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Abstract

Using only ordinal axioms, we characterize several multigroup school segregation

indices: the Atkinson Indices for the class of school districts with a given fixed num-

ber of ethnic groups and the Mutual Information Index for the class of all districts.

Properties of other school segregation indices are also discussed. In an empirical ap-

plication, we document a weakening of the effect of ethnicity on school assignment

from 1987/8 to 2007/8. We also show that segregation between districts within cities

currently accounts for 33% of total segregation. Segregation between states, driven

mainly by the distinct residental patterns of Hispanics, contributes another 32%.
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1 Introduction

Recent research supports the view that school segregation creates unequal opportunities:

separate schools are not equal. By and large, students in schools with a higher propor-

tion of minority students have lower educational attainment and subsequent wages (Boozer,

Krueger, and Wolkin [6, pp. 303-6]; Hanushek, Kain, and Rivkin [24]; Hoxby [25]). Consis-

tent with this, African Americans tend to have better educational outcomes in less segregated

school districts (Card and Rothstein [8]; Guryan [23]).1

Given these concerns, it is important to answer a more fundamental question: what is

segregation, and how should it be measured? The literature on segregation measurement

has generated over 20 different indices (see Massey and Denton [33] and Flückiger and Silber

[19]). While some papers have analyzed the properties of these indices, very few of them

have provided a full axiomatization, and none of these have used purely ordinal axioms.

Further, most of the existing axiomatizations treat only the two-group case. In this paper

we provide two axiomatizations of multigroup school segregation indices using purely ordinal

axioms.

Axiomatizations are important because they characterize an index in terms of basic

properties and thus facilitate the comparison of different measures. Ordinal axioms are

more appealing than cardinal ones because they refer to bilateral comparisons and not to

their specific functional representations. Multigroup segregation orderings are important

because they allow us to study units (cities, school districts, etc.) with more than two ethnic

groups and to compare units with different numbers of groups.

Formally, we define a segregation ordering as a ranking of school districts from most to

least segregated. We consider six substantive axioms. Scale Invariance states that the scale

of a district does not matter: if the number of students in each ethnic group in each school

is multiplied by the same positive factor, segregation is unaffected. A segregation ordering

satisfies Symmetry if it is invariant to a renaming of the ethnic groups (e.g., if blacks are

1Evidence on the effects of residential segregation is more mixed; see, e.g., Cutler, Glaeser, and Vigdor

[16].
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renamed to whites and vice-versa). Independence states that if the students in a subset

of schools are reallocated within that subset, then segregation in the whole district rises if

and only if it rises within the subset. The School Division Property states that splitting a

school into two schools (a) cannot lower segregation in the district, and (b) leaves segregation

unchanged if the ethnic distributions of the two resulting schools are identical. Composition

Invariance states that the segregation of a district does not change if the number of students

in a given ethnic group is multiplied by the same positive constant throughout the district

(e.g., if the number of blacks in every school rises by ten percent). Finally, the Group

Division Property states that the segregation of a district does not change if an existing

ethnic group is subdivided into two groups that have the same distribution across schools

(e.g., if whites are divided by gender and white boys have the same distribution across schools

as white girls).

We first show that a nontrivial segregation ordering satisfies Scale Invariance, Indepen-

dence, the School Division Property, Composition Invariance, and a technical continuity

property if and only it is represented by an Atkinson index (Atkinson [2]; James and Taeu-

ber [30]). This index equals one minus the sum, over all the schools, of some weighted

geometric average of the percentages of each group who attend the school. For instance,

suppose 70% of Asians, 40% of blacks, and 10% of whites attend school A while the remain-

der attend school B. The index for this district is 1− (.7)a (.4)b (.1)w− (.3)a (.6)b (.9)w where

a, b, and w are arbitrary nonnegative weights, chosen by the researcher, that sum to one.

Most multigroup segregation indices weight a group according to its relative size within

a district (Reardon and Firebaugh [42]). As this yields group weights that vary across

districts, these indices violate Composition Invariance. An alternative is to use an Atkinson

index with group weights that vary across groups but not across districts. For instance, a

group’s weight might equal the proportion of students in the universe of districts who belong

to the group in some reference year. Since the weight on each group is constant across

districts, such an index would satisfy Composition Invariance, and it would assign greater

importance to larger groups. We illustrate this point empirically in section 6.
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The Atkinson indices have some limitations. They allow comparisons only between

districts with a fixed set of nonempty ethnic groups. In practice, an ethnic group may be

present in one district but not in another. In order to rank such districts, one must either

omit the ethnic group in question or combine it with some other group. The Atkinson

indices are also sensitive to zeroes. If each school in a district lacks students from at least

one ethnic group, then according to the Atkinson indices that district is as segregated as one

in which there is no ethnic mixing at all. In this respect, the indices are analogous to the

Cobb-Douglas utility functions, which take a constant value of zero if the quantity of any

good is zero. Like Cobb-Douglas functions, the Atkinson indices should be used only with

sufficiently aggregated data in which zeroes are rare.

We next turn to a characterization of the Mutual Information index, which does not

have these limitations, although it is not Composition Invariant. This index represents the

unique nontrivial ordering that satisfies Scale Invariance, Independence, the School Division

Property, Symmetry, the Group Division Property, and a technical continuity property. It

is related to the concept of entropy. Consider a discrete random variable x that takes K

possible values. Let qk be the probability of the kth value of x. For instance, if x is the

ethnic group of a randomly selected student, then qk is the proportion of district students

who are in the kth group. The entropy of x is a measure of the uncertainty in x.2

The Mutual Information index is defined as follows. Suppose a student is drawn randomly

from the district. Initially, we know nothing more about the student; our uncertainty about

her race is measured by the entropy of her district’s ethnic distribution. Now say that, in

addition, we are told which school the student attends. Our uncertainty about her race

is now measured by the entropy of her school ’s ethnic distribution. If the schools in the

district are at all segregated, then this entropy will tend to be lower: the student’s school

conveys some information about her race. The Mutual Information index, M , equals this

2The entropy of x is
PK

k=1 qk log2

³
1
qk

´
. Among other things, it is an upper bound on the average number

of bits needed to encode a series of i.i.d. realizations of x (Cover and Thomas [14]).
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change in entropy, averaged over the students in the district:

M =
X

Schools n
in district

µ
Students in school n

Students in district

¶⎛⎜⎜⎜⎝
Entropy of district’s ethnic distribution

minus

Entropy of school n’s ethnic distribution

⎞⎟⎟⎟⎠ .

Mutual information treats ethnic groups and schools symmetrically: either variable leads

to the same reduction in uncertainty about the other (Cover and Thomas [14, pp. 18

ff.]). Hence, the Mutual Information index also equals the reduction in uncertainty about a

student’s school that comes from learning her race.

The rest of this paper is as follows. Section 2 defines notation and presents our axioms.

The Atkinson and Mutual Information indices are defined and characterized in section 3.

Section 4 discusses other school segregation indices, various decomposability properties, and

the relation of our results to prior axiomatic treatments of inequality and segregation in-

dices. Additional related literature is reviewed in section 5. Section 6 contains empirical

applications using U.S. public school data and section 7 concludes.

2 Definitions and Axioms

We assume a continuum population. This is a reasonable approximation when ethnic groups

are large. Formally, we define a (school) district as follows:

Definition 1 A district X is a triplet,
D
N,G,

³
(T n

g )g∈G

´
n∈N

E
, whereN is a finite, nonempty

set of schools, G is a finite, nonempty set of ethnic groups, and, for each ethnic group g ∈ G

and school n ∈ N, Tn
g is a nonnegative real number that represents the number of members

of ethnic group g that attend school n.

With some abuse of notation we will sometimes specify a district as a list of ethnic

compositions of schools in the district. For instance, h(10, 20) , (30, 10)i denotes a district

with two schools and two ethnic groups - say, blacks and whites. The first school, (10, 20),
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contains ten blacks and twenty whites; the second, (30, 10), contains thirty blacks and ten

whites.

For any nonnegative scalar α, αX denotes the district in which the number of students

in each group and school of X has been multiplied by α. If X and Y are two districts with

the same set of ethnic groups, X ]Y denotes the result of combining them into one district.

For example, if X = h(10, 20) , (30, 10)i and Y = h(40, 50)i, then 2X = h(20, 40) , (60, 20)i,

and X ] Y = h(10, 20) , (30, 10) , (40, 50)i.

The following notation will be useful.

Tg =
X
n∈N

Tn
g : the number of students in ethnic group g in the district

Tn =
X
g∈G

Tn
g : the total number of students who attend school n

T =
X
g∈G

Tg: the total number of students in the district

Pg =
Tg
T
: the proportion of students in the district who are in ethnic group g

πn =
Tn

T
: the proportion of students in the district who are in school n

png =
Tn
g

Tn
(for Tn > 0): the proportion of students in school n who are in ethnic group g

tng =
Tn
g

Tg
: the proportion of students in ethnic group g who attend school n

rng =
png
Pg
: the disproportionality ratio of group g in school n (Reardon and Firebaugh [42])

The ethnic distribution of a district is the vector P = (Pg)g∈G of proportions of the

students in the district who are in each ethnic group. The ethnic distribution of a nonempty

school n is the vector pn =
¡
png
¢
g∈G of proportions of students in school n who are in each

ethnic group. A school is representative if it has the same ethnic distribution as the district

that contains it: if pn = P . A district in which every school is representative is completely

integrated, while a district with no ethnic mixing is completely segregated.

We will specify the district as an argument of any of the above quantities when this is

needed for clarity. For instance, Tg(X) denotes the number of group-g members in district
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X, G (X) is the set of groups in district X, and so on.

We will state our axioms with respect to an unspecified class of districts, C. Later we

will apply them either to the class CK of districts with exactly K ≥ 2 nonempty groups and

to the class of all districts with at least one nonempty group, CA =
∞S

K=1

CK .

Let C (G,N) be the set of all districts with a fixed set G of groups and a fixed set N

of schools. Let us fix some enumerations g1, ..., g|G| of the groups and n1, ..., n|N| of the

schools. We can then identify each district X in C (G,N) with the matrix whose entry in

row r, column c equals the number of students in group gr and school nc, T
nc
gr (X). Moreover,

we can define the distance between two districts to be the Euclidean distance between their

corresponding matrices in <|G|×|N|+ . Under this definition, C (G,N) is a metric space.

A segregation ordering < on a class of districts is a complete and transitive binary relation
on that set of districts. We interpret X < Y to mean “district X is at least as segregated

as district Y .” The relations ∼ and Â are derived from < in the usual way.3 We restrict

throughout to orderings that treat schools symmetrically.4

A related concept is the segregation index : a function S : C → < that assigns to each

district a number that is interpreted as the district’s segregation level. The index S rep-

resents the segregation ordering < if, for any two districts X,Y ∈ C, X < Y if and only

if S(X) ≥ S(Y ). While every index induces a segregation ordering, not every ordering is

represented by an index.

We impose axioms not on the segregation index but on the underlying segregation or-

dering. These approaches are not equivalent. As in decision theory, an ordering may be

represented by more than one index, and there are orderings that are not captured by any

index. We will often say, for brevity, that an index satisfies some axiom. This means that

3That is X ∼ Y if both X < Y and Y < X; X Â Y if both X < Y and not Y < X.

4More precisely, let X be a district and let σ be a permutation on the set of schools of X. Let X 0 be the

district that results from X if all of the students in each school n are relocated to school σ (n). That is, X 0

has the same sets of groups and schools as X, and the number of students in group g and school σ (n) in X 0

equals the number of students in group g and school n in X. We restrict attention to orderings for which

X 0 ∼ X.
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its underlying ordering satisfies the axiom.

A district’s segregation ranking or simply its segregation is its place in the segregation

ordering. We will sometimes say that if a transformation σ : C → C is applied to a district

X, then “the segregation of the district is unchanged” or “the district’s segregation ranking

is unaffected.” By this we mean that σ(X) ∼ X.

2.1 Axioms

Each of our characterizations uses a subset of the following axioms. The first two axioms

are purely technical. Nontriviality is used to rule out the trivial segregation ordering, while

Continuity ensures that an ordering can be represented by a continuous function.

Nontriviality (N) There exist districts X,Y ∈ C such that X Â Y .

Continuity (CONT) For any district Z ∈ C, the set of districts that have the same

groups and schools as Z and that are at least as segregated as Z is closed, as is the set of

districts that have the same groups and schools as Z and are no more segregated than Z.5

Scale Invariance (SI) The segregation ranking of a district is unchanged if the numbers

of agents in all ethnic groups in all schools are multiplied by the same positive scalar: for

any district X ∈ C and any positive scalar α, X ∼ αX.

Symmetry (SYM) The segregation in a district is invariant to any permutation of the

groups in the district. More precisely, let X be a district and let σ be a permutation on

the set of groups of X. Let X 0 be a district that has the same sets of groups and schools

as X, such that the number of students in school n and group σ (g) in district X 0 equals the

number of students in school n and group g in district X. Then X 0 ∼ X.

Independence (IND) Let X,Y ∈ C have equal populations and equal group distribu-

tions. Then for any Z ∈ C, X ] Z < Y ] Z if and only if X < Y .

School Division Property (SDP) Let X ∈ C be any district and let n be a school in

X. Let X 0 be the district that results from X if school n is subdivided into two schools,

n1 and n2. Then X 0 < X. Furthermore, if either one of the new schools is empty (T ni = 0

5Formally, these sets are {X ∈ C (G (Z) ,N (Z)) : Z < X} and {X ∈ C (G (Z) ,N (Z)) : Z 4 X}.
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for some i ∈ {1, 2}) or the two schools have the same ethnic distribution (pn1 = pn2), then

X 0 ∼ X.

Composition Invariance (CI) For any district X ∈ C, group g ∈ G (X), and constant

α > 0, let X 0 be the result of multiplying the number of group-g students in each school in

X by α. Then X 0 ∼ X.

Group Division Property (GDP) Let X ∈ C be a district in which the set of ethnic

groups is G. Let X 0 be the result of partitioning some group g ∈ G into two subgroups,

g1 and g2, such that either one subgroup is empty (Tgi = 0 for some i ∈ {1, 2}) or the two

subgroups have the same distribution across schools (tng1 = tng2 for all n ∈ N (X)). Then

X 0 ∼ X.

Scale Invariance states that the scale of a district does not matter. This axiom is satisfied

by all of the common school segregation indices. It is implied by two principles from the

literature. The first, “Size Invariance”, states that if a school district is duplicated and

the resulting two districts are combined into a single large district, segregation should not

change. The second, “Organizational Equivalence”, states that if two schools with identical

ethnic distributions are combined, segregation in the district should not change. Both

principles were first proposed by James and Taeuber [30].

Symmetry states that a district’s ranking should depend only on the number of each group

who attend each school: labels such as “black”, “white,” etc., do not matter. Although

it is a standard property which is satisfied by most indices, it may not be suitable for work

that focuses on the problems that face a particular ethnic group. For instance, if one is

interested in the social isolation of blacks from all other groups, then one may prefer an

index that treats blacks differently.

