Empirical Validation of Agent-Based Models

Giorgio Fagiolo
University of Verona, Italy
Sant’Anna School of Advanced Studies, Pisa, Italy
https://mail.sssup.it/~fagiolo

Alessio Moneta
Sant’Anna School of Advanced Studies, Pisa, Italy

Paul Windrum
Manchester Metropolitan University Business School, Manchester, U.K.
MERIT, University of Maastricht, The Netherlands

ACEPOL 2005
International Workshop on 'Agent-Based Models for Economic Policy Design'
Bielefeld, July 2005
Motivations (1/2)
Motivations (1/2)

• **Agent-Based Models (ABM) in Economics**
 – Tremendous development in the last 20 years
 – Quite successful in exploring market- and industry-dynamics
 – Emergence of macro properties out of dynamics involving non-trivial interactions among simple micro-economic entities
Agent-Based Models (ABM) in Economics

- Tremendous development in the last 20 years
- Quite successful in exploring market- and industry-dynamics
- Emergence of macro properties out of dynamics involving non-trivial interactions among simple micro-economic entities

Why ABM in Economics?

- Feedback from other disciplines (physics, computer science, etc.)
- Improvement in computing power and programming languages
- Widespread dissatisfaction with “mainstream approaches”
- Need for more “realistic” assumptions in order to get better performances in replicating and explaining real-world observations
 - ABMs as substitutes: a “new paradigm” for economics…
 - ABMs as complements: “what happens if” approach…

Motivations (1/2)
Motivations (2/2)
Motivations (2/2)

• **20 years later…**
 – Which impact on economic science?
 – Did ABMs find a place in the standard economics toolbox?
 – Published ABM papers in top economics journals
 • Figures are maybe too pessimistic but overall impact not that big…
Motivations (2/2)

• 20 years later…
 – Which impact on economic science?
 – Did ABMs find a place in the standard economics toolbox?
 – Published ABM papers in top economics journals
 • Figures are maybe too pessimistic but overall impact not that big…

• Many obvious reasons why it was so…
 – New vs. established scientific paradigm (Kuhn, Lyotard)
 – ABMs are hardly perceived as a robust, alternative paradigm
 – Why? Keywords: Heterogeneity and poor comparability
 • Assumptions and modeling design
 • Analysis of the properties of an ABM
 • **Empirical validation**
... an important remark ...
Too much heterogeneity could be bad
- Difficult to compare alternative models of same phenomenon
- Difficult to advance a new paradigm and contrast it with already existing ones
- Having a (few) commonly accepted protocol(s) for empirical validation (and model building) would be in general better for the profession
… an important remark …

• Too much heterogeneity could be bad
 – Difficult to compare alternative models of same phenomenon
 – Difficult to advance a new paradigm and contrast it with already existing ones
 – Having a (few) commonly accepted protocol(s) for empirical validation (and model building) would be in general better for the profession

• … debatable issue …
 – Also established paradigms are to some extent heterogeneous
 – Heterogeneity and flexibility of assumptions might be considered as the values added of ABMs
 – Heterogeneity is a prerequisite for the emergence of a “paradigm” (social process, scientific debate, etc.)
This Paper

- Heterogeneity in ABM Empirical Validation Exercises
 - Is it really so?
 - Taxonomizing empirical validation approaches in ABM
This Paper

• Heterogeneity in ABM Empirical Validation Exercises
 – Is it really so?
 – Taxonomizing empirical validation approaches in ABM

• Is it a problem confined only to ABMs in economics?
 – What about neoclassical economics?
 – What happens in other fields (e.g. simulations in engineering)?
This Paper

• Heterogeneity in ABM Empirical Validation Exercises
 – Is it really so?
 – Taxonomizing empirical validation approaches in ABM

• Is it a problem confined only to ABMs in economics?
 – What about neoclassical economics?
 – What happens in other fields (e.g. simulations in engineering)?

• Which are the features of ABMs that favor heterogeneity in empirical validation approaches?
 – Features specific to the development of ABMs in economics
 – More general methodological problems still under debate
The (Minimal) Structure of an ABM
The (Minimal) Structure of an ABM

- Time $t = 0, 1, 2, \ldots$... Quarters, Years
The (Minimal) Structure of an ABM

- Time: \(t = 0, 1, 2, \ldots \) ... Quarters, Years
- Set of Agents: \(I = \{1, 2, \ldots, N\} \) ... Firms
The (Minimal) Structure of an ABM

• Time \(t = 0, 1, 2, \ldots \) \ldots Quarters, Years

• Set of Agents \(I = \{1, 2, \ldots, N\} \) \ldots Firms

• Vectors of Micro-States \(i \rightarrow x_{i,t} \) \ldots Fast micro-vars
The (Minimal) Structure of an ABM

