Pricing American-style Derivatives under the Heston Model Dynamics:
A Fast Fourier Transformation in the Geske–Johnson Scheme

Oleksandr Zhylyevskyy
University of Virginia

June 24th, 2005
Introduction and Motivation

- European options: solution available for broad class of AJDs (Duffie, Pan, Singleton, 2000)
- Pricing American options has practical importance
- Popular approaches: finite difference schemes, simulation methods
- Efficient methods exist for Black–Scholes dynamics
Plan of Talk

- Notation and Model
- Geske–Johnson Scheme: “Bermudan” recursion
- Specifics of:
 - joint characteristic function
 - characteristic function inversion
- Empirical application: pricing of S&P 100 options
- Pros and cons of FFT
Model

Heston’s dynamics (under RNPM):

\[dS_t = (r - \delta) S_t dt + \sqrt{v_t} S_t dW_{1t} \quad \Leftrightarrow \quad ds_t = \left(r - \delta - \frac{v_t}{2} \right) dt + \sqrt{v_t} dW_{1t} \]
\[dv_t = (\alpha - \beta v_t) dt + \gamma \sqrt{v_t} dW_{2t} \]

\{W_{1t}, W_{2t}\}_{t \geq 0} : \text{Brownian motions on } \left(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \geq 0} , \hat{P} \right) \]

Imperfect correlation: \(d \langle W_1, W_2 \rangle_t = \rho dt \text{ and } |\rho| < 1 \)

Money-market fund: \(M_t = M_0 e^{rt} \), where \(M_0 > 0 \)
Geske–Johnson Scheme

Sequence of “Bermudan”-style derivatives: \(\{D_n (s_t, v_t, T - t)\}_{n=1}^{\infty} \)

\(D_n \) can be exercised at times \(t_j = t + \frac{j(T-t)}{n}, \ j = 1, ..., n \)

American option: \(D_\infty \) European option: \(D_1 \)

“Bermudan” recursion:
\[
D_n (s_t, v_t, T - t) =
\]
\[
e^{-r(t_1-t)} \hat{E} \left[\max \left\{ EX (s_{t_1}, v_{t_1}, T - t_1), D_{n-1} (s_{t_1}, v_{t_1}, T - t_1) \right\} \right]
\]

Exercise value for put: \(EX (s_{t'}, v_{t'}, T - t') = (X - e^{s_{t'}})^+ \)

Linear Richardson extrapolation: \(D_\infty \approx 2D_2 - D_1 \)
Joint Characteristic Function

Conditional ch. f.: $\Psi(t) = \hat{E} \left[e^{i(\zeta_1 s_T + \zeta_2 v_T)} | \mathcal{F}_t \right] = \Psi(\zeta, s, v, \tau)$

Martingale property: $\hat{E} \left[d\Psi(t) | \mathcal{F}_t \right] = 0$

P.d.e.:

$\Psi_r = \Psi_s \left(r - \delta - \frac{v_t}{2} \right) + \Psi_v (\alpha - \beta v_t) + \Psi_{ss} \frac{v_t}{2} + \Psi_{vv} \gamma^2 \frac{v_t}{2} + \Psi_{sv} \rho \gamma v_t$

Trial solution:

$\Psi(t) = \Psi(\zeta_1, \zeta_2; s, v, \tau) = \exp \left[p(\tau; \zeta_1, \zeta_2) + q(\tau; \zeta_1, \zeta_2) v_t + i\zeta_1 s_t \right]$

Solve analytically for: $p(\tau; \zeta_1, \zeta_2)$ and $q(\tau; \zeta_1, \zeta_2)$

Solution is rather involved
Characteristic Function: Real Part
Joint Density Function: One Step

Inversion: \[f(s_T, v_T; s_t, v_t, \tau) = \]
\[= \frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-i(\zeta_1 s_T + \zeta_2 v_T)} \Psi(\zeta_1, \zeta_2; s_t, v_t, \tau) \, d\zeta_1 \, d\zeta_2 \]

Discrete Fourier transform: \[(2\pi)^2 f(s_T, k_1, v_T, k_2) \approx \]
\[\approx \Delta_1 \Delta_2 e^{-i(s_T, k_1 a_1 + v_T, k_2 a_2)} \sum_{j_2=0}^{N_2-1} \sum_{j_1=0}^{N_1-1} e^{-i \cdot 2\pi \left(k_1 \frac{j_1}{N_1} + k_2 \frac{j_2}{N_2} \right)} \Psi_{j_1, j_2} \]

Apply discrete FFT algorithm to \[\sum_{j_2=0}^{N_2-1} \sum_{j_1=0}^{N_1-1} \]
\[\Rightarrow \]
\[\Rightarrow \text{restore } f \text{ on } s_T, v_T \text{ grid from } \Psi \text{ on } \zeta_1, \zeta_2 \text{ grid in one step} \]
Joint Density Function
Empirical Application

Data:
- CBOE S&P 100 options: American (OEX), European (XEO)
- Closing prices on June 30th – July 2nd, July 6th – July 9th, 2004
- July 9th for out-of-sample predictions