Independence is a standard separability axiom. It states that if the students in a subdis-

trict are reallocated among schools within that subdistrict, then segregation in the district

rises if and only if segregation in the subdistrict rises.6 In particular, what happens to

6Since X and Y have the same number of each ethnic group, Y ] Z is the result of reallocating the

students within the subdistrict X of the district X ] Z. As Independence does not require Y to have
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districtwide segregation does not depend on the composition of the rest of the district. This

axiom is analogous to the standard independence axiom of expected utility theory (von

Neumann and Morgenstern [52]).7

The School Division Property states that a district cannot become less segregated if a

school is split into two new schools. In addition, if the new schools have identical ethnic

distributions, then segregation is unchanged. Finally, the presence of empty schools (those

with no students) does not affect the segregation of a district. SDP is the only axiom that

specifies that some districts are more segregated than others. If a segregation ordering

satisfies any of the other axioms, then the reverse ordering does so as well; however, the

same is not true for SDP.

The School Division Property is related to two properties: Organizational Equivalence,

discussed above, and the Transfer Principle.8 In the case of two ethnic groups - say, blacks

and whites - the Transfer Principle states that if a black (white) person moves from one school

to another school in which the proportion of blacks (whites) is higher, then segregation in

the district rises. With two ethnic groups, Organizational Equivalence and the Transfer

Principle jointly imply the School Division Property.9 But while SDP and Organizational

the same number of schools as X, the reallocation might be accompanied by new school construction or

conversion of some schools to other uses.

7The expected utility axiom states that if lottery L is weakly preferred to lotteryM , then for any p ∈ [0, 1]
and any lottery N , pL+(1− p)N is weakly preferred to pM+(1− p)N . While the requirement that X and

Y have the same size is analogous to the assumption of a constant weight p on L and M , the requirement

that X and Y have the same ethnic distribution has no obvious analogue.

8The Transfer Principle is a translation by James and Taeuber [30] of an analogous property in the context

of inequality, the Pigou-Dalton Transfer Principle (Dalton [17]).

9Let X 0 be the district that results from a district X if a school n in X is divided into two schools,

n1 and n2. If pn1 = pn2 , then Organizational Equivalence (OE) implies X 0 ∼ X. If not, let X 00 be the

district that results from X if school n is instead split into two schools n01 and n02 with identical ethnic

distributions: n01 =
³
Tn
1

T
n1
2

T
n1
2 +T

n2
2

, Tn1
2

´
and n02 =

³
Tn
1

T
n2
2

T
n1
2 +T

n2
2

, Tn2
2

´
. Assume w.l.o.g. that pn11 > pn21 .

Then p
n01
1 ∈ (pn11 , pn21 ) and since T

n01
2 = Tn1

2 , T
n01
1 < Tn1

1 . Move members of group 1 from n02 to n01 until

the two schools have the same number of members of group 1 as n2 and n1, respectively. The district that
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Equivalence extend naturally to three or more groups, the Transfer Principle does not.10

Imposing both the School Division Property and the mild axiom of Scale Invariance

amounts to requiring that a segregation ordering respects the informativeness criterion of

Blackwell [4]: if a student’s school is at least as informative of her race in X than in Y , then

X is at least as segregated as Y . The reasoning is as follows. For an ordering that satisfies

Scale Invariance, the segregation ranking of a school district X is determined solely by the

proportion of students in each group in the district, P = (Pg)g∈G, and by the distribution

of each group across schools, given by the |G| × |N| matrix t = ((tng )g∈G)n∈N. Suppose a

student is selected at random and we are informed what school she attends. We can think

of this school as a signal of the student’s unknown race. The probability, given the student’s

race g, that the signal n is received is given by entry (g, n) of matrix t. Blackwell [4] calls

such a matrix an “experiment”: for each value of the unknown variable (here, the student’s

race), it gives a probability distribution of signals (in this case, schools).

Now let G be a set ethnic groups, and let TG be the set of experiments (matrices) whose

rows correspond to the groups in G. One can partially order the matrices in TG according

to their informativeness.11 Blackwell [4] shows that the |G| × |N1| matrix t ∈ TG is at least

as informative as the |G| × |N2| matrix t0 ∈ TG if and only if there is a |N1| × |N2| Markov

probability matrix α such that t0 = t·α: that is, if it is possible to obtain the signal structure

t0 by “garbling” the signal structure t. (This garbling consists of retransmitting the signal

n0 ∈ N2 with probability αn,n0 whenever we get signal n ∈ N1). Grant, Kajii, and Polak [22,

Lemma A.1] show, further, that for any two signal structures t, t0 ∈ TG, there is a Markov

matrix α such that t0 = t · α if and only if t0 can be obtained from t by a finite sequence of

results is X 0. Hence, by the Transfer Principle and OE, X 0 Â X 00 ∼ X.

10For instance, consider a district with blacks, whites, and Asians. Suppose a black moves to a school that

has higher proportions of both blacks and Asians. Since there are more blacks in the destination school,

one might argue (using the Transfer Principle) that segregation has gone up. On the other hand, blacks are

now more integrated with Asians, so perhaps segregation has fallen. One attempt to overcome this difficulty

appears in Reardon and Firebaugh [42].

11See, e.g., Blackwell [4], or Bohnenblust, Shapley, and Sherman [5]
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splitting columns apart and sticking equivalent columns together.12 But these are precisely

the operations referred to in the School Division Property. Hence, for any two districts X

and X 0 with the same group distribution P , and with likelihood matrices t ∈ TG and t0 ∈ TG,

respectively, t is at least as informative as t0 if and only if X is at least as segregated as X 0

according to all segregation orderings that satisfy SDP and SI. That is, these axioms jointly

require that the segregation ordering be consistent with the informativeness ordering of the

likelihood matrices induced by districts with the same group distribution.

Composition Invariance requires that an ordering be insensitive to changes in the size of

an ethnic group that leave that group’s distribution across schools unchanged. This means

that the segregation of a district depends only on how its ethnic groups are distributed across

schools in the district. The first to propose this property were Jahn et al [28], who wrote:

“a satisfactory measure of ecological segregation should ... not be distorted by the size of

the total population, the proportion of Negroes, or the area of a city....” (Jahn et al [28]).

Composition Invariance has been controversial. The dominant view, espoused by Taeu-

ber and James [47], is that segregation refers to the effect of ethnic origins on destinations

(schools, neighborhoods, etc.). Accordingly, they favor Composition Invariance. Others,

such as Coleman, Hoffer, and Kilgore [11], view segregation as capturing different degrees of

exposure of one ethnic group to another, and thus oppose the principle.

In order to incorporate these diverse points of view, we also study the effect of replacing

Composition Invariance by the Group Division Property. This axiom states that a segre-

gation measure should not change if an ethnic group is divided into two groups that have

identical distributions across schools. In addition, the presence of empty groups (those with

no members) do not affect the segregation of a district. This axiom is related to the School

Division Property, with the roles of groups and schools reversed. It is our only axiom that

tells us how to rank districts with different numbers of ethnic groups. It does not appear to

12Splitting a column (tng )g∈G apart means replacing it by two columns (tn1g )g∈G, and (t
n2
g )g∈G where

tn1g + tn2g = tng for all g ∈G. Two columns (tn1g )g∈G, and (tn2g )g∈G are equivalent if tn1g /tn2g does not depend

on g. Sticking two equivalent columns together means replacing them by their sum.
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have been discussed in the prior literature, which has focused mainly on the two-group case.

3 Atkinson and Mutual Information Indices

3.1 Index Definitions

The Atkinson segregation indices were introduced by James and Taeuber [30] for the case of

two ethnic groups. They are based on the Atkinson inequality indices (Atkinson [2]).13 Let

w = (w1 . . . wK) be a vector of K fixed nonnegative weights that sum to one. The Atkinson

index with weights w, Aw, is defined by

Aw(X) = 1−
X

n∈N(X)

Y
g∈G

¡
tng
¢wg (1)

When all weights are equal, we obtain the symmetric Atkinson index, denoted A. Massey

and Denton [33] study properties of the Atkinson indices; Johnston, Poulsen, and Forrest

[31] use them to study residential segregation.

The entropy of the discrete probability distribution q = (q1, . . . , qK) is defined by
14

h(q) =
KX
k=1

qk log2

µ
1

qk

¶
. (2)

The Mutual Information index equals the entropy of a district’s ethnic distribution minus

13In the case of two groups, the Atkinson index with weight 0 < δ < 1 on group one equals

1−

⎡⎣ X
n∈N(X)

(tn1 )
δ (tn2 )

1−δ

⎤⎦ 1
1−δ

.

It is due to James and Taeuber [30, p. 9], who derive it from the inequality index of the same name.

The Atkinson index is difficult to generalize to more than two groups since the outer exponent, 1
1−δ , is the

reciprocal of the weight on a particular ethnic group. Instead, we generalize 1−
P

n∈N(X) (t
n
1 )

δ
(tn2 )

1−δ
. As

this is an increasing transformation of the original index, it represents the same ordering.

14When qk = 0, the term qk log2(1/qk) is assigned the value zero.
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the average entropy of the ethnic distributions of its schools:

M(X) = h(P )−
X

n∈N(X)

πnh(pn) (3)

This index was first proposed by Theil [49] and has been applied by Fuchs [21] and Mora

and Ruiz-Castillo [35, 38].15

Properties of these indices are discussed in section 3.3.

3.2 Main Results

Our characterization results are as follows. Throughout, we assume the axioms of Scale

Invariance, Independence, the School Division Property, and Nontriviality. When, in addi-

tion, we assume Composition Invariance and Continuity, we obtain the family of Atkinson

orderings:

Theorem 1 Let K ≥ 2. An ordering < on CK satisfies Scale Invariance, Independence,

the School Division Property, Nontriviality, Composition Invariance, and Continuity if and

only if there exist fixed weights wg ≥ 0 for g = 1, ...,K, adding up to one, such that < is

represented by the Atkinson index Aw(X).

If we replace Composition Invariance by the Group Division Property and add Symmetry,

we obtain the Mutual Information ordering:

Theorem 2 An ordering on CA satisfies Scale Invariance, Independence, the School Division

Property, Nontriviality, the Group Division Property, Symmetry,and Continuity if and only

if it is represented by the Mutual Information index.

15Some of the properties of the Mutual Information index have been previously noted by Mora and Ruiz-

Castillo in the case of two ethnic groups [36, 37].
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3.3 Discussion

The Atkinson indices are Composition Invariant. This makes them a natural choice to study

the effects of a student’s ethnic origin on her school destination, as they are affected only

by differences in how ethnic groups are distributed across schools. On the other hand, they

are sensitive to zeroes in the case of three or more ethnic groups. For instance, they rank

the districts X = h(10, 10, 0) , (0, 0, 10)i and Y = h(10, 0, 0) , (0, 10, 0) , (0, 0, 10)i as equally

segregated. One can see from this example that the Atkinson indices do not satisfy a

stronger version of the School Division Property in which splitting a school into two schools

with different ethnic distributions leads to strictly higher segregation. (The Atkinson indices

are free of these limitations in the case of two ethnic groups.)

The Mutual Information index ranks Y as strictly more segregated than X and satisfies

this stronger version of SDP. It also has several useful decompositions that the Atkinson

and other indices lack (section 4.2). These make this index a good choice for studying

the sources of segregation at different geographic and ethnic levels. However, the Mutual

Information index violates Composition Invariance. Accordingly, the Mutual Information

index is unsuitable for judging whether different ethnic groups are becoming more similarly

distributed across schools. These differences are illustrated empirically in section 6.

Why does the Mutual Information index violate Composition Invariance? Multiplying

the number of students in a given group by a common factor in every school alters the ethnic

distributions of the schools and of the district as a whole. This changes both our initial

uncertainty about a student’s ethnicity, as well as our residual uncertainty after learning her

school. These changes are not necessarily equal. Hence, their difference - the Mutual Infor-

mation index - can change as well. For instance, consider the districtX = h(10, 0) , (0, 1000)i

and let Y = h(1000, 0) , (0, 1000)i be the result of scaling the first group up by a factor of

100. While this change greatly increases our initial uncertainty about a student’s race, it

has no effect on our residual uncertainty after learning her school as there is none. Hence,

the Mutual Information index is higher in Y , while a Composition Invariant index would

regard them as equally segregated.
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The Atkinson indices are defined for a fixed set of groups, each of which has a fixed weight.

Thus, they are not designed to compare districts with different numbers of nonempty groups.

One can use the symmetric Atkinson index in an ad-hoc way to make such comparisons by

lowering the weight on each group from 1/K to 1/ (K + 1) when a group is subdivided.

However, this usage clearly violates the Group Division Property.

4 Other Indices

In this section we introduce other school segregation indices and several decomposability

properties. All claims not proved here are proved in Appendix B.

4.1 Other Indices

We begin by stating some simple facts that will often let us verify an axiom by writing an

index in a particular way. Denote by π = (πn)n∈N the vector of relative sizes of schools in

a district. Let rg =
¡
rng
¢
n∈N be the vector of disproportionality ratios of group g. Recall

that pn =
¡
png
¢
g∈G is the ethnic distribution of school n and t = ((tng )g∈G)n∈N is the matrix

of distributions of groups across schools.

Claim 1 1. If an index can be written in the form F0 (P ) + F1 (P )
P

n∈N πnF2 (p
n) for

some functions F0, F1 > 0, and F2, then it satisfies Independence.

2. If an index can be written as
P

n∈N πnF3 (P, p
n) for some F3 that is convex in pn, then

the index satisfies the School Division Property.

3. If an index can be written as a function of t alone, then it satisfies Composition In-

variance.

4. If an index can be written in the form
P

g∈G PgF4 (π, rg) for some function F4, then it

satisfies the Group Division Property.
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By part 3 of Claim 1, the Atkinson indices satisfy Composition Invariance. Using

tng = πn
png
Pg
, we can rewrite Aw(X) as 1−

ÃQ
g∈G

(Pg)
wg

!−1 P
n∈N

πn
Q
g∈G

¡
png
¢wg
. Hence, by parts

1 and 2 of Claim 1, the Atkinson indices also satisfy Independence and SDP.16

By part 1 of Claim 1, the Mutual Information index satisfies Independence. Letting

F3 (P, p
n) = h (P ) − h (pn), the index satisfies SDP by part 2. Finally, the index can

be written as
P

g∈G Pg

P
n∈N(X) π

nrng log2 r
n
g , so by part 4 it satisfies the Group Division

Property.

The Entropy index H (X) of Theil [50] and Theil and Finizza [51] equals M (X) /h (P )

whereM (X) is the Mutual Information index and h (P ) is the entropy of the group distribu-

tion of district X. While the Mutual Information index has no maximum value, the Entropy

index has a maximum value of one. Like the Mutual Information index, the Entropy index

satisfies Independence and SDP by Claim 1, parts 1 and 2,17 but cannot be written as a

function of t and thus violates Composition Invariance. As the Mutual Information index

satisfies GDP, the presence of the factor 1/h (P ), which is not invariant to group division,

means that the Entropy index violates GDP.

For any group distribution P , let I (P ) =
P

g∈G Pg(1−Pg) denote the Simpson Interaction

index (Lieberson [32]). The Dissimilarity index D (X) = 1
2I(P )

P
g∈G Pg

P
n∈N πn

¯̄
rng − 1

¯̄
of Morgan [39] and Sakoda [44] is a generalization of the two-group Dissimilarity index of

Jahn, Schmid, and Schrag [28]. It has an unnormalized version D0 = I (P )D, which equals

the minimum proportion of students who would have to change schools, keeping school sizes

fixed, in order to completely integrate the district. I (P ) is what this proportion would be

under complete segregation. Hence, the Dissimilarity index D is the result of normalizing

D0 to take a maximum value of one.