- **Time**
 \[t = 0, 1, 2, \ldots \] ... Quarters, Years

- **Set of Agents**
 \[I = \{1, 2, \ldots, N\} \] ... Firms

- **Vectors of Micro-States**
 \[i \rightarrow x_{i,t} \] ... Fast micro-vars

- **Aggregate Variables**
 \[X_t = f (x_{1,t}, \ldots, x_{N,t}) \] ... Fast macro-vars
The (Minimal) Structure of an ABM

- Time \(t = 0, 1, 2, \ldots \) ... Quarters, Years
- Set of Agents \(I = \{1, 2, \ldots, N\} \) ... Firms
- Vectors of Micro-States \(i \rightarrow x_{i,t} \) ... Fast micro-vars
- Aggregate Variables \(X_t = f(x_{1,t}, \ldots, x_{N,t}) \) ... Fast macro-vars
- Vectors of Micro-Parameters \(i \rightarrow \theta_i \) ... Slow micro-vars
The (Minimal) Structure of an ABM

- Time: \(t = 0, 1, 2, \ldots \) ... Quarters, Years
- Set of Agents: \(I = \{1, 2, \ldots, N\} \) ... Firms
- Vectors of Micro-States: \(i \to \mathbf{x}_{i,t} \) ... Fast micro-vars
- Aggregate Variables: \(\mathbf{X}_t = f(\mathbf{x}_{1,t}, \ldots, \mathbf{x}_{N,t}) \) ... Fast macro-vars
- Vectors of Micro-Parameters: \(i \to \mathbf{\theta}_i \) ... Slow micro-vars
- Vector of Macro-Parameters: \(\Theta \in \mathbb{R}^m \) ... Slow macro-vars
The (Minimal) Structure of an ABM

- Time: \(t = 0, 1, 2, \ldots \) \(\ldots \) Quarters, Years

- Set of Agents: \(I = \{1, 2, \ldots, N\} \) \(\ldots \) Firms

- Vectors of Micro-States: \(i \rightarrow x_{i,t} \) \(\ldots \) Fast micro-vars

- Aggregate Variables: \(X_t = f (x_{1,t}, \ldots, x_{N,t}) \) \(\ldots \) Fast macro-vars

- Vectors of Micro-Parameters: \(i \rightarrow \Theta_i \) \(\ldots \) Slow micro-vars

- Vector of Macro-Parameters: \(\Theta \in \mathbb{R}^m \) \(\ldots \) Slow macro-vars

- Interaction Structures: \(G_t \in \mathcal{G}(I) \) \(\ldots \) Networks
The (Minimal) Structure of an ABM

- Time \(t = 0, 1, 2, \ldots \) ... Quarters, Years
- Set of Agents \(I = \{1, 2, \ldots, N\} \) ... Firms
- Vectors of Micro-States \(i \rightarrow x_{i,t} \) ... Fast micro-vars
- Aggregate Variables \(\underline{X}_t = f(\underline{x}_{1,t}, \ldots, \underline{x}_{N,t}) \) ... Fast macro-vars
- Vectors of Micro-Parameters \(i \rightarrow \theta_i \) ... Slow micro-vars
- Vector of Macro-Parameters \(\Theta \in \mathbb{R}^m \) ... Slow macro-vars
- Interaction Structures \(G_t \in \mathcal{G}(I) \) ... Networks
- Micro Decision Rules \(R_{i,t}(\cdot | \cdot) \) ... Production Rule
ABMs as Data Generation Processes (DGPs)
ABMs as Data Generation Processes (DGPs)

• ABM provides the DGP of the phenomenon under study
 – Micro-Macro Parameters
 – Micro-Macro Initial Conditions
ABMs as Data Generation Processes (DGPs)

• ABM provides the DGP of the phenomenon under study
 – Micro-Macro Parameters
 – Micro-Macro Initial Conditions

• Studying ABMs
 – Non-linearities and randomness in
 • individual behaviors
 • interaction networks
 – Micro and macro variables are governed by complicated stochastic processes which can hardly be analyzed analytically
 – Need for computer simulations
The Output of ABMs
The Output of ABMs

<table>
<thead>
<tr>
<th>Initial Conditions:</th>
<th>((x_{i,0}, X_0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro & Macro Pars:</td>
<td>((\theta_i), \Theta)</td>
</tr>
</tbody>
</table>
The Output of ABMs

Initial Conditions: \((x_{i,0}, X_0)\)
Micro & Macro Pars: \((\theta_i), \Theta\)

