Fundamental Analysis for Corn and Soybeans

By Dr. Robert Wisner
University Professor of Economics
Iowa State University

University of Minnesota Master Marketers Conference, Jackson, Minnesota, January 27, 2005

• The process of analyzing supply and demand, developing price forecasts
Only 2.7 mil. soy A. in highest-risk S.E. U.S.

Estimated Asian Rust Risk

% of years out of 30 that climatic conditions are expected to support Asian soy rust

Note: Map based on 30 years of data to estimate infection potential.
Figure 1. World Feed Grain Production, Use & Months of Reserve Supply Beyond Pipeline Needs
Fundamental Analysis

- Role in Grain Marketing
- Key Concepts
- LDPs & Fundamental Analysis
- Analyzing Supply
- Analyzing Export Demand
- Analyzing Domestic Demand
- Seasonality
- Some Key Web Sites
- Current Examples
Why Forecast?
Market Risks are large
Business Decisions: based on expected costs & returns
• Crop rotation
• How much N to put on corn
• Sell @ harvest, store into summer?
• Contract for harvest or later delivery?
• Size of government payments?
• Base decisions on best available information
• More equal buyer/seller information
Fundamental vs. Technical Analysis

- **Technical**: road map and driving rules for traders as they follow market reaction to Supply-Demand

- **Fundamental**: anticipating future supply-demand changes & determining how they will affect prices

In the short run, markets over react & deviate from fundamentals, but supply & demand ultimately rule the market
Role of Fundamental Analysis

• Shows what to watch
• Gives guide to market sensitivity
• Helps quantify new market impacts
• Provides a benchmark price for plans
• Guiding principle: Price influenced by expected supply and demand
Objectives in This Session

– Understand how good forecasts are made
– Understand limitations of forecasts
– Identify good information sources
– Provide rules to help anticipate market reactions
– Update on corn & soybean outlook for 2005-06 and how outlook was developed
– Longer-term fundamentals
Forecasting Rules

- Search for the big picture
- New crop futures markets are not good forecasters
- *In forecasting, never say always*
- If you forecast, forecast often
- Have a good historical perspective
- Be a contrarian: majority is often wrong
- Respect market trends
- Inflation seldom increases corn & bean prices
83% of U.S. corn & soybeans are grown outside Iowa
Mil. Bu. Change in 2002 Corn Production vs. 2001

Big picture 2002

-504 814 below 2001-02 utilization

Basis Implications!
Some Principles

• The market guides production
• Demand has two dimensions: quantity & price
• Supply is two dimensional: quantity & price
• Market equilibrium: price where quantity demanded equals quantity supplied
• If quantity supplied exceeds quantity demanded, price declines
FORECASTING PROCEDURE: GRAIN

• Supply, demand, for competing products
• Prices influenced by current, expected future conditions
• Grain is a global Market

• Weather: the biggest supply factor
• Government policy: U.S. & foreign
Demand: Two dimensions

Price

Quantity
Inelastic Demand

Examples?

Price

Quantity
Elastic & Inelastic Demand

Which will cause greatest price sensitivity?
Elastic & Inelastic Demand

Which will cause greatest price sensitivity?

Price

S

S1

Quantity
Elastic & Inelastic Demand

Is elasticity of D for corn changing?
Elasticity of Demand

- Percent change in Quantity demanded with one percent change in Price
 - Corn: -.5%
 - Soybeans: -.4%

- Or 1% chg. in corn $S = 2\%$ chg. In price
- 1% chg. In SB $S = 2.5\%$ chg. in price

- With all other market factors unchanged
Altering S & D With Farm Policy

Freedom to Farm
LDP: A Clearance Sale Tool

- Corn, % of ‘99 crop with LDP taken 77
- Soybeans, % with LDP taken 88
- Wheat, % (1999) with LDP taken 83

2000 crop through Jan. 18, 01:
- U.S. corn 69
- Soybeans 77
- Wheat through 6/7/01: 79

2004 Corn 69
2004 Soybeans 40
Figure 7. U.S. Corn Price & Domestic Feeding, 1973-2002

Implies 1% increase in price decreases corn feeding by 0.42% (with other market factors constant)

Long-term elasticity @ mean = -0.42

Elasticity, 1989-2001 @ mean = -0.30

1970s to mid-1980s

1990s

2000’s
Processing to be 32% of demand vs. 16% exported

Impact on Elasticity of Demand?
Figure 7. U.S. Corn Price & Mil. Bu. Change in Domestic Processing, 1973-2004