The Gini index G (X) = 1
2I(P )

P
g∈G Pg

P
m∈N

P
n∈N πmπn

¯̄
rmg − rng

¯̄
of Reardon [41] is a

generalization of the two-group Gini index of Jahn, Schmidt, and Schrag [28]. In the case

of two ethnic groups - say, blacks and whites - the Gini index measures the area between the

16For SDP, F3 (P, p
n) = 1−

Q
g∈G

¡
png /Pg

¢wg
, which is convex in each png as wg ≤ 1.

17For part 2, let F3 = 1− h (pn) /h (P ).
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Lorenz curve and the 45 degree line, while the Dissimilarity index measures the maximum

vertical distance between the Lorenz curve and the same line. (For a definition of Lorenz

curves and a proof of this result, see James and Taeuber [30].) Since the Lorenz curve

depends only on the distributions of the two groups across schools, the Gini and Dissimilarity

indices satisfy Composition Invariance in this case. However, they violate it when there are

three or more groups (Reardon and Firebaugh [42]).

Both the Dissimilarity and Gini indices satisfy SDP.18 By Claim 1, part 4, the unnor-

malized versions of these indices, D0 and G0 = I (P )G, satisfy GDP. But since I (P ) is not

invariant to group division, D and G violate GDP. Moreover, both indices violate Indepen-

dence. Intuitively, the interaction of different ethnic distributions within the absolute value

function creates a link between segregation within a subdistrict and the composition of the

rest of the district.

The Normalized Exposure index was originally proposed by Bell [3] for the case of two

groups. Let group 1 represent blacks and let P ∗ =
P

n∈N tn1p
n
1 be the percent black in

the school attended by the average black student. Bell [3] calls P ∗ the index of Isolation.

The Normalized Exposure index P for two groups is the result of normalizing P ∗ to lie

between zero and one: NE= P∗−P1
1−P1 =

P
n∈N tn1

pn1−P1
1−P1 =

P
n∈N πnrn1

pn1−P1
1−P1 . The index can be

generalized to an arbitrary number of groups as NE (X) =
P

n∈N
P

g∈G πnPg
Pg
1−Pg (r

n
g − 1)2

(James [29]). The factor Pg
1−Pg guarantees that this index takes a maximum value of one.

If this factor is omitted, the resulting index satisfies GDP by Claim 1, part 4. Since the

factor is not invariant to group division, NE violates GDP. It is well known that the index

is not Composition Invariant (Taeuber and James [47]; Coleman, Hoffer, and Kilgore [11]).

With two groups, NE equals 1
P1(1−P1)

P
n∈N πn (pn1)

2 − P1
1−P1 , so it satisfies Independence in

this case (Claim 1, part 1), but not with three or more groups. Finally, NE satisfies SDP

by part 2 of Claim 1.19

18For D, let F3 = (2I (P ))
−1P

g∈G
¯̄
png − Pg

¯̄
in part 2 of Claim 1. For Gini, see Appendix B.

19Let F3 =
P

g∈G
(png−Pg)

2

1−Pg , which is convex in png .
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The last two indices are defined for a fixed set of groups, so the Group Division Property

is not applicable. Clotfelter [10] has measured segregation as the percentage of blacks

who attend schools in which at least some proportion κ ∈ (0, 1) of students are nonwhite.

More formally, the index equals Cκ(X) =
1
P2

P
n∈N(X) π

npn21 (p
n
2 ≥ κ), where group 2 denotes

blacks or nonwhites. Clotfelter’s Index satisfies Independence by Claim 1, part 1. However,

it clearly violates Symmetry, Continuity, and Composition Invariance. It also violates the

School Division Property: if a school whose proportion black is slightly above κ is split into

two schools, one of which has a black proportion slightly below κ, the index falls rather than

rises.

Card and Rothstein [8] measure segregation as the average fraction black or Hispanic

in the schools attended by the typical black and white student, and define segregation

as the difference between these figures. Thus, their index can be written CR(X) =P
n∈N(X) (t

n
2 − tn1) (p

n
2 + pn3) where groups 1, 2, and 3 denote whites, blacks, and Hispanics,

respectively. The Card-Rothstein Index cannot be written in the forms given in Claim 1,

parts 1, 2, and 3, and indeed violates IND, SDP, and CI. It also clearly violates Symmetry.

4.2 Decomposability

We now turn to cardinal decomposability properties. These are useful if one wants to

study segregation at several levels simultaneously. For instance, one may be interested in

how much of the segregation between schools in a metropolitan area is due to segregation

between districts and how much is due to segregation within districts. The analogous

property for ethnic groups might be used, e.g., to study the relative importance of race and

religion in generating school segregation.

The first two properties are due to Hutchens [27] and are based on Shorrocks’s [45, 46]

analogous properties for inequality indices. The third property is analogous to the Theil

Decomposability axiom used by Bourguignon [7] and by Foster [20] in their characterization

of the Theil index of income inequality. It was previously discussed by Mora and Ruiz-

Castillo [36]. When the roles of schools and groups in the third property are swapped, we
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obtain the fourth property, a type of decomposability across groups.

For any district Z, let T· (Z) = (Tg (Z))g∈G be the number of members of each ethnic

group in Z and let c (Z) be the district that results if the schools of Z are all merged into a

single school. Recall that T (Z) denotes the total population of Z.

Aggregation (AGG) An index S is Aggregative if there is a function F such that

S (X ] Y ) = F (S (X) , S (Y ) , T· (X) , T· (Y )), where F is continuous and strictly increasing

in S (X) and S (Y ).

Additive Decomposability (AD) An index S is Additively Decomposable if there

are strictly positive functions wX (T· (X) , T· (Y )) and wY (T· (X) , T· (Y )) such that, for all

districts X and Y ,

S (X ] Y ) = S (c (X) ] c (Y )) + wX (T· (X) , T· (Y ))S (X) + wY (T· (X) , T· (Y ))S (Y ) (4)

Strong School Decomposability (SSD) An index S satisfies Strong School Decom-

posability if, for all districts X and Y ,

S (X ] Y ) = S (c (X) ] c (Y )) +
T (X)

T (X) + T (Y )
S (X) +

T (Y )

T (X) + T (Y )
S (Y ) .

Strong Group Decomposability (SGD) An index satisfies Strong Group Decompos-

ability if, for any partition of the ethnic groups of a district X into two supergroups,

S (X) = S
³ bX´+ P1S (X1) + P2S (X2) , (5)

where Pk is the proportion of students who are in supergroup k, bX is the district that results

from district X if each supergroup is treated as a group (i.e., ignoring within-supergroup

ethnic differences), and Xk is the district that results from district X if all students not in

supergroup k are removed.20

AGG states that for any partition of a district into subdistricts, overall segregation is

some function of within-subdistrict segregation and the size and ethnic distributions of the

20For instance, let X = h(1, 2, 3, 4) , (5, 6, 7, 8)i and let supergroup 1 consist of the first two groups and
supergroup 2 comprise the last two. Then bX = h(1 + 2, 3 + 4) , (5 + 6, 7 + 8)i, X1 = h(1, 2) , (5, 6)i, and
X2 = h(3, 4) , (7, 8)i.
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subdistricts. AD and SSD require, in addition, that this function equal the sum of between-

subdistrict segregation and a weighted average of within-subdistrict segregation. While AD

permits a subdistrict’s weight to depend in a general way on the size and ethnic distributions

of all subdistricts, SSD requires that this weight equal the proportion of students who attend

schools in the subdistrict. Finally, SGD results from swapping the roles of schools and ethnic

groups in SSD: for any partition of groups into supergroups, overall segregation is the sum of

between-supergroup segregation and the population-weighted average of segregation within

each supergroup.

SSD clearly implies AD, which in turn implies AGG. However, the opposite is not true.

The square of any nontrivial index that satisfies AD must violate AD, but still satisfies AGG.

Furthermore, the Atkinson indices satisfy AD21 but violate SSD and SGD by the following

claim.

Claim 2 Let X
2
be the district h(1, 0) , (0, 1)i. Let the index S satisfy SI and SDP, and

suppose that S
³
X
2
´
> 0. Then either S is unbounded or it violates SSD and SGD.

The Mutual Information index, the only unbounded index we consider, satisfies SSD, as

previously shown by Mora and Ruiz-Castillo [36] in the case of two ethnic groups. By the

duality of mutual information (Cover and Thomas [14, pp. 18 ff.]), it also satisfies SGD. We

will illustrate some uses of these properties in section 6.

Analogous properties have been extensively discussed in the income inequality literature.

Bourguignon [7] and Foster [20] show that Theil Decomposability, which is analogous to SSD,

fully characterizes the Theil inequality index (Theil [48]) within the class of relative inequality

indices.22 However, our characterization of the Mutual Information index differs qualitatively

from these prior results. While both Theil and Mutual Information measure reductions in

uncertainty - about the owner of a dollar and the race of a random student, respectively -

the baselines are different: the Theil index starts with a uniform prior distribution while the

21Hutchens [27] proves this in the two-group case.

22While Bourguignon [7] restricts to differentiable indices, Foster [20] assumes only continuity.
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Mutual Information index begins with the districtwide ethnic distribution.23 In addition,

unlike Foster [20] and Bourguignon [7], we do not assume SSD. As the following claim shows,

our only separability axiom, Independence, is analogous not to SSD but rather to the weaker

property of Aggregation:24

Claim 3 Aggregation implies Independence. In the class of segregation orderings that are

represented by continuous indices, Aggregation and Independence are equivalent.

Finally, Foster [20] shows that the Theil index is the only continuous relative inequality

index that satisfies Theil Decomposability. In this sense, Theil Decomposability is a defining

property of the Theil index. The same is not true of Independence: indeed, every axiom

that we use to characterize the Mutual Information index is satisfied by at least one of the

other segregation indices that we survey in section 4.1.25

Strong Group Decomposability also does not correspond to any of our axioms. While it

implies GDP,26 the reverse is not true: the unnormalized Dissimilarity and Gini indices D0

and G0 satisfy GDP but not SGD as they are bounded (by one) and satisfy the assumptions

of Claim 2.

23Let T be the number of persons in a city, yi be the wealth of person i, and |y| =
PT

i=1 yi be the total

wealth in the city. Let y = (yi/ |y|)Ti=1 be the distribution of wealth in the city. The Theil index equals

h
¡¡

1
T , ...,

1
T

¢¢
− h (y): the difference in entropies of the uniform and actual distributions of wealth.

24A segregation index is continuous if it is a continuous function of the numbers of members of each group

in each school,
¡
Tn
g

¢
n∈N,g∈G.

25This follows from Table 1 below, together with the fact that D0 and G0 satisfy GDP.

26More precisely, this holds for any index S that equals zero on districts that are completely integrated. In

particular, suppose X 0 hasK groups. Let X be the result of splitting some group g inX 0 into two subgroups,

g1 and g2, such that either one subgroup is empty or the two subgroups have the same distribution across

schools. Let us now partition X into K supergroups, such that each supergroup consists of students who

were in a given group of X 0. By SGD, S (X) can be written as the sum of between- and within-supergroup

terms as in (5). By construction, the between-supergroup term equals S (X 0). Since each district Xk is

completely integrated, each within-supergroup term is zero. Thus, S (X) = S (X 0).

22



4.3 Discussion

A list of the indices we have discussed appears in Table 1, together with an indication of

which properties they satisfy. Results not proved above are shown in Appendix B. The

first six rows correspond to our axioms, while the last four pertain to different types of

decomposability. Nontriviality and Scale Invariance are omitted as all of the indices satisfy

them.

Index

PROPERTY Aw M D G H NE Cκ CR

Continuity
√ √ √ √ √ √ × √

Symmetry × √ √ √ √ √ × ×

Independence
√ √ × × √

2
√ ×

School Division Property
√ √ √ √ √ √ × ×

Composition Invariance
√ × 2 2 × × × ×

Group Division Property N/A
√ × × × × N/A N/A

Aggregation
√ √ × × √

2
√ ×

Additive Decomposability
√ √ × × √

2 × ×

SSD × √ × × × × × ×

SGD N/A
√ × × × × N/A N/A

Table 1: Which Indices Satisfy Which Properties? The Atkinson index satisfies symmetry

when the group weights are equal. A “
√
” means that the property holds; an “×” indicates

that it does not. A “2” means that the property is satisfied only in the case of two ethnic

groups. A ”S” means that the property holds only for the symmetric version of the index.

We can draw two sorts of conclusions from this table. First, if one is interested in

the effect of ethnic origin on school destination in the presence of three or more groups, one

should use an Atkinson index since only they are Composition Invariant in this case. On the

other hand, in order to study the geographic and ethnic sources of segregation, the Mutual

Information index, with its decomposability properties, would be a good choice. These
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conclusions are illustrated empirically in section 6.

The table also points to a tradeoff between intuitiveness and performance in choosing

an index. While the Atkinson and Mutual Information are a bit complex, their formal

properties make them well-behaved in a variety of situations. Some of the other indices,

while highly intuitive, violate several axioms and so can behave in undesirable ways.

5 Related Literature

The first to study segregation axiomatically, Philipson [40], ordinally characterizes the family

of segregation orderings that can be represented by a population-weighted average, across

schools, of some fixed function u of the school’s ethnic distribution: S =
P

n∈N πnu (pn).

However, the only way to write any of the common indices in this way is to let the function

u depend also on the districtwide ethnic distribution. Since u is a fixed function, Philipson’s

analysis is relevant only to comparisons of districts that have the same ethnic distribution.

Hutchens [27] characterizes segregation indices that satisfy a set of cardinal axioms in the

case of two ethnic groups. His Theorem 1 shows that a continuous index satisfies cardinal

versions of Composition Invariance (Hutchens’s axiom P1), symmetry across schools (P2),

the Transfer Principle (P3), Organizational Equivalence (P4), and Aggregation (P5), if and

only if it is an increasing transformation of the Atkinson index for the two-group case. As the

Transfer Principle and Organizational Equivalence jointly imply the School Division Property

(section 2.1) and Aggregation implies Independence (Claim 3), Hutchens’s theorem is a kind

of cardinal version of our Theorem 1 for the two-group case. However, while Hutchens

begins with an index, we start with an ordering and prove that it is represented by an index.

In addition, Hutchens’s proof relies on the isomorphism between inequality measures and

segregation indices in the two-group case. Hence, it cannot be generalized in a simple way

to the case of three or more groups.27

27In an earlier paper, Hutchens [26] uses a nonstandard separability property in place of Aggregation. This

yields a family of indices that includes the Atkinson indices as well as some indices that violate Independence.
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More recently, Echenique and Fryer [18] characterize an index that measures the strength

of an individual’s isolation from members of other demographic groups. They also rely on

cardinal axioms. As the inputs to their index are data on social networks, their analysis has

little in common with ours.

6 Empirical School Segregation Patterns

In this section we study the empirical performance of the main school segregation indices.

We use the Common Core of Data (CCD), which contains student ethnic counts for virtually

all public schools in the U.S. from 1987/8 to 2007/8. Four ethnic groups are used: Asians,

(non-Hispanic) whites, (non-Hispanic) blacks, and Hispanics.28

We first study changes in school segregation over the period. Attention is restricted to

the 60,674 schools that reported positive attendance in every school year from 1987/8 to

2007/8.29 We focus on total segregation among U.S. schools, essentially treating the U.S.

as a single district and studying its evolution over time.

