Chapter 7: Product Differentiation

A1. Firms meet only once in the market.
Relax A2. Products are differentiated.
A3. No capacity constraints.

Timing:
1. firms choose simultaneously their location in the product space,
2. given the location, price competition.

- Spatial-differentiation model
 – Linear city (Hotelling, 1929)
 – Circular city (Salop, 1979)
- Vertical differentiation model
 – Gabszwicz and Thisse (1979, 1980);
- Monopolistic competition (Chamberlin, 1933)
- Advertising and Informational product differentiation (Grossman and Shapiro, 1984)
1 Spatial Competition

1.1 The linear city (Hotelling, 1929)

- Linear city of length 1.
- Duopoly with same physical good.
- Consumers are distributed uniformly along the city, $N = 1$
- Quadratic transportation costs t per unit of length.
- They consume either 0 or 1 unit of the good.
- If locations are given, what is the NE in price?

Price Competition

Maximal differentiation

- 2 shops are located at the 2 ends of the city, shop 1 is at $x = 0$ and of shop 2 is at $x = 1$. c unit cost
- p_1 and p_2 are the prices charged by the 2 shops.
- Price of going to shop 1 for a consumer at x is $p_1 + tx^2$.
- Price of going to shop 2 for a cons. at $x p_2 + t(1-x)^2$.
• The utility of a consumer located at x is

$$U = \begin{cases} \bar{s} - p_1 - tx^2 & \text{if he buys from shop 1} \\ \bar{s} - p_2 - t(1 - x)^2 & \text{if he buys from shop 2} \\ 0 & \text{otherwise} \end{cases}$$

• Assumption: prices are not too high (2 firms serve the market)

• Demands are

$$D_1(p_1, p_2) = \frac{p_2 - p_1 + t}{2t}$$

$$D_2(p_1, p_2) = \frac{p_1 - p_2 + t}{2t}$$

• and profit

$$\Pi^i(p_i, p_j) = (p_i - c)\frac{p_j - p_i + t}{2t}$$

• So each firm maximizes its profit and the FOC gives

$$p_i = \frac{p_j + t - c}{2}$$

for each firm i
• Prices are strategic complements:

\[\frac{\partial^2 \Pi^i(p_i, p_j)}{\partial p_i \partial p_j} > 0. \]

• The Nash equilibrium in price is

\[p_i^* = p_j^* = c + t \]

• The equilibrium profits are

\[\Pi^1 = \Pi^2 = \frac{t}{2} \]

Minimal differentiation

• 2 shops are located at the same location \(x_0 \).
• \(p_1 \) and \(p_2 \) are the prices charged by the 2 shops.
• Price of going to shop 1 for a consumer at \(x \) is

\[p_1 + t(x_o - x)^2. \]
• Price of going to shop 2 for a consumer at \(x \) is

\[p_2 + t(x_o - x)^2. \]
• The consumers compare prices.... Bertrand competition
• Nash equilibrium in prices is
\[p_i^* = p_j^* = c \]

• and the equilibrium profits are
\[\Pi^1 = \Pi^2 = 0 \]
Different locations

• 2 shops are located at \(x = a \) and of shop 2 is at \(x = 1 - b \) where \(1 - a - b \geq 0 \).

• If \(a = b = 0 \): maximal differentiation

• If \(a + b = 1 \): minimal differentiation

• \(p_1 \) and \(p_2 \) are the prices charged by the 2 shops.

• Price of going to shop 1 for a consumer at \(x \) is \(p_1 + t(x - a)^2 \).

• Price of going to shop 2 for a consumer at \(x \) is \(p_2 + t(1 - b - x)^2 \).