- $ Per Bushel
- Mil. Bu. Change

- 1970s to mid-1980s
- 1995-96
- 2000s?
Three Grain Price Forecasting Methods

1. Carryover percent of total use
2. Computer forecasting model
3. Price flexibility based on elasticity of demand
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn Balance Sheet (Mil. Bu.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/12/05</td>
<td>65.0</td>
<td>72.7</td>
<td>70.5</td>
<td>72.4</td>
<td>68.8</td>
<td>69.3</td>
<td>71.1</td>
<td>73.6</td>
<td>74.2</td>
</tr>
<tr>
<td>Bu./A.</td>
<td>113.5</td>
<td>134.4</td>
<td>133.8</td>
<td>136.9</td>
<td>138.2</td>
<td>129.4</td>
<td>142.2</td>
<td>160.4</td>
<td>135</td>
</tr>
<tr>
<td>Production</td>
<td>7,374</td>
<td>9,759</td>
<td>9,431</td>
<td>9,915</td>
<td>9,507</td>
<td>8,968</td>
<td>10,089</td>
<td>11,807</td>
<td>10,012</td>
</tr>
<tr>
<td>Carryover</td>
<td>1,558</td>
<td>1,308</td>
<td>1,787</td>
<td>1,718</td>
<td>1,899</td>
<td>1,596</td>
<td>1,087</td>
<td>958</td>
<td>2,109</td>
</tr>
<tr>
<td>Total Supply</td>
<td>8,948</td>
<td>11,086</td>
<td>11,232</td>
<td>11,639</td>
<td>11,416</td>
<td>10,578</td>
<td>11,190</td>
<td>12,779</td>
<td>12,134</td>
</tr>
<tr>
<td>Feed & resid.</td>
<td>4,711</td>
<td>5,496</td>
<td>5,664</td>
<td>5,842</td>
<td>5,861</td>
<td>5,564</td>
<td>5,798</td>
<td>5,975</td>
<td>6,000</td>
</tr>
<tr>
<td>Food, ind. & seed</td>
<td>1,583</td>
<td>1,822</td>
<td>1,913</td>
<td>1,957</td>
<td>2,054</td>
<td>2,340</td>
<td>2,537</td>
<td>2,795</td>
<td>2,990</td>
</tr>
<tr>
<td>Exports</td>
<td>2,228</td>
<td>1,981</td>
<td>1,937</td>
<td>1,941</td>
<td>1,905</td>
<td>1,588</td>
<td>1,897</td>
<td>1,900</td>
<td>1,900</td>
</tr>
<tr>
<td>Total Utilization</td>
<td>8,522</td>
<td>9,299</td>
<td>9,515</td>
<td>9,740</td>
<td>9,820</td>
<td>9,491</td>
<td>10,232</td>
<td>10,670</td>
<td>10,890</td>
</tr>
<tr>
<td>Carryover</td>
<td>426</td>
<td>1,787</td>
<td>1,718</td>
<td>1,899</td>
<td>1,596</td>
<td>1,087</td>
<td>958</td>
<td>2,109</td>
<td>1,244</td>
</tr>
<tr>
<td>U.S. FARM PRICE</td>
<td>$3.25</td>
<td>$1.94</td>
<td>$1.82</td>
<td>$1.85</td>
<td>$1.97</td>
<td>$2.32</td>
<td>$2.42</td>
<td>$1.95</td>
<td>$2.50</td>
</tr>
<tr>
<td>IOWA AVE. PRICE, $/Bu.</td>
<td>3.15</td>
<td>1.86</td>
<td>1.72</td>
<td>1.75</td>
<td>1.87</td>
<td>2.22</td>
<td>2.37</td>
<td>1.92</td>
<td>2.45</td>
</tr>
<tr>
<td>Counter-Cyclical Pmt.</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.40</td>
<td>0.00</td>
<td>0.35</td>
<td>0.40</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>HARV. PRICE, C.IA</td>
<td>2.90</td>
<td>1.75</td>
<td>$1.40</td>
<td>1.60</td>
<td>1.65</td>
<td>2.00</td>
<td>1.92</td>
<td>1.60</td>
<td>2.40</td>
</tr>
<tr>
<td>DEC. FUT. @ HARV.</td>
<td>$3.35</td>
<td>$2.10</td>
<td>$1.95</td>
<td>$2.05</td>
<td>$2.05</td>
<td>$2.52</td>
<td>$2.25</td>
<td>$1.98</td>
<td>$2.75</td>
</tr>
<tr>
<td>LONG-TERM PROBABILITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18%</td>
<td>60%</td>
</tr>
<tr>
<td>Weeks carryover supply</td>
<td>2.6</td>
<td>10.0</td>
<td>9.4</td>
<td>10.1</td>
<td>8.5</td>
<td>6.0</td>
<td>4.9</td>
<td>9.9</td>
<td>5.9</td>
</tr>
</tbody>
</table>
Forecasting Model Result

160.2 bu./A. U.S. corn yield
11/12/04

Coefficients:

• **Exports/Supply** \(0.15 \times 1.46\)
• **Stocks/use** \(0.16 \times -0.76\)
• **0/1 Weather variable** \(0 \times 0.22\)
• **Loan rate** \(\$1.95 \times 0.27\)
• **Prev. Price** \(2.42 \times 0.10\)
• **Wheat Price** \(3.35 \times 0.40\)

• **Forecast 2004-05 U.S. avg. corn price** $\2.36$

Freedom-to-farm adjust. = $\2.02 \ (-0.145\%)$
Forecasting Model Result

Exports -10% vs. prev. year, wheat price $3.15/bu.

Coefficients:

- Exports/Supply 13% x 1.46
- Stocks/use 18 x -0.76
- 0/1 Weather variable 0 x 0.22
- Loan rate $1.95 x .27
- Prev. Price 2.42 x 0.10
- Wheat Price 3.15 x 0.40
- Forecast 2004-05 U.S. avg. corn price $2.24
 Freedom-to-farm adjust. = $1.91 (-0.145%)
Figure 12. Forecast & Actual Iowa Avg. Corn Price, Marketing Years, 1961-2002 & Model Forecast '03-04

- $4.00
- $3.50
- $3.00
- $2.50
- $2.00
- $1.50
- $1.00
- $0.50
- $0.00

- 1961
- 1964
- 1967
- 1970
- 1973
- 1976
- 1979
- 1982
- 1985
- 1988
- 1991
- 1994
- 1997
- 2000
- 2003

- Forecast
- Actual
Error in USDA May Corn Forecasts for next season, Mid-Point of Prices