Three sets of indices are computed. The first consists of Composition Invariant indices.

This set comprises the symmetric Atkinson index A, which gives equal weight to each ethnic

group, and two asymmetric Atkinson indices Aw, in which a group’s weight equals the

proportion of students in our sample who are in the given group in either 1987/8 or 2007/8.

Indices that are not Composition Invariant fall, heuristically, into two groups. Each such

index begins with a quantity that captures some intuitive notion of segregation. Sometimes

28The CCD actually has five ethnic groups. The smallest, American Indian/Alaskan Native, is not

represented in some school districts. Since most segregation indices (including the Atkinson indices) are not

well defined on such districts, we excluded this ethnic group from our analysis.

29To aid in matching, for 1987/8 through 1998/99 we used the 13-year longitudinal version of this database

(McLaughlin [34]). For subsequent years, we used the annual files. Schools that closed for one or more

years and then reopened are excluded from our sample. Since parents and teachers may prefer not to move

back after they have gotten used to new schools, the sense in which these are actually “the same schools” is

open to debate.
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this quantity itself is used as the segregation index: the index is unnormalized. This

may be because the index already takes a maximum value of one, or because normalization

destroys certain desirable properties. This set consists of the Mutual Information index M ,

the Clotfelter index Cκ, the Card-Rothstein index CR, and the unnormalized Dissimilarity

index D0. In other cases, the intuitive quantity is normalized by dividing by the maximum

value it can take, given the district’s ethnic distribution. This set consists of the Gini index

G, Dissimilarity D, Normalized Exposure index NE, and Entropy H.

Results appear in Table 2. Over the period we study, school segregation measures were

affected by two important developments. First, ethnic groups were becoming more similarly

distributed across schools: Panel 1 shows declines in the pairwise symmetric Atkinson indices

for all six pairs of ethnic groups. As a result, we see declines in the Composition-Invariant

indices in Panel 3. At the same time, ethnic diversity was growing significantly (Panel

2). This change dominated for the unnormalized Composition-Variant indices: they tend

to show large increases over the period (Panel 4).30 As for the normalized Composition-

Variant indices, increased ethnic diversity led to offsetting increases in both the intuitive

quantities on which these indices are based, as well as the maximum possible values of these

quantities. The end result was little discernible change in the indices themselves (Panel 5).

We now turn to cross-sectional patterns of segregation in 2007/8. We restrict to school

districts that contain at least two schools and that serve grades K-12. Schools not located in

Core Based Statistical Areas (CBSA’s) or that do not lie in the 50 U.S. states and the District

of Columbia are excluded. We refer to the resulting set of schools as “urban schools”.

Table 3 computes the Mutual Information index for all urban schools in the U.S. and

decomposes it using the properties of Strong School and Group Decomposability. Since

supergroup schemas must be nested in order to apply Strong Group Decomposability, we

30For instance, the increase in the Mutual Information index shows that a randomly selected student’s

school now conveys more information about her race. This is driven by the fact that there is now more

information to convey: since ethnic diversity has increased, the initial uncertainty about a random student’s

race is now greater.
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1987/8 2007/8 Change
1.  PAIRWISE ATKINSON INDICES
  White-Black 0.423 0.401 -0.022
  White-Hispanic 0.498 0.409 -0.089
  White-Asian 0.369 0.324 -0.046
  Black-Hispanic 0.549 0.401 -0.148
  Black-Asian 0.520 0.438 -0.083
  Hispanic-Asian 0.410 0.344 -0.066

2.  PUBLIC SCHOOL ETHNIC DISTRIBUTION
  Whites 72.1% 58.2% -13.9%
  Blacks 14.9% 16.5% 1.6%
  Hispanics 9.9% 20.6% 10.7%
  Asians 3.1% 4.7% 1.6%
  TOTAL 100.0% 100.0% 0.0%

3.  COMPOSITION INVARIANT INDICES
  Symmetric Atkinson 0.635 0.519 -0.116
  Asymmetric Atkinson (2006/7 Weights) 0.619 0.469 -0.149
  Asymmetric Atkinson (1987/8 Weights) 0.603 0.443 -0.160

4.  UNNORMALIZED COMPOSITION-VARIANT INDICES
  Mutual Information 0.558 0.658 0.100
  Clotfelter (50% Threshold) 0.556 0.680 0.123
  Clotfelter (90% Threshold) 0.249 0.313 0.064
  Card-Rothstein 0.447 0.471 0.024
  Unnormalized Dissimilarity (D') 0.290 0.366 0.076

5.  NORMALIZED COMPOSITION-VARIANT INDICES
  Gini 0.818 0.790 -0.028
  Dissimilarity 0.649 0.621 -0.028
  Normalized Exposure 0.435 0.442 0.007
  Entropy Segregation Index 0.452 0.422 -0.030

6.  MISCELLANEOUS
  Entropy of U.S. Public School Ethnic Distribution 1.236 1.561 0.325
  Simpson Interaction Index 0.448 0.590 0.142
  Number of Schools 60674 60674 0
  Number of Students (millions) 32.252 32.709 0.457

School Year

Table 2: Summary Statistics for U.S. Public Schools, 1987/8 and 2007/8. Universe is set of U.S. public schools that report
positive numbers of students in Common Core of Data for all school years from 1987/8 to 2007/8. Panel 1 shows the symmetric

Atkinson index, computed separately for all six pairs of ethnic groups. Panel 2 shows the aggregate ethnic distribution. Three

indices that satisfy Composition Invariance appear in Panel 3. Among indices that violate this axiom, unnormalized indices

appear in Panel 4 and normalized indices appear in Panel 5. Panel 6 shows the entropy of the aggregate ethnic distribution

H(P ), the Simpson Interaction Index I, the total number of schools, and the total number of students.
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1 2 3 4

Geographic Level Total

Hispanic 
vs. Non 
Hispanic

Black vs. 
W hite & 
Asian

White vs. 
Asian

1 Total:  Between Urban Schools in US* 0.651 0.293 0.273 0.084
2 Between States in US 0.208 0.124 0.049 0.035
3 Between CBSAs in States 0.104 0.051 0.040 0.013
4 Between Districts in CBSAs 0.210 0.062 0.125 0.023
5 Between Schools in Districts 0.129 0.057 0.059 0.013

6 Total:  Between Urban Schools in US* 100.0% 45.1% 41.9% 13.0%
7 Between States in US 31.9% 19.0% 7.6% 5.3%
8 Between CBSAs in States 15.9% 7.8% 6.1% 2.0%
9 Between Districts in CBSAs 32.3% 9.6% 19.2% 3.5%

10 Between Schools in Districts 19.8% 8.7% 9.0% 2.1%

Absolute Contribution to Total Segregation among U.S. Public Schools, 2007/8

Percentage Contribution to Total Segregation among U.S. Public Schools, 2007/8

Table 3: Decomposition of Segregation Between Urban Schools in U.S., 2007/8 School Year. Analysis is restricted to K-12
districts that contain at least two schools. Schools not located in CBSA’s or that do not lie in the 50 U.S. states and the

District of Columbia are excluded. Source is the Common Core of Data. The Mutual Information Index is computed for all

schools in universe defined above and decomposed into various components. Ethnic groups are mutually exclusive: Asians,

non-Hispanic whites, non-Hispanic blacks, and Hispanics. The three terms in equation (6) appear in columns 2-4. Column 2

shows how much segregation at the given geographic level is due (in an accounting sense) to segregation between Hispanics and

non-Hispanics. Column 2 shows the contribution of segregation between blacks, on the one hand, and whites and Asians, on

the other. Column 3 shows the contribution of segregation between whites and Asians. The sum of these numbers appears in

column 1 and (by Strong Group Decomposability) represents segregation between the four ethnic groups at the given geographic

level. This analysis is performed at four geographic levels. Row 1 computes segregation among all U.S. public schools, treating

the U.S. as a single “district”. Row 2 computes segregation among U.S. states, treating each state as a single “school”. For

row 3, 51 state-level segregation indices are first computed, treating the CBSA’s in a state as individual schools. The figures

shown are the averages of these 51 state-level indices, weighted by the number of students in the state who come from the

given ethnic groups. For row 4, we first compute segregation within each CBSA, treating each school district as an individual

school. The figures shown are the averages of these CBSA-level indices, weighted by the number of students in the CBSA who

belong to the given ethnic groups. Finally, for row 5 we first compute a segregation index for each school district. The figures

shown are the averages of these indices, weighted by the number of district students who belong to the given ethnic groups.

By Strong School Decomposability, the sum of rows 2-5 equals total segregation between schools in the U.S., which appears in

row 1. In panel B, all indices are re-expressed as percentages of this total.
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remove one ethnic group at a time. Let each ethnic group be denoted by its initials:

A(sians), W(hites), B(lacks), and H(ispanics). Let curly braces denote a supergroup; e.g.,

{W,B,H} denotes the set of non-Asians. Applying equation (5) twice, we can decompose

overall segregation into three terms:⎛⎜⎜⎜⎝
Segregation

among

H,B,W & A

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
Segregation

between

H & {B,W,A}

⎞⎟⎟⎟⎠+
⎛⎜⎜⎜⎝

Proportion

of students

in B,W, and A

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
Segregation

between

B & {W,A}

⎞⎟⎟⎟⎠

+

⎛⎜⎜⎜⎝
Proportion

of students

in W and A

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
Segregation

between

W & A

⎞⎟⎟⎟⎠ (6)

These three terms appear, in this order, in columns 2, 3, and 4 of Table 3. They represent,

respectively, the contribution to total segregation of segregation between (1) Hispanics and

non-Hispanics; (2) blacks, on the one hand, and whites and Asians on the other; and (3)

whites and Asians. Their sum appears in column 1 and represents segregation among all

four ethnic groups at the given geographic level.

At the same time, we compute segregation at four geographic levels: states, CBSA’s,

districts, and schools. Row 2 of Table 3 computes segregation between states, treating each

state as a single “school”. For row 3, the Mutual Information index across CBSA’s is first

computed for each state. We then compute the weighted average of these 51 indices. This

average is the within-state, between-CBSA segregation. Row 4 show segregation at within

CBSA’s, between districts. Row 5 shows segregation within districts, between schools. By

repeated applications of Strong School Decomposability, the sum of rows 2-5 equals total

segregation between schools in the U.S., which appears in row 1.

Total segregation among the four groups across schools in the U.S. is 0.651 (row 1, column

1). In panel B, all indices are re-expressed as percentages of this total. The most important

source of school segregation is the ethnic differentiation of districts within CBSA’s, which

accounts for 32.3% of the total (row 9, column 1). A comparison of columns 2-4 of row 9

shows that this is mostly due to the separation of blacks from whites and Asians. Segregation
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between the states is also important, accounting for 31.9% of total segregation (row 7, column

1). This is mainly due to the residential patterns of Hispanics (row 7, columns 2-4). Indeed,

51% of Hispanic public school students lived in Texas, California, or New Mexico in 2007/8,

compared to only 14% of non-Hispanic students.

Using the Gini and Normalized Exposure indices, respectively, Rivkin [43] and Clotfelter

[10] find that segregation between whites and blacks within cities is driven mainly by segre-

gation between school districts. We reproduce this finding in rows 9 and 10 of column 3.

However, by Strong School and Group Decomposability, the Mutual Information index can

be decomposed across any number of geographic levels and ethnic groups simultaneously,

using simple population weights. In contrast, Normalized Exposure is Additively Decom-

posable only in the two-group case; Gini is not even Aggregative (Table 1). As a result,

a district’s weight in Clotfelter [10] depends on its ethnic distribution, and Rivkin’s [43]

decomposition includes an enigmatic interaction term.31

INDEX M A H D G NE C90 C50 CR
Mutual Information (M) 1 0.216 0.687 0.546 0.57 0.868 0.479 0.516 0.754
Symmetric Atkinson (A) 0.216 1 0.409 0.424 0.422 0.243 0.261 0.159 0.248
Entropy Index (H) 0.687 0.409 1 0.822 0.855 0.747 0.432 0.368 0.665
Dissimilarity (D) 0.546 0.424 0.822 1 0.913 0.617 0.348 0.262 0.563
Gini (G) 0.57 0.422 0.855 0.913 1 0.643 0.378 0.284 0.582
Normalized Exposure (NE) 0.868 0.243 0.747 0.617 0.643 1 0.467 0.496 0.784
Clotfelter (90% threshold) (C90) 0.479 0.261 0.432 0.348 0.378 0.467 1 0.617 0.457
Clotfelter (50% threshold) (C50) 0.516 0.159 0.368 0.262 0.284 0.496 0.617 1 0.495
Card-Rothstein (CR) 0.754 0.248 0.665 0.563 0.582 0.784 0.457 0.495 1

Mean (diagonal excluded) 0.515 0.265 0.554 0.499 0.516 0.541 0.382 0.355 0.505

RANK CORRELATIONS (KENDALL'S TAU-B), 2007/8

Table 4: Kendall’s Rank Correlation (τb) of CBSA Segregation Indices, 2007/8 School Year. C50 and C90 refer to Clotfelter

index with threshold κ = 0.5, 0.9, respectively. Universe is set of Core Based Statistical Areas that lie in 50 U.S. states and

District of Columbia. Schools that do not lie in a K-12 district that contains at least two schools are excluded. Data are

from the Common Core of Data (CCD). Ethnic groups are mutually exclusive: Asians, (non-Hispanic) whites, (non-Hispanic)

blacks, and Hispanics.

Rank correlations of the major indices across CBSAs, using Kendall’s τ b, are shown in

Table 4. The Mutual Information index is most correlated with Normalized Exposure index.

31See Reardon and Firebaugh [42, pp. 53-4].
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The symmetric Atkinson index, the only index that is Composition Invariant, is only weakly

correlated with the other indices.

Table 5 shows segregation indices for CBSA’s with at least 200,000 public school students

in K-12 districts. A city’s rankings according to the Mutual Information and symmetric

Atkinson indices appear in the first two columns. The entropy of the city’s public school

population appears in the second to last column and reflects the ethnic diversity of students in

the city. Since the Mutual Information index cannot exceed this quantity, its high ranking of

Chicago and New York are made possible by their diverse ethnic compositions. However, this

relation is not monotonic. San Francisco, Sacramento, and Las Vegas all have diverse (high-

entropy) ethnic distributions but low rankings by the Mutual Information index. Cleveland

and Detroit each has a high Mutual Information index despite its relatively low level of

ethnic diversity.

7 Conclusion

In this paper we give an axiomatic foundation for multigroup segregation, based only on

ordinal axioms. We first axiomatize the Atkinson segregation indices. These satisfy Com-

position Invariance: they depend not on the overall ethnic distribution of a district, but

rather only on how each ethnic group is distributed across schools. These indices should be

used only to compare districts with the same, fixed number of ethnic groups. In addition,

they should not be used with highly disaggregated ethnic schemas, because of their sensitiv-

ity to zeroes. Empirically, segregation measured with the Atkinson indices shows a steep

decline over the past twenty years, indicating a weakening of the effect of ethnicity on school

assignment.