• Thus there exists an indifferent consumer located at \(\tilde{x} \)

\[
p_1 + t(\tilde{x} - a)^2 = p_2 + t(1 - b - \tilde{x})^2
\]

\[
\Rightarrow \tilde{x} = \frac{p_2 - p_1}{2(1 - a - b)} + \frac{1 - b + a}{2}
\]
and thus the demand for each firm is

\[D_1(p_1, p_2) = a + \frac{1 - b - a}{2} + \frac{p_2 - p_1}{2(1 - a - b)} \]
\[D_2(p_1, p_2) = b + \frac{1 - b - a}{2} + \frac{p_1 - p_2}{2(1 - a - b)} \]

The Nash equilibrium in price is

\[p_1^*(a, b) = c + t(1 - a - b)(1 + \frac{a - b}{3}) \]
\[p_2^*(a, b) = c + t(1 - a - b)(1 + \frac{b - a}{3}) \]

Profits are

\[\Pi^1(a, b) = [p_1^*(a, b) - c]D_1(a, p_1^*(a, b), p_2^*(a, b)) \]
\[\Pi^2(a, b) = [p_2^*(a, b) - c]D_2(b, p_1^*(a, b), p_2^*(a, b)) \]

Product Choice

Timing:
1. firms choose their location simultaneously
2. given the location, they simultaneously choose
prices
• Firm 1 chooses a that maximizes $\Pi^1(a, b) \Rightarrow a(b)$
• Firm 2 chooses b that maximizes $\Pi^2(a, b) \Rightarrow b(a)$
• and then (a^*, b^*).
• What is the optimal choice of location?

$$
\frac{d\Pi^1(a, b)}{da} = \frac{\partial \Pi^1(a, b)}{\partial p_1} \frac{\partial p_1}{\partial a} + \frac{\partial \Pi^1(a, b)}{\partial p_2} \frac{\partial p_2}{\partial a}
$$
where $\frac{\partial \Pi^1(a, b)}{\partial p_1} \frac{\partial p_1}{\partial a} = 0$ (due to envelope theorem)

• We can rewrite

$$
\frac{d\Pi^1(a, b)}{da} = [p_1^*(a, b) - c] \left(\frac{\partial D_1(.)}{\partial a} + \frac{\partial D_2(.)}{\partial p_2} \frac{\partial p_2}{\partial a} \right)
$$

where $\frac{\partial D_1(.)}{\partial a} = \frac{3 - 5a - b}{6(1 - a - b)}$ Demand Effect (DE)

and $\frac{\partial D_2(.)}{\partial p_2} \frac{\partial p_2}{\partial a} = \frac{-2 + a}{3(1 - a - b)} < 0$ Strategic Effect (SE)
Thus,
\[\frac{d\Pi^1(a, b)}{da} = [p_1^*(a, b) - c]\left(\frac{-1 - 3a - b}{6(1 - a - b)}\right) < 0 \]

- As \(a \) decreases, \(\Pi^1(a, b) \) increases.

Result The Nash Equilibrium is such that there is **maximal differentiation**, i.e. \((a^* = 0, b^* = 0)\)

- 2 effects may work in opposite direction
 - **SE**<0 (always): price competition pushes firms to locate as far as possible.
 - **DE** can be >0 if \(a \leq 1/2 \), to increase **market share**, given prices, pushes firms toward the center.
 - But overall **SE**>**DE**, and they locate at the two extremes.

1.1.1 **Social planner**

- Minimizes the average transportation costs.
- Thus locates firms at
\[a^s = \frac{1}{4}, b^s = \frac{1}{4} \]
Result Maximal differentiation yields too much product differentiation compared to what is socially optimal.
1.2 The circular city (Salop, 1979)

- circular city
- large number of identical potential firms
- Free entry condition
- consumers are located uniformly on a circle of perimeter equal to 1
- Density of unitary around the circle.
- Each consumer has a unit demand
- unit transportation cost
- gross surplus $\bar{\sigma}$.
- f fixed cost of entry
- marginal cost is c
- Firm i’s profit is
 \[\Pi^i = \begin{cases}
 (p_i - c)D_i - f & \text{if entry} \\
 0 & \text{otherwise}
 \end{cases} \]
- How many firms enter the market? (entry decision)
Timing: two-stage game

1. Potential entrants simultaneously choose whether or not to enter \((n)\). They are automatically located equidistant from one another on the circle.