Actual below forecast 45%, above 55%

Avg. Error +$0.02
Error in USDA Nov. Corn Forecasts for next season, Mid-Point of Prices

Forecast too low 28% of time, too high 72% of years,
Avg. Error -$0.02
Forecasting with price flexibilities

- Percent change in ’04-05 supply vs. Y/A
- Adjustment for demand growth
 - Feed use
 - Processing
 - Exports
- Forecast: Price flexibility x adjusted supply change x previous year’s price
- Adjustment for unusual developments, LDP
Forecasting with corn price flexibility (Price Elasticity -.5)

• ’04-05 corn supply + 14.2% or +1,589 mil. bu.
• Adjustment for demand growth
 – Feed use +175 mil. bu.
 – Processing +260 mil. bu.
 – Exports +0
• Adjusted supply chg. +1,154 mil. Bu. or +10.3%
• Forecast: 10.3% x 2 = -20.6% negative price impact
• Price forecast: $2.42 x .794 = $1.92 U.S. avg./bu.
• Forecast with -10% exports: $1.84/bu.
PROBABILITY DISTRIBUTION OF FORECASTS

• Needed for marketing choices
• Historical yield variability is a guide
• Soybeans this year with Asian Rust??
Figure 1. U.S. Corn & Soybean Yields, 1924-2003 & Est. 2004
Figure 6. U.S. Corn Yield, Percent Deviation From Trend, 1866-2003 & Prelim. 2004

40% of time yields are 8% or more above

20% of time yields are 8% or more below
U.S. Soybean Yield, Deviation From Trend, 1924-2003

Yields 5% or more above trend = 29% of years

Yields 10% or more above trend = 8% of years

Yields 5% or more below trend = 28% of years

Yields 10% or more below trend = 11% of years
FORECASTS OF MONTHLY CROP PRICES

• First concentrate on season average price, U.S.
• U.S. average typically above Iowa by relative constant amount
• Season average price adjusted to monthly via historical monthly pattern
 ❖ Two patterns: normal crop and short crop
Seasonal Indices of Iowa corn prices with Normal, Short Crop, Short Crop Less 1995 Crop Year, and All Years

1978-9 to 2002-03

- Price gain, Oct.-Jan. normal crops +5.2%
- Price gain, Oct.-Jan. short crops +13%
- Price gain, Jan.-May normal crops +7.7%
- Price gain, Jan.-May short crops +3.2%
SOYBEANS SHORT-CROP YEARS

<table>
<thead>
<tr>
<th>Year</th>
<th>% Chg. In Use</th>
<th>% Chg. In Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980-81</td>
<td>-11</td>
<td>+20</td>
</tr>
<tr>
<td>1983-84</td>
<td>-14</td>
<td>+38</td>
</tr>
<tr>
<td>1988-89</td>
<td>-17</td>
<td>+35</td>
</tr>
<tr>
<td>1993-94</td>
<td>-10</td>
<td>+15</td>
</tr>
<tr>
<td>1995-96</td>
<td>-3</td>
<td>+23</td>
</tr>
<tr>
<td>2002-03</td>
<td>-4</td>
<td>+26</td>
</tr>
<tr>
<td>2003-04</td>
<td>-11</td>
<td>+33</td>
</tr>
<tr>
<td>Avg. all years</td>
<td>-10</td>
<td>+27</td>
</tr>
<tr>
<td>Avg. ’93-’02</td>
<td>-7</td>
<td>+24</td>
</tr>
</tbody>
</table>
Percent of time monthly Iowa corn Prices have declined from one month to the next, 1989-90 Through 2003-04 Marketing years
Figure 2. Weekly Average December Corn Futures, All Years, 1975 Through 2004 & 1985-2004--All Years
Figure 1. Change in December Corn Futures, Late Feb./May to Early Nov., 1975-2004

Prices declined, Feb./April-May to Nov., 80% of 30 yrs.
Sources of Supply Information

- Farmer surveys & aerial photos – for stocks & production
- Census reports (Exports, Mill stocks)
- Checks from processing & exports (wheat & soybeans)

\[(\text{production} + \text{stocks} + \text{imports} - \text{utilization} = \text{ending stocks})\]

4. Objective yield plots & surveys
OTHER SOURCES OF DATA

- Monthly USDA crop forecasts
- *Weekly crop & weather bulletin*
- Census exports & processing reports
- National Oilseed Processors Association
- Private crop forecasts
- USDA World S-D Reports
- USDA Weekly Export Inspections
- Weekly price support activity
Figure 3. Percent Change in U.S. Corn Plantings from Intentions Survey to Next January, 1965-2004

Avg. -.8%
Figure 4. Percent Change in U.S. Soybean Plantings From Intentions to Next January Est.