We also axiomatize the Mutual Information index. This index violates Composition

Invariance but can be used to compare districts with different numbers of ethnic groups. As

it is not sensitive to zeroes, it can be used with disaggregated data. The Mutual Information

index has intuitive decompositions across locations and ethnic groups that make it suitable
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Rank 
by M

Rank 
by A

Abbreviated CBSA 
Name M A H D G NE C50 CR

1 2 Chicago 0.87 0.57 0.50 0.68 0.83 0.52 0.92 0.65 1.76 916875
4 1 Cleveland 0.62 0.57 0.51 0.73 0.87 0.58 0.86 0.67 1.21 286838
2 3 New York 0.72 0.49 0.38 0.59 0.75 0.40 0.86 0.61 1.87 2380186
3 4 Milwaukee 0.68 0.47 0.45 0.67 0.80 0.52 0.86 0.63 1.52 217910
6 7 Los Angeles 0.54 0.44 0.34 0.57 0.73 0.36 0.86 0.45 1.58 1598106
5 9 Philadelphia 0.57 0.43 0.37 0.59 0.75 0.43 0.74 0.54 1.53 698142
7 14 Atlanta 0.53 0.38 0.33 0.55 0.71 0.37 0.79 0.46 1.62 876725
13 10 Memphis 0.48 0.41 0.39 0.65 0.79 0.45 0.86 0.50 1.24 230947
11 13 Denver 0.50 0.41 0.44 0.65 0.81 0.53 0.72 0.60 1.12 387607
17 8 Detroit 0.45 0.43 0.39 0.58 0.75 0.43 0.63 0.54 1.15 586073
8 18 Washington 0.52 0.34 0.29 0.51 0.66 0.32 0.78 0.47 1.80 808730
22 5 Cincinnati 0.37 0.45 0.41 0.64 0.81 0.46 0.66 0.55 0.89 307831
16 12 Boston 0.47 0.41 0.35 0.59 0.74 0.39 0.64 0.47 1.34 539659
9 19 Miami 0.52 0.34 0.31 0.53 0.70 0.35 0.92 0.34 1.66 757016
14 15 Houston 0.47 0.38 0.27 0.48 0.64 0.28 0.82 0.38 1.75 1098990
19 11 Indianapolis 0.39 0.41 0.34 0.60 0.75 0.39 0.67 0.48 1.17 272227
10 20 Baltimore 0.50 0.33 0.36 0.58 0.75 0.44 0.75 0.52 1.42 382240
15 17 Dallas 0.47 0.35 0.27 0.49 0.65 0.30 0.75 0.38 1.73 1131521
12 21 San Francisco 0.49 0.33 0.25 0.46 0.61 0.25 0.73 0.35 1.95 398607
21 16 Columbus 0.38 0.37 0.34 0.56 0.74 0.39 0.58 0.48 1.10 265691
34 6 Pittsburgh 0.26 0.45 0.36 0.62 0.77 0.37 0.54 0.43 0.72 307888
20 22 Kansas City 0.39 0.33 0.31 0.53 0.68 0.37 0.64 0.47 1.26 321552
18 24 St. Louis 0.41 0.32 0.28 0.53 0.67 0.33 0.65 0.36 1.48 397309
25 23 Providence 0.35 0.32 0.30 0.57 0.72 0.38 0.50 0.39 1.16 213789
23 26 Nashville 0.36 0.30 0.28 0.54 0.69 0.33 0.64 0.40 1.28 219474
26 25 Austin 0.35 0.31 0.22 0.45 0.59 0.25 0.70 0.30 1.59 270394
24 28 San Diego 0.35 0.27 0.20 0.41 0.56 0.21 0.70 0.26 1.75 277529
27 29 Charlotte 0.34 0.26 0.22 0.46 0.60 0.27 0.64 0.35 1.53 265131
30 27 San Antonio 0.31 0.30 0.23 0.48 0.63 0.25 0.84 0.22 1.32 375797
28 33 Sacramento 0.31 0.22 0.17 0.39 0.52 0.18 0.45 0.22 1.85 259900
32 30 Minneapolis 0.29 0.26 0.23 0.47 0.62 0.28 0.35 0.29 1.26 500762
31 31 Tampa 0.29 0.23 0.19 0.41 0.55 0.21 0.60 0.28 1.53 369709
29 34 Orlando 0.31 0.20 0.18 0.39 0.53 0.20 0.69 0.25 1.70 319561
38 32 Portland, OR 0.19 0.22 0.15 0.37 0.51 0.15 0.25 0.20 1.25 315225
33 37 Virginia Beach 0.26 0.18 0.19 0.42 0.57 0.24 0.72 0.29 1.40 266285
36 35 Riverside 0.24 0.20 0.16 0.38 0.52 0.18 0.81 0.21 1.50 675464
37 36 Seattle 0.22 0.19 0.15 0.36 0.50 0.16 0.23 0.20 1.47 469854
35 39 Las Vegas 0.25 0.16 0.14 0.36 0.48 0.17 0.62 0.19 1.78 306603
39 38 Salt Lake City 0.19 0.16 0.17 0.43 0.56 0.21 0.21 0.16 1.15 210381
40 40 Phoenix 0.18 0.15 0.14 0.35 0.49 0.18 0.24 0.13 1.32 357194

Segregation of Public Schools in CBSA, 
2007/8 Entropy 

of CBSA

Public 
School 

Pop.

Table 5: Segregation of Public Schools Within CBSA’s, 2007/8 School Year. C50 refers to Clotfelter index with threshold

κ = 0.5. Universe is set of Core Based Statistical Areas that lie in 50 U.S. states and District of Columbia with at least

200,000 students. Schools that do not lie in a K-12 district that contains at least two schools are excluded. Data are from the

Common Core of Data (CCD). Ethnic groups are mutually exclusive: Asians, (non-Hispanic) whites, (non-Hispanic) blacks,

and Hispanics.
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for studying the sources of segregation in cross-section. Using these decompositions, we

show that public school segregation in the U.S. is driven primarily by differences in the

ethnic composition of districts within cities, and by segregation across U.S. states, where the

latter is due mainly to the distinct residential patterns of Hispanics.

Appendix A. Proofs

Proof of Claim 1

For part 1, let X,Y ∈ C have equal populations and equal group distributions. Then

T (X) = T (Y ) and for any Z ∈ C, P (X ] Z) = P (Y ] Z), so

S (X ] Z) ≥ S (Y ] Z)⇐⇒
X

n∈N(X)∪N(Z)

T nF2 (p
n) ≥

X
n∈N(Y )∪N(Z)

TnF2 (p
n)⇐⇒ S (X) ≥ S (Y )

As for part 2, let X 0 be the result of partitioning some school n ∈ G (X) into two schools,

n1 and n2. Then S (X 0)− S (X) equals πn1F3 (P, p
n1) + πn2F3 (P, p

n2)− πnF3 (P, p
n), which

is nonnegative as F3 is convex. If (say) n1 is empty, then πn1 = 0, πn2 = πn, and pn2 = pn.

If both schools have the same ethnic distribution, then pn1 = pn2 = pn. In both cases,

S (X 0) − S (X) = 0. Part 3 holds since rescaling a group has no effect on t. As for part

4, let X ∈ C be a district in which the set of ethnic groups is G. Let X 0 be the result of

partitioning some ethnic group g ∈ G into two ethnic groups, g1 and g2. Then

S (X 0)− S (X) = Pg1F4 (π, rg1) + Pg2F4 (π, rg2)− PgF4 (π, rg) .

If (say) g1 is empty, then Pg1 = 0 and Pg2 = Pg and rg2 = rg. If both ethnic groups have the

same distribution across schools, then rg1 = rg2 = rg. In both cases, S (X
0)− S (X) = 0.

Notation and Auxiliary lemmas

Before we prove our main results, we need some notation. We say that a school is a

ghetto school if all its students belong to the same group. Let XK =
¡
1, 1, . . . , 1| {z }
K groups

¢®
be
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the district with K groups of unit size who all attend the same school. Let X
K
=¿³

1, 0, . . . , 0| {z }
K groups

´
,
³
0, 1, 0, . . . , 0| {z }

K groups

´
, ...,

³
0, ..., 0, 1| {z }
K groups

´
be the district with K ghetto schools, each

of unit size. When the number of groups is clear from the context, we write X and X,

respectively. For any district X and any vector of nonnegative scalars α = (αg)g∈G, let

α ∗X denote the district in which the number of members of group g in school n is αgT
n
g .

For example, if X = h(1, 2) , (3, 4)i, and α = (2, 3), then α ∗X = h(2, 6) , (6, 12)i. We will

also apply this operation to individual schools; e.g., α ∗ (1, 2) = (2, 6). For any K-vector

t = (t1, ..., tK) ∈ [0, 1]K , let X(t) denote the district t ∗X
U
(1 − t) ∗X where 1 denotes a

K-vector of ones. City X(t) consists of the mixed school t, containing tg students from each

group g, and for each group g a ghetto school that contains 1− tg students of group g. For

any scalar α, let X(α) denote the district X(α1) that contains one school with α students

of each group and K ghetto schools, each with 1− α students.

We first prove some preliminary lemmas.

Lemma 1 Let < be a segregation ordering that satisfies CONT. For any districts X,Y,Z ∈

C, the sets A = {c ∈ [0, 1] : cX ] (1− c)Y < Z} and B = {c ∈ [0, 1] : Z < cX ] (1− c)Y }

are closed.

Proof. Let {ck} be a sequence of elements of A that converges to c. Then, ckX ] (1− ck)Y

is a sequence of districts in {X ∈ C(G,N) : X < Z} that converges to cX ] (1− c)Y (where

G and N are the group and school sets of cX ] (1− c)Y ). Since {X ∈ C(G,N) : X < Z} is

closed, cX ] (1− c)Y < Z, so c ∈ A. The argument for B is analogous. Q.E.D.

Lemma 2 Let < be either a segregation ordering on C = CK that satisfies SDP and CI or

a segregation ordering on C = CA that satisfies SDP, SI and GDP.

1. All districts in which every school is representative are equally segregated under <.

2. Any district in which every school is representative is weakly less segregated under <
than any district in which some school is unrepresentative.
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Proof. 1. Consider any district Y in which every school is representative. Number the

schools 1, ..., N . For each i = 1, ..., N , let Yi be the district that results from Y when the

first i schools of Y are combined into a single school. By SDP, for each i = 1, ..., N − 1,

Yi ∼ Yi+1. Hence, by transitivity, Y = Y1 ∼ YN. YN contains a single school. If C = CK
and CI holds, then YN ∼ XK and hence Y ∼ XK. If C = CA, and SI and GDP hold, then

YN ∼ X1 and hence Y ∼ X1.

2. Let Y be a district in which every school is representative and consider any district

X in which at least one school is unrepresentative. The above reasoning yields X < XN ,

where XN is the result of combining the students of X into a single school. By part 1,

XN ∼ Y . Therefore, X < Y . Q.E.D.

Lemma 3 Let < be a segregation ordering on C that satisfies SI, IND, and SDP. Let X

and X 0 be two districts with the same size and ethnic distribution such that X Â X 0. Let

1 ≥ α > β ≥ 0. Then αX ] (1− α)X 0 Â βX ] (1− β)X 0

Proof. By SI, (α− β)X Â (α− β)X 0. By IND,

βX ] (α− β)X ] (1− α)X 0 Â βX ] (α− β)X 0 ] (1− α)X 0.

The result then follows from SDP. Q.E.D.

Lemma 4 Let < be a segregation ordering on C that satisfies SI, IND, SDP, and CONT.

For any districts Z < X < Y such that Z Â Y and Y and Z have the same size and ethnic

distribution, there is a unique α ∈ [0, 1] such that X ∼ αZ ] (1− α)Y .

Proof. By Lemma 1, {α ∈ [0, 1] : αZ ] (1− α)Y < X} and {α ∈ [0, 1] : X < αZ ] (1− α)Y }

are closed sets. Any α satisfies X ∼ αZ ] (1− α)Y if and only if it is in the intersection of

these two sets. The sets are each nonempty as they contain 1 and 0, respectively, by SDP.

Their union is the whole unit interval since < is complete. Since the interval [0, 1] is con-

nected, the intersection of the two sets must be nonempty. By Lemma 3, their intersection

cannot contain more than one element. Q.E.D.
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Proof of Theorem 1

The index Aw clearly satisfies N. It satisfies CONT since Aw is a continuous function. As

shown in section 3.1, it also satisfies IND, SDP, and CI.

Now let < be a segregation ordering on CK that satisfies IND, SDP, N, CI, and CONT.
We will show that it must be represented by an index of the form Aw(X) by a series of

lemmas.

Lemma 5 All completely segregated districts have the same degree of segregation under <,
and they are weakly more segregated than any district in which any school is mixed.

Proof. Consider a completely segregated district X ∈ CK . Let X 0 be the district that

results from X when, for each group g ∈G, all schools that contain only members of group

g are combined into a single school. (X 0 thus consists of K schools, each of which contains

all the members of a single group.) By iteratively applying SDP, X ∼ X 0. By CI, X 0

is as segregated as any other district that consists of K schools, each of which contains all

the members of a single group. This implies that all completely segregated districts have

the same degree of segregation. Now any district that has at least one mixed school can

be converted into a completely segregated district by dividing each school n into K distinct

schools, each of which includes all and only the members of a single group. By SDP, this

procedure results in a weakly more segregated district. Q.E.D.

Lemma 6 1. X Â X. 2. For any α, β ∈ [0, 1] such that α > β, X(β) Â X(α).

Proof. By N, there exist districts X and Y such that X Â Y . By lemmas 2 and 5,

X < X Â Y < X, so X Â X. Part 2 then follows from Lemma 3. Q.E.D.

Lemma 7 For any district X, there is a unique αX ∈ [0, 1] such that X ∼ X(αX).

Proof. Follows from Lemma 4 and Lemma 6, part 1. Q.E.D.

Let the index S : C → [0, 1] be defined by S(X) = 1−αX . By Lemma 6, X < Y if and

only if 1− αX > 1− αY , so S represents <. It remains to show that S equals Aw for some
vector w of weights.
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Lemma 8 Let t = (t1, ..., tK) and v be two vectors in [0, 1]
K, such that t ≤ v. Then, X(t) <

X(v). If t ∈ (0, 1)K then X Â X(t) Â X.

Proof. Applying SDP twice, we obtain

X(t) = t ∗X
U
(1− t) ∗X ∼ t ∗X

U
(v− t) ∗X

U
(1− v) ∗X

< v ∗X
U
(1− v) ∗X = X(v).

Assume now that t ∈ (0, 1)K , and let t = max{t1, ..., tK}, t = min{t1, ..., tK}. Then X Â

X(t) < X(t) < X(t) Â X by Lemma 3 since 0 < t ≤ t < 1. Q.E.D.

Lemma 9 For any two vectors t,v ∈ [0, 1]K and for any γ ∈ (0, 1],

1. v∗X(t)
U
(1− v) ∗X ∼ X(v ∗ t)

2. If for some α ∈ [0, 1], X(t) ∼ X(α), then X(v ∗ t) ∼ X(αv).

Proof. 1. By definition ofX(t), v∗X(t)
U
(1− v)∗X = v∗

¡
t∗X

U
(1− t) ∗X

¢U
(1− v)∗

X, which by SDP is as segregated as (v ∗ t) ∗X
U
(1− v ∗ t) ∗X = X(v ∗ t).

2. By CI and IND, v∗X(t)
U
(1− v)∗X ∼ v∗X(α)

U
(1− v)∗X, which, by the previous

steps, implies X(v ∗ t) ∼ X(αv). Q.E.D.