2. Price competition given these locations.

Price Competition

- Equilibrium is such that all firms charge the same price.
- Firm \(i\) has only 2 real competitors, on the left and right.
- Firm \(i\) charges \(p_i\).
- Consumer indifferent is located at \(x \in (0, 1/n)\) from \(i\)

\[
p_i + tx = p + t\left(\frac{1}{n} - x\right)
\]

- Thus demand for \(i\) is

\[
D_i(p_i, p) = 2x = \frac{p + \frac{t}{n} - p_i}{t}
\]

- Firm \(i\) maximizes its profit

\[
(p_i - c)D_i(p_i, p) - f
\]
• Because of symmetry $p_i = p$, and the FOC gives

$$p = c + \frac{t}{n}$$

How many firms?

Because of free entry condition

$$(p_i - c)\frac{1}{n} - f = 0 \Rightarrow \frac{t}{n^2} - f = 0$$

which gives

$$n^* = \left(\frac{t}{f}\right)^{\frac{1}{2}}$$

and the price is

$$p^* = c + (tf)^{\frac{1}{2}}$$

• **Remark**: $p - c > 0$ but profit $= 0$....

• If f increases, n decreases, and $p - c$ increases.

• If t increases, n increases, and $p - c$ increases.

• If $f \to 0$, $n \to \infty$ and $p \to c$ (competitive market).

• Average transportation cost is

$$2n \int_0^{\frac{1}{2n}} xtdx = \frac{t}{4n}$$
• From a social viewpoint

\[Min_n [nf + 2n \int_{0}^{\frac{1}{2n}} xtdx] \]

\[\Rightarrow n^s = \frac{1}{2} n^* < n^* \]

Result The market generates **too many firms**.

• Firms have too much an incentive to enter: incentive is stealing the business of other firms.

• Natural extensions:
 – location choice
 – sequential entry
 – brand proliferation
1.3 Maximal or minimal differentiation

• Spatial or vertical differentiation models make important prediction about business strategies

 Firms want to differentiate to soften price competition
 In some case: maximal product differentiation.

• Opposition to maximal differentiation
 – Be where the demand is (near the center of linear city)
 – Positive externalities between firms (many firms may locate near a source of raw materials for instance)
 – Absence of price competition (prices of ticket airline before deregulation)
2 Vertical differentiation

Timing: two-stage game
1. Simultaneously choice of quality.
2. Price competition given these qualities.

- Duopoly
- Each consumer consumes 0 or 1 unit of a good.
- $N = 1$ consumers.
- A consumer has the following preferences:

$$u = \begin{cases}
\theta s - p & \text{if he buys the good of quality } s \text{ at price } p \\
0 & \text{if he does not buy}
\end{cases}$$

where $\theta > 0$ is a taste parameter.

- θ is uniformly distributed between $\underline{\theta}$ and $\overline{\theta} = \underline{\theta} + 1$; density $f(\theta) = 1$; cumulative distribution $F(\theta) \in [0, \infty)$
- $F(\theta)$: fraction of consumers with a taste parameter $< \theta$.
• 2 qualities $s_2 > s_1$
• Quality differential: $\Delta s = s_2 - s_1$
• Unit cost of production: c
• Assumptions
 A1. $\bar{\theta} > 2\theta$ (insure demand for the two qualities)
 A2. $c + \frac{\theta - 2\theta}{3} \Delta s < \theta s_1$ (insure that $\frac{p_1}{s_1} < \theta$)
• Firms choose p_1 and p_2