Calibrated parameters (on XEO):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$v_{t,01}$</td>
<td>0.011392</td>
<td>α</td>
<td>0.353948</td>
</tr>
<tr>
<td>$v_{t,02}$</td>
<td>0.010889</td>
<td>β</td>
<td>9.561292</td>
</tr>
<tr>
<td>$v_{t,03}$</td>
<td>0.008932</td>
<td>γ</td>
<td>0.763721</td>
</tr>
<tr>
<td>$v_{t,04}$</td>
<td>0.016582</td>
<td>ρ</td>
<td>-0.692404</td>
</tr>
<tr>
<td>$v_{t,05}$</td>
<td>0.012725</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$v_{t,06}$</td>
<td>0.015280</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Empirical Application: Results

<table>
<thead>
<tr>
<th></th>
<th>June 30</th>
<th>July 1</th>
<th>July 2</th>
<th>July 6</th>
<th>July 7</th>
<th>July 8</th>
<th>July 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_t</td>
<td>553.87</td>
<td>549.01</td>
<td>547.17</td>
<td>543.33</td>
<td>544.25</td>
<td>540.21</td>
<td>542.63</td>
</tr>
</tbody>
</table>

Errors:

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X_t type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400, put</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>0.116577</td>
<td>...</td>
<td>0.170837</td>
<td></td>
</tr>
<tr>
<td>420, put</td>
<td>...</td>
<td>...</td>
<td>0.467125</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>440, put</td>
<td>0.272164</td>
<td>0.365445</td>
<td>0.337645</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>450, put</td>
<td>...</td>
<td>0.578615</td>
<td>...</td>
<td>0.476928</td>
<td>0.448424</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>460, put</td>
<td>0.477434</td>
<td>0.636137</td>
<td>...</td>
<td>0.555188</td>
<td>0.561046</td>
<td>0.419271</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>480, put</td>
<td>0.233909</td>
<td>0.738647</td>
<td>...</td>
<td>...</td>
<td>0.561046</td>
<td>...</td>
<td>0.926725</td>
<td></td>
</tr>
<tr>
<td>490, put</td>
<td>...</td>
<td>...</td>
<td>0.795218</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>500, put</td>
<td>...</td>
<td>0.852520</td>
<td>0.544044</td>
<td>0.434873</td>
<td>0.339729</td>
<td>0.603371</td>
<td>0.735753</td>
<td></td>
</tr>
<tr>
<td>510, put</td>
<td>0.694260</td>
<td>0.274149</td>
<td>...</td>
<td>...</td>
<td>0.101801</td>
<td>0.229474</td>
<td>0.419345</td>
<td></td>
</tr>
<tr>
<td>520, put</td>
<td>-0.503378</td>
<td>-0.343453</td>
<td>0.302446</td>
<td>-0.048642</td>
<td>-0.521728</td>
<td>-0.126598</td>
<td>-0.174747</td>
<td></td>
</tr>
<tr>
<td>530, put</td>
<td>-0.591617</td>
<td>...</td>
<td>...</td>
<td>0.175511</td>
<td>-0.740207</td>
<td>-0.090279</td>
<td>0.525561</td>
<td></td>
</tr>
<tr>
<td>540, put</td>
<td>-2.429237</td>
<td>-0.154515</td>
<td>-1.027132</td>
<td>-1.014578</td>
<td>-1.725362</td>
<td>...</td>
<td>-0.131715</td>
<td></td>
</tr>
<tr>
<td>550, put</td>
<td>-2.538264</td>
<td>0.520023</td>
<td>-0.366053</td>
<td>-0.103850</td>
<td>-0.295665</td>
<td>-1.805092</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>560, put</td>
<td>-1.522215</td>
<td>...</td>
<td>...</td>
<td>-1.752594</td>
<td>...</td>
<td>0.002115</td>
<td>-1.306124</td>
<td></td>
</tr>
<tr>
<td>580, put</td>
<td>...</td>
<td>-1.011618</td>
<td>...</td>
<td>0.074978</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

RMSEs:

<table>
<thead>
<tr>
<th></th>
<th>June 30</th>
<th>July 1</th>
<th>July 2</th>
<th>July 6</th>
<th>July 7</th>
<th>July 8</th>
<th>July 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>July</td>
<td>0.563594</td>
<td>0.729401</td>
<td>0.555327</td>
<td>0.640847</td>
<td>0.529694</td>
<td>1.097807</td>
<td>0.271871</td>
</tr>
<tr>
<td>August</td>
<td>1.316759</td>
<td>0.408102</td>
<td>0.490070</td>
<td>0.367468</td>
<td>0.686766</td>
<td>0.419591</td>
<td>0.311062</td>
</tr>
<tr>
<td>September</td>
<td>1.203947</td>
<td>0.849578</td>
<td>0.659790</td>
<td>0.878324</td>
<td>1.394570</td>
<td>1.029171</td>
<td>0.617068</td>
</tr>
<tr>
<td>October</td>
<td>0.442581</td>
<td>1.059348</td>
<td>0.551232</td>
<td>0.387529</td>
<td>1.425867</td>
<td>0.633056</td>
<td>0.563490</td>
</tr>
<tr>
<td>December</td>
<td>2.024635</td>
<td>2.129737</td>
<td>1.723453</td>
<td>1.578420</td>
<td>1.229747</td>
<td>0.984973</td>
<td>1.707936</td>
</tr>
</tbody>
</table>
Conclusion

Advantages of FFT:
- p.d.f. is recovered in one step
- allows to apply equivalent-martingale approach
- fast

Limitations of FFT:
- large RAM needed for speed and accuracy
- little flexibility in choosing grids