For any group g and scalar β, let 1g (β) denote the K-vector with β in the gth place and

ones elsewhere.

Lemma 10 For each group g there is a fixed constant wg ≥ 0 such that for any β ∈ (0, 1],

X(1g (β)) ∼ X(βwg).

Proof. By Lemma 7, for each u ≥ 0 there is a unique scalar f (u) ∈ (0, 1] defined implic-

itly by X(1g (e
−u)) ∼ X(f (u)). Let u, v ∈ <+. By Lemma 9, X(1g (e

−u) ∗ 1g (e−v)) ∼

X(f(v)1g (e
−u)) ∼ X(f(u)f(v)). Therefore, f satisfies the functional equation

f(u+ v) = f(u)f(v) for all u, v ≥ 0. (7)
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Further, by Lemma 8, if u > v, then X(f (u)) ∼ X(1g (e
−u)) < X(1g (e

−v)) ∼ X(f(v)),

which by Lemma 6 implies that f(u) ≤ f(v). Therefore, f is nonincreasing, so it is continuous

at at least one point. Thus, by Theorem 1 in Aczél [1, pp. 38-39], either (a) f is identically

zero, or (b) f(0) = 1 and, for all u > 0, f(u) = 0, or (c) there is a wg ≥ 0 such that

f(u) = e−wgu. The function f cannot be identically zero because then X(1) ∼ X(1g (1)) ∼

X(f(0)) = X(0), which contradicts Lemma 6. Further, f(u) cannot equal zero for u > 0,

because, by Lemma 8, f(u) ≥ e−u. Hence, since f is nonincreasing, there must be a wg ≥ 0

such that f(u) = e−wgu. But then by definition of f , X(1g (e
−u)) ∼ X(f (u)) = X(e−wgu).

The claim follows by setting β = e−u. Q.E.D.

Lemma 11 There are fixed, non-negative weights wg ≥ 0 for g = 1, ...,K such that for

any t = (t1, . . . , tK) ∈ [0, 1]K the unique α ∈ [0, 1] that satisfies X(t) ∼ X(α) is given by
KQ
g=1

(tg)
wg . Further, the weights add up to one.

Proof. Assume first that t ∈ (0, 1]K . By Lemma 10, X(1g (tg)) ∼ X(t
wg
g ) for all g =

1, . . .K. Note that t =11 (t1) ∗ 12 (t2) ∗ . . . ∗ 1K (tK). Repeated application of Lemma 9

yields X(t) = X
³QK

g=1 t
wg
g

´
. In order to complete the proof we need to show that the

weights wg add up to one. Consider the district X(α) where α ∈ (0, 1). By the previous

conclusion X (α) ∼ X
³QK

g=1 α
wg
´
. By Lemma 6,

QK
g=1 α

wg = α, so the weights wg add

up to one. Assume now that t ∈ [0, 1]K\(0, 1]K . By Lemma 7, there is an α ∈ [0, 1]

such that X(t) ∼ X(α). We need to show that α = 0. Let t(ε) = (t1(ε), ..., tK(ε)) be the

school that results from t after replacing the 0 components by ε > 0. Since t(ε) ∈ (0, 1]K ,

by the previous argument X(t(ε)) ∼ X(α(ε)) where α(ε) =
QK

g=1 tg(ε)
wg . By Lemma 8,

X(t) < X(t(ε)), which implies X(α) < X(α(ε)). Hence, by Lemma 6, α( ) ≥ α ≥ 0. Since

α(ε)→ 0 as ε→ 0, we obtain that α = 0. Q.E.D.

Lemma 12 For every district X ∈ C there is a unique αX ∈ [0, 1] such that X ∼ αXX ]

(1− αX)X. Further, this unique αX is
P

n∈N(X)

KQ
g=1

¡
tng
¢wg , where the weights wg are those

found in Lemma 11.
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Proof. By CI it is enough to prove the statement for districts where all groups are of unit

measure. Also, by SDP we can restrict attention to districts where for each group there is

at most one ghetto. So let X = (
Ur

n=1 (t
n ∗X)) ] (1−

Pr
n=1 t

n) ∗ X be a district with r

non-ghetto schools and where all groups are of unit measure. The proof is by induction on

the number r of non-ghetto schools. By Lemma 11, the statement of the theorem holds for

r = 1. Assume that the statement is true for all districts with m − 1 non-ghetto schools,

and let r = m. There are two cases.

Case 1: there is at least one non-ghetto school n such that tng > 0 for all g = 1, . . . ,K.

Assume without loss of generality that the totally mixed school is school r, and thatQK
g=1

¡
tng
¢wg ≤ QK

g=1

¡
trg
¢wg for n = 1, 2, . . . , r − 1. Assume first that tng ≤ 1/m for all n =

1, 2, . . . ,m and g = 1, . . . ,K. Define etng = tng/(1− tmg ) for g = 1, ...,K and n = 1, 2, . . . ,m.

Note that etng ≤ 1/(m − 1) and that
QK

g=1

¡etng¢wg ≤ QK
g=1

³ftmg ´wg for n = 1, 2, . . . ,m − 1.

Define τn =
QK

g=1

¡
tng/t

m
g

¢wg = QK
g=1

³etng/ftmg ´wg ≤ 1 for n = 1, 2, . . . ,m− 1. We can write
X =

Um−1
n=1 (t

n ∗X) ] (1−
Pm

n=1 t
n) ∗X ] (tm ∗X). Let etn = ¡etng¢Kg=1. By CI,
X ∼ Y ]

³ftm ∗X´ (8)

where Y =
Um−1

n=1

³etn ∗X´]³1−Pm−1
n=1

etn´∗X.32 District Y has m−1 non-ghetto schools.
Consequently, by the induction hypothesis,

Y ∼ αYX ] (1− αY )X. (9)

where αY =
Pm−1

n=1

QK
g=1

¡etng¢wg . Define
Y 0 =

m−1]
n=1

³
τnftm ∗X´ ]Ã1− m−1X

n=1

τnftm! ∗X. (10)

All entries in Y 0 are nonnegative since τn ≤ 1 for all n and since ftmg ≤ 1/(m− 1) for all g.
As
Pm−1

n=1

QK
g=1

³
τnftmg ´wg =Pm−1

n=1

QK
g=1

¡etng¢wg = αY , Lemma 11 implies that

Y 0 ∼ αYX ] (1− αY )X. (11)

32Y has no negative entries since 0 ≤ etng ≤ 1/(m− 1) for all g and n.
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It follows from (9) and (11) that Y ∼ Y 0. Consequently,

X ∼ Y ]
³ftm ∗X´ by (8)

∼ Y 0 ]
³ftm ∗X´ by IND

∼
Um−1

n=1

³
τnftm ∗X´ ] ³1−Pm−1

n=1 τnftm´ ∗X ]
³ftm ∗X´ by (10)

∼
¡Pm−1

n=1 τn + 1
¢ftm ∗X ]

³
1−

Pm−1
n=1 τnftm´ ∗X by SDP

∼
¡Pm−1

n=1 τn + 1
¢
tm ∗X ] (1−

¡
1 +

Pm−1
n=1 τn

¢
tm) ∗X by CI and definition of ftm.

Therefore, using Lemma 11, X ∼ αXX ] (1− αX)X, where

αX =

Ã
m−1X
n=1

τn + 1

!
KY
g=1

¡
tmg
¢wg = m−1X

n=1

KY
g=1

¡
tng
¢wg + KY

g=1

¡
tmg
¢wg .

Consider now the case where 1/m < tng ≤ 1 for some n = 1, 2, . . . ,m and g = 1, . . . ,K.

Define btn = 1
m
tn for n = 1, 2, . . . ,m. Let bX =

Um
n=1

³btn ∗X´ ] ³1−Pm
n=1
btn´ ∗X. Each

entry in each vector btn is at most 1/m. By the preceding argument, there is a uniquebαX ∈ [0, 1] such that bX ∼ bαXX ] (1− bαX)X and this unique bαX is
Pm

n=1

QK
g=1

¡btng¢wg . By
SDP, bX ∼ 1

m
X ] (1− 1

m
)X. Therefore,

1

m
X ] (1− 1

m
)X ∼ bαXX ] (1− bαX)X ∼

1

m
(mbαX)X ] (1− 1

m
(mbαX))X

∼ 1

m
(mbαX)X ] 1

m
(1− (mbαX))X ] (1− 1

m
)X

by SDP. Consequently, by IND and CI, X ∼ (mbαX)X ] (1− (mbαX))X, so the unique αX

that we are looking for is αX = mbαX =
Pm

n=1

QK
g=1

¡
tng
¢wg .

Case 2: for every non-ghetto school n there is a group g such that tng = 0. By Lemma 7 there

is an α ∈ [0, 1] such that X ∼ X(α). We need to show that α = 0. For any ε ∈ (0, 1), let

X(m, ε) be the district that is obtained from X by transferring to school m, a representative

proportion ε of the students of the other schools. Formally,

X(m, ε) = [(tm + ε(1− tm)) ∗X] ] (1− ε)

"
m−1]
n=1

(tn ∗X) ]
Ã
1−

rX
n=1

tn

!
∗X

#
.

By SDP, applied twice, X < X(m, ε). By Lemma 7 there is an α(ε) ∈ [0, 1] such that

X(m, ε) ∼ X(α(ε)). Consequently, X(α) < X(α(ε)), which by Lemma 6 implies that
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α(ε) ≥ α ≥ 0. But the district X(m, ε) has school m with tmg + ε(1 − tmg ) > 0 students

of group g, while all other schools n have tng = 0 for some g. So, by Case 1, α(ε) =QK
g=1

¡
tmg + ε(1− tmg )

¢
. Since α(ε)→

QK
g=1 t

m
g = 0 as ε→ 0, we obtain that α = 0. Q.E.D.

This completes the proof of Theorem 1.

Proof of Theorem 2

The Mutual Information indexM clearly satisfies N, SYM, and SI. It is a continuous function

of the Tn
g ’s and thus satisfies CONT. As shown in section 3.1, it satisfies IND, SDP, and

GDP.

Now let < be a segregation ordering that satisfies SI, IND, SDP, N, GDP, SYM, and

CONT on CA. We will show that < is represented by the Mutual Information Index. For
any district X, let the groups be numbered g = 1, . . . ,K. For any ethnic distribution P =

(Pg)
K
g=1, let X(P ) denote a district consisting of K ghetto schools, where school g = 1, ..., K

contains Pg members of each group g. Let X(P ) denote the one-school district with ethnic

distribution P and unit population. That is, X(P ) = h(P1, 0, ..., 0), ...(0, ..., 0, PK)i and

X(P ) = h(P1, ..., PK)i. If X has group distribution P , then by SDP and SI, X(P ) < X.

For any two distributions P = (P1, ..., PK) and P 0 = (P 0
1, ..., P

0
K0), let P × P 0 denote the

distribution
¡
(PgP

0
g0)

K
g=1

¢K0

g0=1
. By SDP, X (P × P 0) is at least as segregated as both X(P )

and X(P 0).

Let X be a district with K 0 groups and ethnic distribution P 0 = (P 01, ..., P
0
K0). For any

K ≥ 1 and any distribution P = (P1, ..., PK) let φ
P (X) be the district that results after

splitting each ethnic group g in district X into K ethnic groups in proportions given by P ,

such that each of these K ethnic groups has the same distribution across schools. That is,

the T n
g members of each ethnic group g in each school n of X are split up into K ethnic

groups of size P1T
n
g , ..., PKT

n
g . District φ

P (X) has group distribution P × P 0.

By Nontriviality there exist districts X1 Â X0. Let P (X1) be the group distribution

of district X1.
33 By GDP and SI, X (P (X1)) < X1. Let X be an arbitrary district and

33From now on, we fix X1 and its distribution P (X1). We will show that the results are independent of
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let bP = ( bP1, ..., bPK) be a distribution such that X( bP ) < X and X( bP ) < X (P (X1)). (For

instance, let bP = P × P (X1), where P is the group distribution of X). By Lemma 4 there

is a unique bα such that
X ∼ bαX( bP ) ] (1− bα)X( bP ). (12)

and a unique bβ ∈ [0, 1] such that X (P (X1)) ∼ bβX( bP ) ] (1 − bβ)X( bP ). Moreover,

X (P (X1)) Â X0 < X( bP ) by Lemma 2, so bβ > 0. Define the index S : C → < by34

S(X) = h (P (X1))
bαbβ (13)

We now verify that bα/bβ does not depend on the particular choice of bP , so S is well de-

fined. Consider another distribution eP = ( eP1, ..., ePK0) such that X( eP ) < X and X( eP ) <
X(P (X1)). Let eα uniquely satisfy X ∼ eαX( eP )] (1−eα)X( eP ) and let eβ > 0 uniquely satisfy

X (P (X1)) ∼ eβX( eP ) ] (1− eβ)X( eP ). By GDP,
X ∼ eαφP ³X( eP )´ ] (1− eα)φP ³X( eP )´ (14)

Similarly, applying the transformation φP to (12) and using GDP,

X ∼ bαφP ³X( bP )´ ] (1− bα)φP ³X( bP )´ . (15)

The districts φP
³
X( bP )´ and φP

³
X( eP )´, as well as φP ³X( bP )´ and φP

³
X( eP )´, have the

same number of groups (KK 0) and (up to a permutation) the same ethnic distribution.

Further, by Lemma 2, φP
³
X( bP )´ ∼ φP

³
X( eP )´. Assume w.l.o.g. that φP

³
X( eP )´ <

φP
³
X( bP )´. By Lemma 4, there is a unique γ such that φP ³X( bP )´ ∼ γφP

³
X( eP )´] (1−

γ)φP
³
X( eP )´. Applying SI, IND (twice) and SDP, it follows from (15) that

X ∼ bαγφP ³X( eP )´ ] (1− γbα)φP ³X( eP )´ . (16)

By (16), (14), and the uniqueness of eα, eα = bαγ. Exactly the same reasoning leads to eβ = bβγ.
Consequently bα/bβ = eα/eβ, and S is well-defined.

these choices.

34In particular, S
¡
X (P (X1))

¢
= h(P (X1)).
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Lemma 13 The index S represents <.

Proof. Let X,Y ∈ C. Let the group distribution of X (respectively, Y ) be P (P 0). LeteP denote the group distribution that results from dividing each group in the distribution

P in proportions given by P 0, and then dividing each group in the resulting distribution

by the proportions given by P (X1). By GDP and SI, X
³ eP´ < X, X

³ eP´ < Y , and

X
³ eP´ < X (P (X1)). Let αX uniquely satisfy X ∼ αXX

³ eP´ ] (1 − αX)X
³ eP´, αY

uniquely satisfy Y ∼ αYX
³ eP´ ] (1 − αY )X

³ eP´, and β uniquely satisfy X (P (X1)) ∼

βX
³ eP´ ] (1 − β)X

³ eP´. Then X < Y iff αX ≥ αY by Lemma 3. This holds iff

S(X) ≥ S(Y ) since β > 0. Q.E.D.

The next lemma shows that S is linear among districts that contain K equal-size ethnic

groups.