Price competition (given qualities)
• There exists an indifferent consumer: $\tilde{\theta} = \frac{p_2 - p_1}{s_2 - s_1}$.
 – A consumer with $\theta \geq \tilde{\theta}$ buys the quality 2 ($\theta \geq \frac{p_2 - p_1}{s_2 - s_1}$). The proportion of consumers who will buy good of quality 2 is $F(\tilde{\theta}) - F(\theta)$.
 – A consumer with $\theta < \tilde{\theta}$ and $\theta \geq \theta > \frac{p_1}{s_1}$ buys low quality 1. So the proportion of consumers who will buy good of quality 1 is $F(\frac{p_2 - p_1}{s_2 - s_1}) - F(\theta)$.
 – if $\theta < \frac{p_1}{s_1}$ no purchase.
• Then demands are
\[D_1(p_1, p_2) = \frac{p_2 - p_1}{\Delta s} - \theta \]
\[D_2(p_1, p_2) = \bar{\theta} - \frac{p_2 - p_1}{\Delta s} \]

• Each firm maximizes its profit
\[\max_{p_i} (p_i - c)D_i(p_i, p_j) \]

• The reaction functions are
\[R_1(p_2) = p_1 = \frac{1}{2}[p_2 + c - \theta \Delta s] \]
\[R_2(p_1) = p_2 = \frac{1}{2}[p_1 + c + \bar{\theta} \Delta s] \]

• The Nash equilibrium is
\[p_1^* = c + \frac{\bar{\theta} - 2\theta}{3}\Delta s \quad (A2.) \]
\[p_2^* = c + \frac{2\bar{\theta} - \theta}{3}\Delta s > p_1^* \]

• Demands are
\[D_1^* = \frac{\bar{\theta} - 2\theta}{3} \quad (A1.) \]
\[D_2^* = \frac{2\bar{\theta} - \theta}{3} \]
• and profits

\[\Pi^1(s_1, s_2) = \frac{(\theta - 2\theta)^2}{9} \Delta s \]

\[\Pi^2(s_1, s_2) = \frac{(2\theta - \theta)^2}{9} \Delta s \]

• High quality firm charges a higher price than low quality firm.

• High quality firm makes more profit.

Choice of quality

• Simultaneous choice of quality.

• Quality is costless.

• \(s_i \in [\underline{s}, \overline{s}] \), where \(\underline{s} \) and \(\overline{s} \) satisfy A2.

• Each firm chooses \(s_i \) that maximizes its profit \(\Pi^i(s_i, s_j) \)

• \(s_1 = s_2 \) cannot be an equilibrium, as they can do better if \(s_1 \neq s_2 \) (profit increases)

• If \(s_1 < s_2 \), as \(\partial \Pi^i(.) / \partial \Delta s > 0 \) both firms make more profit if more differentiation.

• Firm 1 reduces its quality towards \(\underline{s} \), firm 2 increases its quality towards \(\overline{s} \).
2 Nash equilibrium in quality: \(\{ s_1^* = \underline{s}, s_2^* = \overline{s} \} \) and \(\{ s_2^* = \underline{s}, s_1^* = \overline{s} \} \)

Result The equilibrium is such that there is **maximal differentiation**.

⇒ Firms try to relax the price competition through product differentiation.

- If sequential entry – the first chooses \(\overline{s} \) and the second chooses \(\underline{s} \). (unique NE)
- But then race to be first...

- Even if quality is costless to produce, the low quality firm gains from reducing its quality to the minimum (because it softens price competition).

- **Difference with location model:**
 - if A1. does not hold anymore: only one firm makes profit in the market.
 - A “low” low quality cannot compete with a high quality,
 - A “high” low quality trigger tough price competition.
3 Monopolistic competition

- Chamberlin (1933)
- Dixit and Stiglitz (1977), Spence (1976)
- Monopolistic competition corresponds to the following industry configuration:
 - each firm faces a downward sloping demand,
 - each firm makes no profit (free entry condition),
 - the price of one firm does not affect the demand of any other firm
- No strategic aspect;
- Too many of too few products?