Generate time-series through simulation
\[
\{(x_{i,t}), t = 1, \ldots, T\}
\]
\[
\{X_t, t = 1, \ldots, T\}
\]
The Output of ABMs

Initial Conditions: \((x_{i,0}, X_0)\)
Micro & Macro Pars: \((\theta_i), \Theta\)

\[\downarrow\]

Generate time-series through simulation
\[\{(x_{i,t}), t=1,\ldots,T\}\]
\[{X_t}, t=1,\ldots,T\}

\[\downarrow\]

Compute a set of statistics
\[S = \{s_1, s_2, \ldots\}\]
on micro/macro time-series
The Output of ABMs

Initial Conditions: $(x_{i,0}, X_0)$
Micro & Macro Pars: (θ_i, Θ)

Generate time-series through simulation
\{$(x_{i,t})$, $t=1,\ldots,T$\}
\{X_t, $t=1,\ldots,T$\}

Compute a set of statistics $S=\{s_1, s_2, \ldots\}$ on micro/macro time-series

Repeat M independent times
The Output of ABMs

Initial Conditions: \((x_{i,0}, X_0)\)
Micro & Macro Pars: \((\theta_i), \Theta\)

Generate time-series through simulation
\{\((x_{i,t}), t = 1, \ldots, T\)\}
\{\(X_t, t = 1, \ldots, T\)\}

Compute a set of statistics \(S = \{s_1, s_2, \ldots\}\)
on micro/macro time-series

Repeat M independent times

Set of M Time-Series
\{\((x_{i,t}), t = 1, \ldots, T\)\}
\{\(X_t, t = 1, \ldots, T\)\}

Monte Carlo Distributions for \(S = \{s_1, s_2, \ldots\}\)

Conditional on: Initial Conditions and Parameters !!
The Output of ABMs

Initial Conditions: \((x_{i,0}, X_0)\)

Micro & Macro Pars: \((\theta_i), \Theta \)

Generate time-series through simulation

\[\{(x_{i,t}), t=1,\ldots,T\} \]
\[\{ X_t, t=1,\ldots,T\} \]

Compute a set of statistics

\[S = \{s_1, s_2, \ldots\} \]
on micro/macro time-series

Repeat M independent times

Set of M Time-Series

\[\{(x_{i,t}), t=1,\ldots,T\} \]
\[\{ X_t, t=1,\ldots,T\} \]

Monte Carlo Distributions for \(S = \{s_1, s_2, \ldots\} \)

Conditional on: Initial Conditions and Parameters !!
This Paper

• Heterogeneity in ABM Empirical Validation Exercises
 – Is it really so?
 – Taxonomizing empirical validation approaches in ABM

• Is it a problem confined only to ABMs in economics?
 – What about neoclassical economics?
 – What happens in other fields (e.g. simulations in engineering)?

• Which are the features of ABMs that favor heterogeneity in empirical validation approaches?
 – Features specific to the development of ABMs in economics
 – More general methodological problems still under debate
Ex 1: Qualitative Simulation Modeling
Ex 1: Qualitative Simulation Modeling

- No empirical validation
 - Model as a laboratory to gain knowledge on the underlying causal relationships **only**, not taken to the data
Ex 1: Qualitative Simulation Modeling

• No empirical validation
 – Model as a laboratory to gain knowledge on the underlying causal relationships only, not taken to the data

• Stylized Qualitative Models (Evolutionary-Games)
 – Weak relation between micro-macro variables/parameters in the model and empirically observed counterparts
 – Interest in explaining the emergence of qualitative aggregate pattern (cooperation, coordination, etc.)
Ex 1: Qualitative Simulation Modeling

• No empirical validation
 – Model as a laboratory to gain knowledge on the underlying causal relationships only, not taken to the data

• Stylized Qualitative Models (Evolutionary-Games)
 – Weak relation between micro-macro variables/parameters in the model and empirically observed counterparts
 – Interest in explaining the emergence of qualitative aggregate pattern (cooperation, coordination, etc.)

• Early Evolutionary- and Industry-Dynamics Models
 – Much more micro-founded and empirically-driven, but…
 – If any, empirical validation is done in very weak ways
Ex 1: Qualitative Simulation Modeling

- No empirical validation
 - Model as a laboratory to gain knowledge on the underlying causal relationships only, not taken to the data

- Stylized Qualitative Models (Evolutionary-Games)
 - Weak relation between micro-macro variables/parameters in the model and empirically observed counterparts
 - Interest in explaining the emergence of qualitative aggregate pattern (cooperation, coordination, etc.)