Lemma 14 Assume X,Y ∈ CA each contains exactly K ethnic groups, of equal sizes. Then

S (X ] Y ) =
T (X)

T (X) + T (Y )
S (X) +

T (Y )

T (X) + T (Y )
S (Y )

Proof. Let Z ∼ αZX( bP ) ] (1− αZ)X( bP ) for Z = X,Y , where bP is a group distribution

such that X( bP ) < X, X( bP ) < Y , and X( bP ) < X(P (X1)). Since X( bP ) and X( bP ) each has
unit population, by IND, SDP, and SI,

X ] Y ∼ T (X)
h
αXX( bP ) ] (1− αX)X( bP )i ] T (Y )

h
αYX( bP ) ] (1− αY )X( bP )i

∼ αXT (X) + αY T (Y )

T (X) + T (Y )
X( bP ) ]µ1− αXT (X) + αY T (Y )

T (X) + T (Y )

¶
X( bP ).

Q.E.D.

Let CQ consist of all districts X in CA such that for each school n and group g in X,

Tn
g is a rational number. We first show that S (X) equals the Mutual Information index

for all X ∈ CQ. Let the “flattening” operator ψ be defined as follows. For any X in CQ

and each group g in X, let ag ≥ 0 and bg > 0 be the smallest non-negative integers such

that Pg (X) =
ag
bg
. Let lcm (X) be the least common multiple of the denominators bg. Let
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m = k ∗ lcm (X) for any positive integer k, and consider the district m
T (X)

X. In this district,

the number of students in each group g is mag
bg
, an integer. Let ψ (X,m) be the result of

splitting each group g in the district m
T (X)

X into mag
bg
subgroups, each of size one and having

the same distribution across schools By SI and GDP, ψ (X,m) ∼ X. Note that ψ (X,m)

has m groups each of size one. Finally, define ψ (X) = ψ (X, lcm (X)).

For any positive integer k, let Σk be the set of permutations σ : {1, . . . k} → {1, . . . k}.

By SYM, σ (ψ (X)) ∼ ψ (X) for all σ ∈ Σlcm(X), and moreover the two districts have the

same group distribution. Let bX =
U

σ∈Σlcm(X) σ (ψ (X)). By Lemma 14, S (X) = S
³ bX´.

Let ψ (X)n be the single-school district whose only school is the nth school of ψ (X)

(the flattened version of school n in X). That is, for each group g ∈ G, the school in

ψ (X)n contains M (X)Pg (X) equal-sized ethnic groups, each consisting of t
n
g (X) students.

Note that in order to construct ψ (X)n it suffices to know the group distribution of X,

which we write P , and the group distribution of school n, which we write pn. This is so

because both M(X) and tng (X) can be written as functions of P and pn only. Lettingbn = Uσ∈ΣM σ (ψ (X)n) be the subdistrict that consists of all group permutations of ψ (X)n,

we can group the schools in bX into subdistricts bX (n) according to the school n in X from

which they came: bX =
U

n∈N(X)
bX (n). By Lemma 14, S ³ bX´ = P

n∈N(X) π
nS
³ bX (n)´

where πn = Tn(X)
T (X)

. In order to construct bX (n) it suffices to know the group distribution of
X, and the group distribution of school n. Hence, we can write

S (X) =
X

n∈N(X)

πnf (pn, P ) where pn = (pn1 , ..., p
n
K) and P = (P1, ..., PK) (17)

and f (pn, P ) = S
¡U

σ∈ΣM(X) σ (ψ (X)
n)
¢
.

We now extend the domain of the function f to permit the sum of the Pg’s to be less

than one. For all K-tuples of nonnegative numbers (p1, ..., pK) and (P1, ..., PK) that satisfyPK
g=1 pg = 1,

PK
g=1 Pg < 1, and pg > 0⇒ Pg > 0, define

f ((p1, ..., pK) , (P1, ..., PK)) = f

Ã
(p1, ..., pK , 0) ,

Ã
P1, ..., PK, 1−

KX
g=1

Pg

!!
. (18)
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Lemma 15 For any two K-tuples p and P of nonnegative rational numbers satisfyingPK
g=1 pg = 1,

PK
g=1 Pg ≤ 1, and such that pg > 0⇒ Pg > 0, and for any rational α ∈ (0, 1),

f ((p1, ..., pK) , (P1, ..., PK)) = f ((αp1, (1− α) p1, p2, . . . , pK) , (αP1, (1− α)P1, P2, . . . , PK)) .

Proof. Assume first that
PK

g=1 Pg = 1. For g = 1, ..., K, let ag ≥ 0 and bg > 0 be the

smallest non-negative integers such that Pg (X) =
ag
bg
. Let lcm (X) be the least common

multiple of b1, ..., bK . Consider a district X ∈ CQ with group distribution P , which contains

a school n with group distribution p. Let α = c0
c1
∈ (0, 1), where c0 and c1 are nonnegative

integers. Let X 0 ∈ CQ be the district that results from splitting group 1 into two groups, 1a
and 1b, in proportions α and 1 − α, respectively. Note that lcm (X 0) is the least common

multiple of c1b1, b2, ..., bK . Importantly, lcm (X 0) is an integer multiple of lcm (X), and

ψ (X 0, lcm (X 0)) and ψ (X, lcm (X 0)) are identical districts. Hence, by definition of f ,

f ((αp1, (1− α) p1, p2, ..., pK) , (αP1, (1− α)P1, P2, ..., PK))

= S

⎛⎝ ]
σ∈Σlcm(X0)

σ
¡
ψ (X 0, lcm (X 0))

n¢⎞⎠ = S

⎛⎝ ]
σ∈Σlcm(X0)

σ
¡
ψ (X, lcm (X 0))

n¢⎞⎠
= S

⎛⎝ ]
σ∈Σlcm(X)

σ (ψ (X, lcm (X))n)

⎞⎠ = f ((p1, p2, ..., pK) , (P1, P2, ..., PK))

As for the penultimate equality, note that ψ (X, lcm (X 0)) is the result of splitting each

group in ψ (X, lcm (X)) into lcm(X0)
lcm(X)

identically distributed subgroups, so ψ (X, lcm (X 0)) ∼

ψ (X, lcm (X)) by GDP. The equality then follows from SYM and Lemma 14. This proves

the claim for the case
PK

g=1 Pg = 1. For general P ,

f ((pn1 , ..., p
n
K) , (P1, ..., PK))

= f
³
(pn1 , ..., p

n
K, 0) ,

³
P1, ..., PK, 1−

XK

g=1
Pg

´´
= f

³
(αpn1 , (1− α) pn1 , p

n
2 , ..., p

n
K , 0) ,

³
αP1, (1− α)P1, P2, ..., PK, 1−

XK

g=1
Pg

´´
= f ((αpn1 , (1− α) pn1 , p

n
2 , .., p

n
K) , (αP1, (1− α)P1, P2, ..., PK))
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Q.E.D.

For any rational c ∈ [0, 1], define φ (c) = f ((1, 0) , (c, 1− c)).

Lemma 16 Fix an arbitrary probability distribution p = (p1, ..., pK) with p1 > 0, and two

K-tuples of nonnegative numbers P = (P1, ..., PK) and eP =
³ eP1, P2, ..., PK

´
such thatPK

g=1 Pg ≤ 1,
PK

g=1
ePg ≤ 1, and eP1 > 0. Assume that Pg > 0 whenever pg > 0. Then³

f (p, P )− f
³
p, eP´´

p1
= φ (P1)− φ

³ eP1´ . (19)

Proof. Let eK1 be the K-vector (1, 0, ..., 0). We will show that³
f (p, P )− f

³
p, eP´´

p1
= f

¡
eK1 , P

¢
− f

³
eK1 , eP´ . (20)

Equation (20) then implies (19) by Lemma 15. Assume without loss of generality thateP1 ≤ P1. If P1 = 1, then p1 = 1, so (20) holds trivially. So assume that P1 < 1 andPK
g=1 Pg = 1. By Lemma 15, we may assume that there are at least two nonempty groups

other than group 1. Let λ = min{Pg : Pg > 0}. For any π1 ∈ [0, λ] and c ∈ [0, 1],

we first construct two districts X (π1, c) and Y (π1, c) that have the same population of 1

and group distribution P . The first school in each district is constructed as follows. Let

school 1 in X (π1, c) have group distribution p and a total of π1 students, and let school 1

in district Y (π1, c) contain only group-1 students (so its group distribution is eK1 ), and let

the two schools have the same number of members of group 1. Since π1, the total number

of students in school 1 of district X (π1, c), does not exceed λ, the number of students of

each group g that attend that school, π1pg, does not exceed the total number of students

of group g, Pg, in that district. Also, since school 1 in Y (π1, c) has the same number of

group-1 students as school 1 in X (π1, c) and contains no other students, the number of

group-1 students that attend school 1 in Y (π1, c), π1p1, will not exceed the total number of

group-1 students, P1, in district Y (π
1, c).

In each district, let school 2 be a ghetto school that contains the remaining P1 − π1p1

students who belong to group 1. The remaining schools, which contain only members of
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groups 2 through K, are constructed as follows. For any c ∈ [0, 1], in each district let a

proportion c of the students in each group g > 1 who are not in school 1 be allocated by

themselves to a ghetto school, and let all the remaining students in each group g > 1 who are

not in school 1 be allocated to in a single mixed school. Thus, each district contains K + 2

schools in total. The example of three ethnic groups appears below, where rows represent

groups and columns represent schools:

X
¡
π1, c

¢
=

⎛⎜⎜⎜⎝
π1p1 P1 − π1p1 0 0 0

π1p2 0 c (P2 − π1p2) 0 (1− c) (P2 − π1p2)

π1p3 0 0 c (P3 − π1p3) (1− c) (P3 − π1p3)

⎞⎟⎟⎟⎠

Y
¡
π1, c

¢
=

⎛⎜⎜⎜⎝
π1p1 P1 − π1p1 0 0 0

0 0 cP2 0 (1− c)P2

0 0 0 cP3 (1− c)P3

⎞⎟⎟⎟⎠
We will now show that there is a π1 ∈ (0, λ], and c0, c1 ∈ [0, 1] such that X (π1, c0) ∼

Y (π1, c1). First, for any π1 ∈ [0, λ] and 1 ≥ c0 ≥ c ≥ 0, SDP and IND imply that

X (π1, c0) < X (π1, c) and Y (π1, c0) < Y (π1, c). In addition, for any π1 ∈ [0, λ] and

c ∈ [0, 1], X (0, 1) < X (π1, c) < X (0, 0) and Y (0, 1) < Y (π1, c) < Y (0, 0) by SDP and

IND. Finally, for any c ∈ [0, 1], X (0, c) = Y (0, c).

If X (0, 1) ∼ X (0, 0), then X (π1, c0) ∼ Y (π1, c1) for all π
1 ∈ (0, λ] and c0, c1 ∈ [0, 1],

so we are done. If X (0, 1) Â X (0, 0), then by Lemma 3 and IND, X (0, 1) Â X (0, 1/2) Â

X (0, 0). By Lemma 1, the sets {c ∈ [0, 1] : cY (λ, 1) ] (1− c)Y (0, 1) 4 X (0, 1/2)} and

{c ∈ [0, 1] : cY (λ, 0) ] (1− c)Y (0, 0) < X (0, 1/2)} are both closed. Hence, their comple-

ments are the intersections of open sets with [0, 1]. Moreover, their complements are

nonempty as they each contain c = 0. Thus, there is an ε ∈ (0, 1] such that for all

c ∈ [0, ε), cY (λ, 1) ] (1− c)Y (0, 1) < X (0, 1/2) < cY (λ, 0) ] (1− c)Y (0, 0). However,

by SDP, for any c, c0 ∈ [0, 1], cY (λ, c0) ] (1− c)Y (0, c0) ∼ Y (cλ, c0). We have shown that

there is an ε0 ∈ (0, λ] such that for all π1 ∈ [0, ε0), Y (π1, 1) < X (0, 1/2) < Y (π1, 0). The

same argument shows that there is an ε00 ∈ (0, λ] such that for all π1 ∈ [0, ε), X (π1, 1) <
X (0, 1/2) < X (π1, 0). Let ε = min {ε0, ε00}. By Lemma 1, for all π1 ∈ [0, ε), the sets
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{c ∈ [0, 1] : cY (π1, 1) ] (1− c)Y (π1, 0) < X (0, 1/2)} and

{c ∈ [0, 1] : cY (π1, 1) ] (1− c)Y (π1, 0) 4 X (0, 1/2)} are both closed. By the preceding,

they are nonempty: the first set contains c = 1 while the second contains c = 0. Moreover,

their union is the unit interval as < is complete. Since the unit interval is connected, the

intersection of the two sets must be nonempty. Let c1 be in this intersection. By SDP, we

have shown that Y (π1, c1) ∼ X (0, 1/2). An analogous argument shows that there must be

a c0 ∈ [0, 1] such that X (π1, c0) ∼ X (0, 1/2). Let X = X (π1, c0) and Y = Y (π1, c1).

We have now constructed districts X ∼ Y with the same (unit) population and group

distribution (P1, ..., PK), such that the first school in X has group distribution p, the first

school in Y has group distribution eK1 , and all remaining group-1 students are located in a

ghetto school (“school 2”) in each district. Letting n index the schools in X and πn denote

the number of students in school n, by construction (and using (17)), we can write

S (X) = π1f (p, P ) +
¡
P1 − π1p1

¢
f
¡
eK1 , P

¢
+

X
n∈N(X)\{1,2}

πnf (pn, P ) .

Now let T 0 > 0 and β ∈ (0, 1) be such that 1+T 0β
1+T 0 P1 =

eP1, and let Z consist of a single school
with T 0 students and group distribution pZ = (βP1, P2, ..., PK , (1− β)P1). Note that district

X]Z has group distribution P 0 =
³
1+T 0β
1+T 0 P1, P2, ..., PK ,

T 0(1−β)
1+T 0 P1

´
=
³ eP1, P2, ..., PK , P1 − eP1´.

Since by (18), f ((p1, ..., pK , 0) , P
0) = f

³
p,
³ eP1, P2, ..., PK

´´
= f

³
p, eP´, we can write

(1 + T 0)S (X ] Z) = π1f
³
p, eP´+ ¡P1 − π1p1

¢
f
³
eK1 , eP´+ X

n∈N(X)\{1,2}

πnf
³
pn, eP´+ T 0f

¡
pZ , P 0¢

But for all n ∈N(X) \ {1, 2}, pn1 = 0, so by Lemma 15, f (pn, P ) = f ((pn, 0), P 0) = f
³
pn, eP´.

Accordingly,

S (X)− (1 + T 0)S (X ] Z) + T 0f
¡
pZ , P 0¢

= π1
³
f (p, P )− f(p, eP )´+ ¡P1 − π1p1

¢ ³
f
¡
eK1 , P

¢
− f(eK1 , eP )´ .

Similarly, letting m index the schools in Y and bπm denote the number of students in school
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m, we can obtain

S (Y )− (1 + T 0)S (Y ] Z) + T 0f
¡
pZ , P 0¢

= bπ1 ³f ¡eK1 , P¢− f(eK1 , eP )´+ ¡P1 − π1p1
¢ ³

f
¡
eK1 , P

¢
− f(eK1 , eP )´ .

But since S(X) = S(Y ) and since both X and Y have the same population and group dis-

tribution, by IND, S(X ] Z) = S(Y ] Z). This implies that S (X)− (1 + T 0)S (X ] Z) =

S (Y )−(1 + T 0)S (Y ] Z), so π1
³
f (p, P )− f

³
p, eP´´ = bπ1 ³f ¡eK1 , P¢− f

³
eK1 , eP´´. Equa-

tion (20) then follows since bπ1 = π1p1.