% of yrs. with increase from intentions = 63% all yrs., 67% freedom to farm years

All Yrs. Avg. +0.42 %; Freedom to farm yrs. +0.5%
Forecasting U.S. Corn Yields

• Yield: The biggest uncertainty in the Supply-Demand equation
• Corn Yield: 10% below trend for 2005 would cut production 1.2 bil. Bu. below expected use
• 10% above trend would put crop 1.07 bil. bu. Above expected use

• Price implications: Large
Wisner Corn yield forecasting model, Key variables

- Weekly crop % good-to-excellent, major states
- Percent of the crop planted, major states—by 3rd week of May
- Weather variable: 0-1
- Time trend to reflect new technology
- Best results: late July & August
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Illinois</td>
<td>11</td>
<td>15.2%</td>
<td>86</td>
<td>76</td>
<td>43</td>
<td>77</td>
<td>86</td>
<td>83</td>
<td>59</td>
<td>87</td>
</tr>
<tr>
<td>Indiana</td>
<td>6</td>
<td>7.7%</td>
<td>75</td>
<td>52</td>
<td>48</td>
<td>78</td>
<td>85</td>
<td>78</td>
<td>58</td>
<td>77</td>
</tr>
<tr>
<td>Iowa</td>
<td>12</td>
<td>16.8%</td>
<td>76</td>
<td>85</td>
<td>61</td>
<td>63</td>
<td>73</td>
<td>78</td>
<td>70</td>
<td>98</td>
</tr>
<tr>
<td>Kansas</td>
<td>2.7</td>
<td>3.8%</td>
<td>76</td>
<td>67</td>
<td>36</td>
<td>66</td>
<td>67</td>
<td>80</td>
<td>75</td>
<td>63</td>
</tr>
<tr>
<td>Michigan</td>
<td>2.03</td>
<td>2.8%</td>
<td>42</td>
<td>69</td>
<td>52</td>
<td>73</td>
<td>65</td>
<td>86</td>
<td>65</td>
<td>70</td>
</tr>
<tr>
<td>Minnesota</td>
<td>6.55</td>
<td>9.1%</td>
<td>60</td>
<td>82</td>
<td>62</td>
<td>56</td>
<td>73</td>
<td>76</td>
<td>73</td>
<td>91</td>
</tr>
<tr>
<td>Missouri</td>
<td>2.85</td>
<td>4.0%</td>
<td>81</td>
<td>67</td>
<td>39</td>
<td>54</td>
<td>74</td>
<td>61</td>
<td>61</td>
<td>64</td>
</tr>
<tr>
<td>Nebraska</td>
<td>7.65</td>
<td>10.6%</td>
<td>84</td>
<td>78</td>
<td>41</td>
<td>67</td>
<td>54</td>
<td>83</td>
<td>77</td>
<td>84</td>
</tr>
<tr>
<td>Ohio</td>
<td>3.2</td>
<td>4.4%</td>
<td>62</td>
<td>55</td>
<td>38</td>
<td>73</td>
<td>72</td>
<td>62</td>
<td>69</td>
<td>66</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>0.9</td>
<td>1.3%</td>
<td>76</td>
<td>60</td>
<td>56</td>
<td>74</td>
<td>76</td>
<td>33</td>
<td>76</td>
<td>75</td>
</tr>
<tr>
<td>S. Dakota</td>
<td>4.1</td>
<td>5.7%</td>
<td>78</td>
<td>84</td>
<td>41</td>
<td>80</td>
<td>82</td>
<td>81</td>
<td>89</td>
<td>99</td>
</tr>
<tr>
<td>Texas</td>
<td>1.75</td>
<td>2.4%</td>
<td>83</td>
<td>44</td>
<td>40</td>
<td>54</td>
<td>74</td>
<td>78</td>
<td>22</td>
<td>75</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>2.9</td>
<td>4.0%</td>
<td>54</td>
<td>82</td>
<td>71</td>
<td>65</td>
<td>74</td>
<td>85</td>
<td>85</td>
<td>100</td>
</tr>
<tr>
<td>Major States</td>
<td>65.72</td>
<td>91.3%</td>
<td>74</td>
<td>74</td>
<td>49</td>
<td>69</td>
<td>74</td>
<td>78</td>
<td>68</td>
<td>86</td>
</tr>
<tr>
<td>U.S. Avg. Yield</td>
<td>71.98</td>
<td>100.0%</td>
<td>145?</td>
<td>142</td>
<td>130</td>
<td>138.2</td>
<td>137.1</td>
<td>134</td>
<td>134.4</td>
<td>138.6</td>
</tr>
<tr>
<td>% Dev. From Trend Yield</td>
<td></td>
<td>+1.4%?</td>
<td>+0.8</td>
<td>-6.8</td>
<td>0.5</td>
<td>1.0</td>
<td>0.1</td>
<td>2.1</td>
<td>11.7</td>
<td></td>
</tr>
<tr>
<td>% of U.S. acres below 60% G/E</td>
<td></td>
<td>6.8%</td>
<td>14.6%</td>
<td>57.9%</td>
<td>15.5%</td>
<td>10.6%</td>
<td>1.3%</td>
<td>25.4%</td>
<td>0.0%</td>
<td></td>
</tr>
</tbody>
</table>
Figure 4. Forecast & Actual U.S. Average Corn Yields, Late July

Based on % planted 3rd wk. of May, % good-excellent 3rd wk. of July, trend, 0-1 weather variable.

R2 = .956
Figure 1. USDA Corn Yield Forecasts, Percent Change from October to Season Final Estimate

Avg. Change, All Years except major weather-stress years: +2.1%

* Major weather stress years

Avg. All Years, +0.7%
Years Since 1965 With \Rightarrow +10% of Trend Yield

Corn

- 10 years out of 39 (26% of time)
- All except one increased, Oct. to Season Final
- Avg. increase: 2.6%
- Impact 2004 from +2.6% = 302 mil. Bu.
- Would push total production to 11.91 bil. Bu.
- Largest & smallest impacts: 11.8-12.3 bil. Bu.
Figure 2. USDA Soybean Yield Forecasts, Percent Change October to Season Final, 1965-2003

Avg. Change, All Years except major weather-stress years: +0.88%
Years Since 1965 With => +7% of Trend Yield