- First idea (Chamberlin (1933)): too many firms, each produces too little
- In fact not true (Dixit and Stiglitz (1977), Spence (1976))
- 2 effects work in opposite direction:
 - non appropriability of social surplus (too few products)
 - business stealing (too many products)
4 Advertising and Informational product differentiation

- Effect of ad on consumer demand and product differ.
- Ad conveys information on existence and price.
- Information issue can be solved, at some cost, through advertising (search good).
- Monopolistic competition (Butters, 1977)
- Oligopoly (Grossman and Shapiro, 1984)
- Socially too much or too little advertising?
- Firms are differentiated along two dimensions:
 – information,
 – location.
- What is the effect of advertising on the elasticity of individual demands and on the appropriability and business stealing effects?
- Linear-city model
- 2 firms locates at the two extremes
- consumers are distributed uniformly
• s gross surplus
• t transportation cost
• The only way to reach consumers is to send ads randomly.
• Advertising: information about the product, and price.
 – If a consumer receives no ads, he does not buy.
 – If he receives 1 ad he buys from the firm.
 – If he receives 2 ads he chooses the closest firm.
• Fraction of consumers who receive an ad from i is ϕ_i, $i = 1, 2$
• Consumers located along the segment have equal chances of receiving a given ad.
• Cost of reaching fraction ϕ_i is $A(\phi_i) = a\phi_i^2/2$
• Firms choose p_1 and p_2
• Firms compete for the “common demand”
• Demand for 1 is
 $$D_1 = \phi_1[(1 - \phi_2) + \phi_2\frac{p_2 - p_1 + t}{2t}]$$
 – A fraction $1 - \phi_2$ does not receive ad from 2

23
– A fraction \(\phi_2 \) receives at least one ad from 2

- Elasticity of demand at price \(p_1 = p_2 = p \) and \(\phi_1 = \phi_2 = \phi \) is

\[
\varepsilon_1 = -\frac{p_1}{D_1} \frac{\partial D_1}{\partial p_1} = \frac{\phi p}{(2 - \phi)t}
\]

– it is increasing with \(\phi \), so with ad.

- Consider that firms simultaneously choose prices and levels of ads.

- Firm 1

\[
\underset{p_1, \phi_1}{\text{Max}} (p_1 - c) \phi_1 [(1 - \phi_2) + \phi_2 \frac{p_2 - p_1 + t}{2t}] - A(\phi_1)
\]

- FOC are

\[
p_1 = \frac{p_2 + c + t}{2} + \frac{1 - \phi_2 + t}{\phi_2 t}
\]

\[
\phi_1 = \frac{1}{a} (p_1 - c) [(1 - \phi_2) + \frac{\phi_2 (p_2 - p_1 + t)}{2t}]
\]

- Symmetric game

\[
p_1^* = p_2^* = p^*
\]

\[
\phi_1^* = \phi_2^* = \phi^*
\]
• Assume $a \geq t/2$

 $p^* = c + (2at)^{\frac{1}{2}}$

 $\phi^* = \frac{2}{1 + (\frac{2a}{t})^{\frac{1}{2}}}$

 $\Pi^1 = \Pi^2 = \frac{2a}{(1 + (\frac{2a}{t})^{\frac{1}{2}})^2}$

• $p^* > c + t$ (price under full information)
 – the price increases with t, and with a.

• The lower the advertising cost, and the higher the horizontal differentiation, the more the firms advertise.

• Profits are
 – increasing with t
 – increasing with a because of 2 effects. If a increases,

 * DE: it induces profit to decrease,

 * SE: it decreases ad, and thus increases informational PD. Firm raises the price.

• The market level of ad can be greater or smaller than the socially optimal level of ad.
– non appropriability of SS (low incentive to ad)
– business stealing (excessive advertising)