For the case
PK

g=1 Pg < 1, let bP = ³1−PK
g=2 Pg, P2, ..., PK

´
. By the prior result (twice),³

f (p, P )− f
³
p, eP´´

p1
=

³
f (p, P )− f

³
p, bP´´

p1
+

³
f
³
p, bP´− f

³
p, eP´´

p1

=
³
f
¡
eK1 , P

¢
− f

³
eK1 , bP´´+ ³f ³eK1 , bP´− f

³
eK1 , eP´´

= f
¡
eK1 , P

¢
− f

³
eK1 , eP´

implying (20) in this case as well. Q.E.D.

The preceding two lemmas imply that f can be disaggregated into a weighted sum of

group-specific components. For any probability distributions p = (p1, ..., pK) and P =

(P1, ..., PK) such that the support of P contains the support of p, and for any g = 1, ..., K

let Qg = (P1, ..., Pg, pg+1, ..., pK) and let Q
0 = p. Since f satisfies SYM, we may assume

the groups are arranged so that pg − Pg is nonincreasing in g; this implies that the sum of

elements of each Qg does not exceed one. For any g = 1, ..., K, let eKg be a K-vector with 1

in the gth place and zeroes elsewhere. Since f (p, p) = 0,

f (p, P ) =
KX
g=1

£
f (p,Qg)− f

¡
p,Qg−1¢¤ = X

g=1,...,K:
pg>0

pg
f (p,Qg)− f (p,Qg−1)

pg

=
X

g=1,...,K:
pg>0

pg [φ (Pg)− φ (pg)] (by Lemma 16) (21)

(By Lemma 15, if pg = 0, then f (p,Qg) = f (p,Qg−1), which implies the second equality.)

Given this disaggregation, it remains to show that φ is the logarithmic function.
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By (21) and Lemma 15, for any rational Pg, pg ∈ (0, 1] and positive integer m,

pg [φ (Pg)− φ (pg)] = m
pg
m

∙
φ

µ
Pg

m

¶
− φ

³pg
m

´¸
= pg

∙
φ

µ
Pg

m

¶
− φ

³pg
m

´¸
.

Accordingly, for any rational α ∈ (0, 1] and positive integers m0 ≤ m1,

φ

µ
α
m0

m1

¶
− φ

µ
m0

m1

¶
= φ

µ
α
1

m1

¶
− φ

µ
1

m1

¶
= φ (α)− φ (1)

Since φ (1) = 0, this implies that φ (αβ) = φ (α) + φ (β) for all rational α, β in (0, 1].

For any positive integer m, define bφ (m) = φ (1/m). Note that for any positive integers

m0 and m1, bφ (m0m1) = φ
³

1
m0m1

´
= φ

³
1
m0

´
+ φ

³
1
m1

´
= bφ (m0) + bφ (m1). Hence, bφ is a

completely additive number theoretic function (Aczel and Daroczy [1, def. 0.4.1, p. 16]).

Moreover, for any positive integer m,

φ

µ
1

m+ 1

¶
= φ

µ
1

m

m

m+ 1

¶
= φ

µ
1

m

¶
+ φ

µ
m

m+ 1

¶
=⇒ bφ (m+ 1)− bφ (m) = φ

µ
m

m+ 1

¶
≥ 0

so bφ is nondecreasing. Thus, by Corollary 0.4.17 in Aczel and Daroczy [1, p. 20], there is a
nonnegative constant c such that bφ (m) = c log2m for positive integers m. But this implies

that for any positive integers m0 ≥ m1,

φ

µ
1

m1

¶
= φ

µ
1

m0

m0

m1

¶
= φ

µ
1

m0

¶
+ φ

µ
m0

m1

¶
=⇒ φ

µ
m0

m1

¶
= φ

µ
1

m1

¶
− φ

µ
1

m0

¶
= bφ (m1)− bφ (m0) = −c log2

µ
m0

m1

¶
Recalling that P (X1) = (P1(X1), ..., PK (X1)) is the group distribution of X1, our above

results imply that

S
¡
X (P (X1))

¢
=

KX
g=1

Pg (X1) [φ (Pg (X1))− φ (1)] = −c
KX
g=1

Pg (X1) log2 (Pg (X1)) = cH (P (X1))

However, S
¡
X (P (X1))

¢
also equals h (P (X1)) (footnote 34). Accordingly, c must equal

one. Thus, φ = log2 and we conclude that S equals the Mutual Information index on CQ.
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It remains to extend this result to CA. Let X ∈ CA be an arbitrary district with group

set G and school set N . Let
©
Xk
ª
be a sequence of districts in C(G,N) that converges to

X, such that in each Xk the number of students Tn
g in each school n in each group g is

rational. We want to show that S(Xk) → S(X). Since the Mutual Information index is a

continuous function, this will show that S is the Mutual Information index at X as well.

Assume for the moment (we will show this soon) that there is a group distribution bP such

that X( bP ) < Xk for all k and X( bP ) < X (P (X1)). Let α and αk be the unique numbers

such that X ∼ αX( bP ) ] (1 − α)X( bP ) and Xk ∼ αkX( bP ) ] (1 − αk)X( bP ). It is enough
to show that αk → α. Assume not. Then, since αk ∈ [0, 1], there must be a convergent

subsequence αk → α0 6= α. Suppose first that α0 > α and let α00 = (α0+α)/2. This means

that there is an L < ∞ such that for all > L, Xk < α00X( bP ) ] (1 − α00)X( bP ). Since
the ordering satisfies Continuity, X < α00X( bP ) ] (1 − α00)X( bP ) as well. But this implies,
wrongly, that α ≥ α00. The case in which α0 < α is analogous.

It remains to find a group distribution bP such that X( bP ) < Xk for all k and X( bP ) <
X (P (X1)). For each k, let P

¡
Xk
¢
be the group distribution of Xk. By SDP, X(P

¡
Xk
¢
) <

Xk. Since X(P
¡
Xk
¢
) and X

|G|
are districts with rational entries, they are ordered by the

Mutual Information index. Therefore, direct calculation shows that X
|G| < X(P

¡
Xk
¢
).

Finally, let bP be the distribution that results from dividing each group in P (X1) into |G|

equal-sized groups. By SDP, neither X (P (X1)) nor X
|G|
is more segregated than X

³ bP´.
Thus, bP is the group distribution that we are looking for. This concludes the proof of

Theorem 2. Q.E.D.

Proof of Claim 2

If the index satisfies SI, SDP, and either SSD or SGD, then S
³
X

K2
´
= 2S

³
X

K
´
for any

K > 1. The result follows by considering the sequence of values S
³
X
2i
´
for i = 1, 2, 4, 8, ...
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Proof of Claim 3

Let S be Aggregative and let districts X and Y have equal populations and equal group

distributions (i.e., T· (X) = T· (Y )). For any district Z,

X ] Z < Y ] Z ⇐⇒ S (X ] Z) ≥ S (Y ] Z)

⇐⇒ F (S (X) , S (Z) , T· (X) , T· (Z)) ≥ F (S (Y ) , S (Z) , T· (Y ) , T· (Z))

⇐⇒ S (X) ≥ S (Y )⇐⇒ X < Y

so < satisfies IND. Conversely, if < is represented by the continuous index S and satisfies

IND, then for any districts X and Y we can define F (S (X) , S (Z) , T· (X) , T· (Z)) to be

S (X ] Z). Indeed, for any district Z such that T· (Z) = T· (Y ) and S (Z) = S (Y ), IND

implies S (X ] Z) = S (X ] Y ). A similar argument applies to X, so S (X ] Z) depends

only on the arguments of F and hence is well defined. F is strictly increasing in its first

two arguments by IND and inherits continuity from S. Thus, S is Aggregative.

Appendix B. Supplementary Material

This appendix proves claims made in Table 1 that are not shown in sections 3.3 and 4.1 or

Appendix A. To avoid redundancy, these claims will be treated property by property.

Symmetry. It is obvious that Symmetry is satisfied by M , D, G, H, NE, but not by

Cκ or CR. Also, Aw is clearly asymmetric unless w =(1/K, ..., 1/K).

Continuity. All of the indices except Cκ are continuous functions and thus satisfy

CONT:

Lemma 17 Any index S that is a continuous function of the Tn
g ’s (the numbers of each

group g in each school n) satisfies CONT.

Proof. Fix a district Z with group set G and school set N. The sets (−∞, S(Z)],

and [S(Z),∞) are closed in <. Consequently, the intersections of S−1((−∞, S(Z)]) and
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S−1([S(Z),∞)) with C (G,N) are closed in C (G,N). (For continuous functions, their in-

verse image of closed sets are closed). But these are just the sets {X ∈ C (G,N) : X < Z}

and {X ∈ C (G,N) : Z < X}, respectively. Q.E.D.

Cκ violates CONT: let κ = .5 and let X (ε) = h(1− ε, 1) , (0, 1)i and Z = h(1, 0) , (1, 2)i,

where in each school the first entry is the number of blacks. The set {X ∈ C (G,N) : Z < X}

is not closed since it contains X (ε) for all ε > 0 but does not include X (0).

Independence. Section 4.1 shows that IND is satisfied by Aw, M , H, Cκ, and the two-

group version of NE. However, NE violates IND in general: letting X = h(0, 2, 3) , (6, 4, 3)i,

Y = h(3, 2, 0) , (3, 4, 6)i, and Z = h(0, 10, 100)i, NE (X) =NE (Y ) since NE satisfies SYM,

but one can verify that NE (X ] Z) 6=NE(Y ] Z). Proofs that D and G violate AGG,

and thus IND, appear in the prior literature (e.g., Hutchens [27, n. 12]). As for CR, let

X = h(2, 4, 6) , (6, 4, 2)i, Y = h(4, 2, 1) , (4, 6, 7)i and Z = h(0, 2, 5)i. Although X and Y

have the same population and ethnic distribution, CR(X) = 1/12 <CR(Y ) = 10/119 while

CR(X ] Z) = 3/20 >CR(Y ] Z) = 88/595. Hence, CR violates IND.

School Division Property. Section 4.1 shows that Aw, M , H, D, and NE satisfy

SDP, while Cκ violates it. CR violates SDP: the district Y = h(1, 0, 4) , (1, 2, 0) , (4, 1, 1)i

is obtained by splitting the first school in the district X = h(2, 2, 4) , (4, 1, 1)i in two, but

CR(X) >CR(Y ). As for G, let X 0 be the district that results from some district X if school

n ∈ X is divided into two schools, n1 and n2, and let α = Tn1/T n. Then

G(X 0)−G(X) =
1

I

GX
g=1

T n1Tn2

TT

¯̄̄̄
Tn1
g

Tn1
−

Tn2
g

Tn2

¯̄̄̄

+
1

I

GX
g=1

X
m=1,...,N
m6=n

µ
Tm

TT

µ¯̄̄̄
T n1

Tm
g

Tm
− Tn1

g

¯̄̄̄
+

¯̄̄̄
T n2

Tm
g

Tm
− Tn2

g

¯̄̄̄
−
¯̄̄̄
Tn

Tm
g

Tm
− T n

g

¯̄̄̄¶¶

The first sum is nonnegative. The arguments of the first two absolute values in the second

line sum to the argument of the third absolute value function. Since absolute value is a

convex function, the summand is nonnegative for all g. Moreover, if the two schools have

the same group distributions, then the arguments of the three absolute value functions are
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proportional to each other and thus all of the same sign: the summand is zero. Hence, G

satisfies SDP.

Composition Invariance. By Claim 1, Aw satisfies CI. The fact that D and

G satisfy CI only in the two-group case is well known (Reardon and Firebaugh [42]) so

we do not prove it. To see that M , H, NE, and Cκ violate CI, consider the districts

X = h(2, 1) , (1, 2)i and Y = h(2, 2) , (1, 4)i. It can be checked that H(X) 6= H(Y ),

M(X) 6= M(Y ), NE (X) 6=NE(Y ), and Cκ(X) 6= Cκ(Y ) for thresholds κ ∈ (1/2, 2/3).35

CR violates CI: letting X = h(9, 5, 1) , (1, 5, 9)i and Y = h(9, 5, 10) , (1, 5, 90)i, one can verify

that CR(X) = 16/75 while CR(Y ) = 7/48.

Group Division Property. The results for GDP have all been shown in sections 3.3

and 4.1.

Aggregation. Except for Cκ, AGG and IND are equivalent, as argued. As Cκ can be

written

Cκ (X ] Y ) =
T2 (X)

T2 (X) + T2 (Y )
Cκ (X) +

T2 (Y )

T2 (X) + T2 (Y )
Cκ (Y ) , (22)

it satisfies AGG.

Additive Decomposability. Since AD implies AGG, D, G, CR, and the 3+ group

NE violate AD. On the other hand, Reardon and Firebaugh [42, pp. 53-4] show that

with two groups, NE satisfies AD. We show below that M satisfies SSD, so it satisfies

AD. Hence, H does as well. Aw satisfies (4) with weights wZ =
Q
g∈G

³
Tg(Z)

Tg(X)+Tg(Y )

´wg
for

Z = X,Y , so it satisfies AD. As for the Clotfelter index, for any two districts X and Y , let

X 0 any district that results from reallocating the students in X among the schools of X so

that Cκ (X
0) 6= Cκ (X). The change in the number of group-2 students who are in schools

in which at least a proportion κ of students are in group 2 can be measured alternatively

by [T2 (X) + T2 (Y )] [Cκ (X
0 ] Y )− Cκ (X ] Y )] or by T2 (X) [Cκ (X

0)− Cκ (X)]. As these

must be equal, if Cκ satisfies AD then wX = T2(X)
T2(X)+T2(Y )

and, similarly, wY =
T2(Y )

T2(X)+T2(Y )
.

By (22) this implies, incorrectly, that Cκ (c (X) ] c (Y )) is identically zero: the Clotfelter

35In each school we list the numbers of blacks and whites, in that order.
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index violates AD.

Strong School and Group Decomposability. All indices but M , CR, and Cκ

take their maximum value of one on X
2
and satisfy SI and SDP. Hence, by Claim 2,

they cannot satisfy SSD or SGD. (As noted, SGD is undefined for Aw.) CR and Cκ

violate SSD as they violate AD; SGD is not applicable to them. To see that M satisfies

SSD, let X = X1 ] X2 be a district composed of 2 subdistricts. By definition of M ,

M(X) = H(P (X))−
P2

k=1

P
n∈N(Xk) π

nH(pn). Subtracting and adding
P2

k=1 π
kH(P (Xk))

on the right hand side, we obtain

M(X) = H(P (X))−
2X

k=1

πkH(P (Xk)) +
2X

k=1

πkH(P (Xk))−
2X

k=1

X
n∈N(Xk)

πnH(pn)

= H(P (X))−
2X

k=1

πkH(P (Xk)) +
2X

k=1

πk

⎛⎝H(P (Xk))−
X

n∈N(Xk)

πnH(pn)

⎞⎠
=M(c(X1) ] c(X2)) +

2X
k=1

πkM(Xk),

so M satisfies SSD. That M satisfies SGD follows from symmetry of mutual information

(Cover and Thomas [14, pp. 18 ff.]).
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