Soybeans

- 5 years out of 39 (13% of time)
- 4 increased, Oct. to Season Final, 1 was unchanged
- Avg. increase: 1.96%
- Impact 2004 from +1.96% = 61 mil. Bu.
- Would push total production to 3.17 bil. Bu.
FORECASTING FEED USE OF CORN

Key Variables:
• Grain-consuming animal numbers
• Availability of substitutes
 ❖ U.S. feed wheat
 ❖ Grain sorghum
 ❖ Barley
 ❖ Corn quality
 ❖ Livestock marketing weights
 ❖ Livestock/crop price ratio
 ❖ Time trend (incl. New technologies)
<table>
<thead>
<tr>
<th>Corn Feed Use:</th>
<th>2003-04</th>
<th>2004-05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sept. 1 stocks</td>
<td>1,087</td>
<td>958</td>
</tr>
<tr>
<td>Prodn</td>
<td>10,089</td>
<td>11,807</td>
</tr>
<tr>
<td>imports</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>11,179</td>
<td>12,769</td>
</tr>
<tr>
<td>Less:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exports</td>
<td>470</td>
<td>448</td>
</tr>
<tr>
<td>Processing</td>
<td>598</td>
<td>665</td>
</tr>
<tr>
<td>Ending stocks</td>
<td>7,954</td>
<td>9,449</td>
</tr>
<tr>
<td>Indicated feed use</td>
<td>2,157</td>
<td>2,207</td>
</tr>
<tr>
<td>Percent chg.</td>
<td></td>
<td>2.3%</td>
</tr>
<tr>
<td>Description</td>
<td>2003-04</td>
<td>2004-05</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Sept. 1 stocks</td>
<td>178</td>
<td>112</td>
</tr>
<tr>
<td>Prodn</td>
<td>2,453</td>
<td>3,141</td>
</tr>
<tr>
<td>imports</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>2,631</td>
<td>3,253</td>
</tr>
<tr>
<td>Less:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exports</td>
<td>354</td>
<td>366</td>
</tr>
<tr>
<td>Processing</td>
<td>418</td>
<td>429</td>
</tr>
<tr>
<td>Ending stocks</td>
<td>1,520</td>
<td>2,305</td>
</tr>
<tr>
<td>Indicated residual</td>
<td>339</td>
<td>154</td>
</tr>
<tr>
<td>Percent chg.</td>
<td></td>
<td>-54.6%</td>
</tr>
</tbody>
</table>
Figure 3. U.S. Corn & Wheat Exports, 1867-2004

Data source: USDA
<table>
<thead>
<tr>
<th>Region</th>
<th>Wheat crop % change vs. 03-04</th>
<th>Feed grain crop % chg. vs. 03-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU</td>
<td>+27</td>
<td>+22</td>
</tr>
<tr>
<td>Other Europe</td>
<td>N.A.</td>
<td>+58</td>
</tr>
<tr>
<td>Canada</td>
<td>+10</td>
<td>+1</td>
</tr>
<tr>
<td>Former Sov. Reps.</td>
<td>+39</td>
<td>+13</td>
</tr>
<tr>
<td>China</td>
<td>+4</td>
<td>+9</td>
</tr>
<tr>
<td>Argentina</td>
<td>+19</td>
<td>+26</td>
</tr>
<tr>
<td>Brazil</td>
<td>-6</td>
<td>0</td>
</tr>
<tr>
<td>Australia</td>
<td>-14</td>
<td>-15</td>
</tr>
<tr>
<td>India</td>
<td>+11</td>
<td>N.A.</td>
</tr>
<tr>
<td>Mexico</td>
<td>N.A.</td>
<td>-6</td>
</tr>
<tr>
<td>World</td>
<td>+12.3</td>
<td>+9.5</td>
</tr>
</tbody>
</table>

N.A. – not available
World Wheat Feeding, Mil. Bu. Corn Equivalent
Corn Export Sales

1/13/05

<table>
<thead>
<tr>
<th>Region</th>
<th>Percentage Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td>-9%</td>
</tr>
<tr>
<td>Africa</td>
<td>-6%</td>
</tr>
<tr>
<td>Taiwan</td>
<td>-23%</td>
</tr>
<tr>
<td>Other Asia</td>
<td>-21%</td>
</tr>
<tr>
<td>W. Hemisphere</td>
<td>+4%</td>
</tr>
<tr>
<td>Unknown</td>
<td>-37%</td>
</tr>
<tr>
<td>Total</td>
<td>-10%</td>
</tr>
</tbody>
</table>

Chg. Vs. ’95
-39%

Chg. Vs. ’96
-10%

Needed winter sales: 1.1-1.2 mil. Tons/wk.
Global Corn Competitors

- Canada
- European Community
- Eastern Europe
- Argentina
- Australia
- China
- Brazil
- India (sometimes)
- Ukraine, other FSU
Figure 2. U.S., Foreign, and World Coarse Grain Exports

Source: USDA 12/10/04
Other competitors: Feed wheat, barley

Figure 1. World Corn Exports, 2002-03
http://www.fas.usda.gov/pecad/
Northeast Asia
Percentage of Normal Precipitation for
April, 2001

BridgeNews™
Global Weather Services
China Crop Conditions

Source: Bridge News, Global Weather Service
6/06/01
Canada 90-Day Precipitation Outlook
for March - May, 2001

Map showing precipitation outlook with color codes:
- Much Below
- Below
- Near
- Above
- Much Above

Source: Environment of Canada

BridgeNews™
GLOBAL WEATHER SERVICES
What to Look For in Sources of Outlook Information

