optimal to induce integration both with and without price discrimination, then two outcomes are the identical.

⇒ In this case, the welfare levels are the same in both price regimes

Case II: integration in neither regime

If not profitable for chain to integrate under either pricing regime

- input prices under price discrimination are higher than those under no price discrimination

\[
\left(\frac{w_1 + w_2}{2} \right) > w_{NPD}
\]

⇒ lower total number of input and final good
⇒ lower consumer surplus
Case III: integration in one regime

- Both welfare effects (number of output and production efficiency) are affected.
- Price discrimination will lower the output and consumer surplus, but the effect might be overweighed by the savings from the avoidance of integration costs.
 \[\Rightarrow \] Uncertain about which price regime will give more welfare.