- Good detail on international conditions
- Use of probabilities
- Up-to-date
- Advisable to use several sources + USDA
- Technical analysis can supplement fundamental analysis
- Keys for 2001-02: U.S. crops & China
Wisner Web Site:

http://www.econ.iastate.edu/faculty/wisner/
Sources of Outlook Information

http://www.tfc-charts.w2d.com/custom_menu.php3
http://ffas.usda.gov/
http://usda.mannlib.cornell.edu/
http://www.farmdoc.uiuc.edu/marketing/index.html
http://www.econ.iastate.edu/faculty/wisner/
http://www.agecon.ksu.edu/risk/
http://www.msu.edu/user/hilker/
http://pacific.commerce.ubc.ca/xr/data.html
http://www.ag.ndsu.nodak.edu/cow/.
http://www.agric.gov.ab.ca/index.html
http://www.cbot.com/mplex.htm
Soybean Market Analysis & Outlook
Cash prices, low $4.00s to upper $3.00s
Figure 3. Trends in World Soybean Production & Use
Asian Rust

- Greatest Area of Risk: 12 mil. A. in South
- Can be controlled by spraying
- Most vulnerable time: flowering
- Risk affected by no. of rains
- Great Plains lower risk
- An insurable risk
- Plant all corn? Look first at markets
Corn/corn: Harvest hedge price $2.02
Less variable prod’n costs
@ 155 bu./A. (ISU farms avg. diff.) 1.70
Net/bu. 0.32
Net/A. $49.60

Corn/soy: Harvest hedge price $4.98
Less variable prod’n costs
@ 44 bu./A. & $21/A. spraying 3.14
Net/bu. 1.84
Net/A. (excludes aphid spraying cost) $80.96

2nd yr. corn yield no more than 2.5% below 1st year
matches returns to soybeans if you spray once

Spray twice: can match sb with corn yld. -8.5% vs c/s
Corn vs. Soybean Return Over Variable Cost, 01/25/05, C. Iowa

$ Per Acre

- **Corn/Corn returns, varying yield drag**
- **Soy Rust, 4 bu. Yld. loss & One Spray**
- **Soy Rust, 4 bu. yld. loss & 2 Sprays**

Corn Yield Drag vs. Corn/Soybeans
Other Soy/Corn Shift Considerations

- Shorter plant/harvest window
- Labor requirements
- Storage/handling/drying needs
- Tillage?
- More N for corn
- Will Southern Acreage/yield drop boost prices to cover extra spraying cost?
- More corn Acres: impact on corn price?
- Adequate spray equipment?
- Timeliness of spraying
Destinations of U.S. Soybean Exports 2003-04

- China
- EU
- Mexico
- Japan
- Korea
- Canada
- Africa
- Indonesia
- Thailand
- Others
<table>
<thead>
<tr>
<th>Region</th>
<th>Percentage Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>+8%</td>
</tr>
<tr>
<td>Africa</td>
<td>+130% (+10.9mil. bu.)</td>
</tr>
<tr>
<td>EU</td>
<td>+13%</td>
</tr>
<tr>
<td>Japan</td>
<td>-25%</td>
</tr>
<tr>
<td>Taiwan</td>
<td>-38%</td>
</tr>
<tr>
<td>Other Asia</td>
<td>-17%</td>
</tr>
<tr>
<td>W. Hemisphere</td>
<td>-21%</td>
</tr>
<tr>
<td>Unknown</td>
<td>+40%</td>
</tr>
<tr>
<td>Total</td>
<td>+1%</td>
</tr>
</tbody>
</table>

Vs. 2001:

- **SBM** +7%; **SBO** +82%
Figure 1. Monthly U.S. Soybean Crushings, 2000-01 Through 2003-04 Marketing Years

July-Aug. 2003-04 (-11%)
<table>
<thead>
<tr>
<th>Date</th>
<th>Soybean Balance Sheet (Mil. Bu.)</th>
<th>R. Wisner, ISU Econ.</th>
<th>2004-05</th>
<th>2005-06</th>
</tr>
</thead>
<tbody>
<tr>
<td>HARV. A.,MIL.</td>
<td>61.6</td>
<td>70.4</td>
<td>72.4</td>
<td>72.4</td>
</tr>
<tr>
<td>BU./A.</td>
<td>35.3</td>
<td>38.9</td>
<td>36.6</td>
<td>38.1</td>
</tr>
<tr>
<td>PRODUCTION</td>
<td>2,174</td>
<td>2,741</td>
<td>2,654</td>
<td>2,758</td>
</tr>
<tr>
<td>CARRYOVER</td>
<td>335</td>
<td>200</td>
<td>348</td>
<td>290</td>
</tr>
<tr>
<td>TOTAL SUPPLY</td>
<td>2,514</td>
<td>2,945</td>
<td>3,006</td>
<td>3,052</td>
</tr>
</tbody>
</table>

UTILIZATION:

CRUSH	1,370	1,590	1,579	1,640	1,700	1,615	1,530	1,655	1,605	1,665	1,680
EXPORTS	851	801	973	996	1064	1044	885	1,015	980	1,060	1,075
OTHER DOMESTIC	109	205	164	169	169	132	111	160	160	160	160
TOTAL	2,330	2,596	2,716	2,804	2,933	2,791	2,526	2,830	2,745	2,885	2,915
CARRYOVER	183	348	290	248	208	178	112	428	102	417	530

U.S.wtd. AVG. PRICE, $/T

- 1995-6: 6.72
- 1998-9: 4.93
- 1999-00: 4.63
- 2000-01: 4.54
- 2001-02: 4.38
- 2002-03: 5.53
- 2003-04: 7.34
- 2004-05: 5.15
- 2005-06: 7.50

Counter-Cyclical Pmt.

- 1995-6: 0.00
- 1998-9: 0.00
- 1999-00: 0.21
- 2000-01: 0.00
- 2001-02: 0.26
- 2002-03: 0.36

IA. AVG. PRICE, $/Bu.

- 1995-6: 6.67
- 1998-9: 4.83
- 1999-00: 4.53
- 2000-01: 4.44
- 2001-02: 4.34
- 2002-03: 5.53
- 2003-04: 7.25
- 2004-05: 5.05
- 2005-06: 7.40

N.C.IA.HARV.PRICE

- 1995-6: 6.75
- 1998-9: 4.80
- 1999-00: 4.35
- 2000-01: 4.35
- 2001-02: 4.10
- 2002-03: 5.20
- 2003-04: 7.25
- 2004-05: 4.70
- 2005-06: 7.35

MEAL DECATUR, $/T 48%

- 1995-6: $236
- 1998-9: $139
- 1999-00: $147
- 2000-01: $174
- 2001-02: $169
- 2002-03: $182.00
- 2003-04: $239
- 2004-05: $160
- 2005-06: $232

SOY OIL, DECATUR

- 1995-6: 24.7
- 1998-9: 19.9
- 1999-00: 15.6
- 2000-01: 14.2
- 2001-02: 16.5
- 2002-03: 22.0
- 2003-04: 30.0
- 2004-05: 23.0
- 2005-06: 32.0

NOV. FUT. AT HRV., $/B

- 1995-6: 7.15
- 1998-9: 5.30
- 1999-00: 4.95
- 2000-01: 4.95
- 2001-02: 4.35
- 2002-03: 5.65
- 2003-04: 7.70
- 2004-05: 5.15
- 2005-06: 7.80

Historical Probability

- 20%: 4.1
- 65%: 7.0
- 15%: 5.6

Weeks carryover supply

- 1995-6: 4.1
- 1998-9: 7.0
- 1999-00: 5.6
- 2000-01: 4.6
- 2001-02: 3.7
- 2002-03: 3.3
- 2003-04: 2.3
- 2004-05: 8.2
- 2005-06: 1.9

Historical Probability

- 20%: 4.1
- 65%: 7.0
- 15%: 5.6
Forecasting Soybean Price

• Supply up 621 million bushels vs. yr. ago
• Use up 304 mil. Bu.
• Net: +317 mil. Bu. Or 12%
• 2.5 x 12% = -30% on price
• Indicated 04-05 price = $5.16
• LDP impact could take price $0.70 to $1.00 lower, except for Asian rust

Red = '78 Through 2004: low-high = $0.49
Blue = '78 Through 2003: low-high = $0.40
Dark Blue = 1990-2003: low-high = $0.49
Black = 1997-2003: low-high = $0.56

% of Time Prices Declined
Figure 5. Weekly Nov. Soybean Futures Prices, All Years

$ Per Bu.

JAN 4 MAR 1 APR 1 MAY 2 JUN 2 JUL 3 AUG 4 SEP 4 NOV 1

Avg. 1985-04
Avg. 1975-04
Avg. 1990-04
Figure 4. Change in Nov. Soy Futures, Mid-Feb. After Short U.S. Crops & Early April or Mid-May After Normal Crops vs. Mid-Oct., 1975-2004

Prices Rose 33% of Years, Declined 67%. Avg. Decline, all years, = $0.25/Bu. (April) & $0.25 (May)

Past results are no guarantee of future performance

Avg.
Key Points

• Low but not zero risk storing corn into spring
• Old-crop corn contracting: low risk
• Soybeans: scale up marketing
• Manage LDPs carefully
• Look for spring 2005-crop pricing opportunities—especially on corn
• Watch weekly export sales reports: corn needs to be 1.1-1.2 mil. tons/week
• *SB* export sales: 0.8-1.0 mil. Tons/wk.
Other competitors: Feed wheat, barley

Figure 1. World Corn Exports, 2002-03
Figure 3. China corn yield & area harvested

Source of data: USDA PS&D

(2004 Trend yield & 2003 Harv. A. = 141.5 Mil. Tons
USDA 8/12/04 projection = 120 mil. Tons)

Bu. Per Acre

Mil. Acres

Bad Weather halts yield uptrend

Yield
Area Harvested
Figure 7. Ten-Year China Net Corn Export Projections, FAPRI and USDA, 2004
Figure 5. China's Net Corn Imports, 1970-2003 Marketing Years & Projected 2004

Bars above zero are imports, below indicate net exports
Figure 6. China Gross Corn Imports & USDA Projections
Figure 2. China Corn Carryover Stocks With Varying Revision Dates & Comparison With U.S. Stocks
Chinese Grain Storage
150-180 mil. Bu.?
Figure 8. China Broiler Meat production Source: USDA, PSD
Figure 9. China Swine Numbers
Source: USDA, PSD
Ethanol: Rapid expansion with major implications for agriculture

• 73 plants nationally in planning and/or construction phase

• At 20 mil. Bu./yr., adds 1.46 billion potential new processor demand
<table>
<thead>
<tr>
<th>Location</th>
<th>Mil. Bu. Processing Capacity</th>
<th>Location</th>
<th>Mil. Bu. Processing Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cedar Rapids</td>
<td>273</td>
<td>Iowa Falls</td>
<td>15</td>
</tr>
<tr>
<td>Clinton</td>
<td>152</td>
<td>Galva</td>
<td>10</td>
</tr>
<tr>
<td>W. Burlington</td>
<td>18</td>
<td>Planned or construction</td>
<td></td>
</tr>
<tr>
<td>Muscatine</td>
<td>4</td>
<td>Steamboat Rock</td>
<td>8</td>
</tr>
<tr>
<td>Hanlontown</td>
<td>17</td>
<td>Albert City</td>
<td>38</td>
</tr>
<tr>
<td>Marcus</td>
<td>20</td>
<td>Emmetsburg</td>
<td>19</td>
</tr>
<tr>
<td>Lakota (cap. To 40 mil. Bu)</td>
<td>20</td>
<td>Denison</td>
<td>19</td>
</tr>
<tr>
<td>Ashton</td>
<td>18</td>
<td>Ft. Dodge</td>
<td>42</td>
</tr>
<tr>
<td>Hopkinton (Uses sugar & strach)</td>
<td>0</td>
<td>Humboldt County</td>
<td>18</td>
</tr>
<tr>
<td>Sioux Center</td>
<td>18</td>
<td>Belle Plaine</td>
<td>31</td>
</tr>
<tr>
<td>Coon Rapids</td>
<td>18</td>
<td>Mason City</td>
<td>15</td>
</tr>
<tr>
<td>Blair, NE</td>
<td>32</td>
<td>Goldfield</td>
<td>15</td>
</tr>
<tr>
<td>Albert Lea, MN</td>
<td>15</td>
<td>Nevada</td>
<td>19</td>
</tr>
<tr>
<td>Luvurne, MN</td>
<td>8</td>
<td>Faribank</td>
<td>38</td>
</tr>
<tr>
<td>Keokuck</td>
<td>8</td>
<td>Gowrie</td>
<td>22</td>
</tr>
<tr>
<td>Eddyville</td>
<td>13</td>
<td>Jewell</td>
<td>24</td>
</tr>
<tr>
<td>Sub-total</td>
<td>634</td>
<td>Revived Blairstown</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>One additional location</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sub-total</td>
<td>366</td>
</tr>
</tbody>
</table>

Grand total, processing for ethanol only: 1,000 Mil. Bu.
Replaces about 171 mil. Bu of corn in feeding + Soy Meal
Iowa Corn Processing & Ethanol Plant Locations, Actual & Planned, 12/17/04

<table>
<thead>
<tr>
<th></th>
<th>Proj. '03</th>
<th>Proj. '08 I</th>
<th>Proj. '08 II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iowa</td>
<td>115</td>
<td>10</td>
<td>-19</td>
</tr>
<tr>
<td></td>
<td>167</td>
<td>123</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>254</td>
<td>138</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>207</td>
<td>114</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>-248</td>
<td>-296</td>
<td>-343</td>
</tr>
<tr>
<td></td>
<td>102</td>
<td>106</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>51</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>102</td>
<td>106</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>51</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>-24</td>
<td>-35</td>
<td>-49</td>
</tr>
</tbody>
</table>

Key Assumption: Corn acres @ 2004 level

'03 '08 I '08 II '03 '08 I '08 II '03 '08 I '08 II
803 370 205
Iowa Corn Yield Per Acre

16% Above Trend
Needed IA Crop Acreage Adjustments to Maintain 2003 Corn Export Availability

• Alternative I: Plants
 – Operate at Rated Cap.
 – Corn Acres + 16%
 – SB Acres -19%

• Alternative II: Plants
 – Operate at 120% of Rated Cap.
 – Corn Acres + 23%
 – SB Acres -28%

• Corn/Soy mil. acres 2008 in Iowa:
 – 14.2/8.2 & 15/7.4 2004: 12.4 corn, 10.2 SB)
U.S. Acreage Implications

- Potential added processing demand: 1.44 bil. Bu.
- Potential demand: 12.0 bil. Bu.
- Current corn acres: 73.3 mil. Acres
- Needed extra acres: 7 to 10 million
 --More if China becomes corn importer
Figure 1a. U.S. Corn Production, Domestic Use, & Availability for Exports--Projections to 2008 with 71 New plants by 2008
Questions for Corn Use

• Tight supplies--which users can out-bid others?
• U.S. production shift, beans to corn?
• Bring back part of 34 million CRP acres?
• Impact on land values & Ag structure?
• Impact on exporting firms & basis?
• More investments such as Bunge & Cargill’s Caribbean ethanol dehydration plants?
Questions for Corn Users

• Basis impacts, merchandising margins?
• Intensified competition in grain acquisition
• Changing role of train-load shippers
• Need for sharply increased storage space, drying capacity with more corn
• Impact on crop input demand?
• Livestock industry: higher corn prices, possibly lower protein cost for dairy, maybe hogs.
• How does bio-diesel fit in?
• Most ethanol plants below optimum size for shipping DGS by train
Rotation Considerations

• Corn/soybean rotation spreads labor needs
• Soybeans provide nitrogen
• Second yr. corn has lower yield than first yr.
• Implications for corn: disease build-up?
• Asian rust, nematodes, SB diseases pushing bean acres to corn
...and justice for all
The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital or family status. (Not all prohibited bases apply to all programs.) Many materials can be made available in alternative formats for ADA clients. To file a complaint of discrimination, write USDA, Office of Civil Rights, Room 326-W, Whitten Building, 14th and Independence Avenue, SW, Washington, DC 20250-9410 or call 202-720-5964.