- Early Evolutionary- and Industry-Dynamics Models
 - Much more micro-founded and empirically-driven, but…
 - If any, empirical validation is done in very weak ways

- A pessimistic view about empirical validation?
 - Socio-economics: open-endedness, interdependence, structural change
 - Precise quantitative implications are difficult to obtain
Ex 2: Replication of Stylized-Facts
Ex 2: Replication of Stylized-Facts

• **Indirect Calibration**
 – Detailed data able to restrict the set of initial conditions and micro/macro parameters is difficult to gather (Kaldor)
 – Empirical validation is done at the aggregate (macroeconomic) level
 – Parameters and initial conditions are not restricted a priori
 – Validation requires **joint** reproduction of a set of “stylized facts” (SFs)
Ex 2: Replication of Stylized-Facts

• Indirect Calibration
 – Detailed data able to restrict the set of initial conditions and micro/macro parameters is difficult to gather (Kaldor)
 – Empirical validation is done at the aggregate (macroeconomic) level
 – Parameters and initial conditions are not restricted a priori
 – Validation requires joint reproduction of a set of “stylized facts” (SFs)

• Four-Step Procedure (Fagiolo et al., 2004)
 – **Step 1**: Identifying set of SFs of interest to be explained/reproduced
 – **Step 2**: Keep microeconomics as close as possible to “real-world”
 – **Step 3**: Find parameters and initial conditions for which the model is statistically able jointly to replicate the set of SFs
 – **Step 4**: Investigation of subspace of parameters and initial conditions which “resist” to Step 3 in order to seek for causal relationships (explanations)
Ex 3: Empirical Calibration of ABMs
Ex 3: Empirical Calibration of ABMs

- Werker and Brenner (2005)
 - Dealing with space of initial conditions and micro/macro parameters
 - Difficult to employ theoretical arguments to restrict the set
 - Use empirical knowledge first to calibrate initial conditions and micro/macro parameters and then to validate
Ex 3: Empirical Calibration of ABMs

- Werker and Brenner (2005)
 - Dealing with space of initial conditions and micro/macro parameters
 - Difficult to employ theoretical arguments to restrict the set
 - Use empirical knowledge first to calibrate initial conditions and micro/macro parameters and then to validate

- Three-Step Procedure
 - **Step 1**: Employ empirical knowledge to calibrate initial conditions and parameters ranges
 - **Step 2**: Further restricting initial conditions and parameters space by empirically validate simulated output with real-world data
 - **Step 3**: Abduction. Seek explanations of the phenomena under study by exploring properties of the “possible worlds” that resist to previous steps
Ex 4: History-Friendly Industry Models
Ex 4: History-Friendly Industry Models

- Malerba, Nelson, Orsenigo, and co-authors
 - Models built upon detailed empirical, anecdotic, historical knowledge of phenomenon under study and employed to replicate its precise (qualitative) history
Ex 4: History-Friendly Industry Models

• Malerba, Nelson, Orsenigo, and co-authors
 – Models built upon detailed empirical, anecdotic, historical knowledge of phenomenon under study and employed to replicate its precise (qualitative) history

• Prominent role for empirical data
 – Detailed empirical (historical) data on the phenomenon under study assisting model building and validation
 – Specify agents’ representation
 – Identify parameters and initial conditions
 – Empirically validate the model by comparing “simulated trace histories” with “actual history” of an industry
Where do they differ?
Where do they differ?

- **Domain of application**
 - Micro (industries, markets)
 - Macro (countries, world economy)
Where do they differ?

• Domain of application
 – Micro (industries, markets)
 – Macro (countries, world economy)

• Which kind of empirical observations does one employ?
 – Empirical data about micro/macro variables
 – Casual, historical and anecdotic knowledge
Where do they differ?

• Domain of application
 – Micro (industries, markets)
 – Macro (countries, world economy)

• Which kind of empirical observations does one employ?
 – Empirical data about micro/macro variables
 – Casual, historical and anecdotic knowledge

• How to employ empirical observations?
 – Assisting in model building (agents, behaviors, interactions,…)
 – Calibrating initial conditions and parameters
 – Validating simulated output
Where do they differ?

- Domain of application
 - Micro (industries, markets)
 - Macro (countries, world economy)

- Which kind of empirical observations does one employ?
 - Empirical data about micro/macro variables
 - Casual, historical and anecdotic knowledge

- How to employ empirical observations?
 - Assisting in model building (agents, behaviors, interactions,…)
 - Calibrating initial conditions and parameters
 - Validating simulated output

- What to do first?
 - First calibrate, then validate
 - First validate, then calibrate
 - Validate only
This Paper

• Heterogeneity in ABM Empirical Validation Exercises
 – Is it really so?
 – Taxonomizing empirical validation approaches in ABM

• Is it a problem confined only to ABMs in economics?
 – What about neoclassical economics?
 – What happens in other fields (e.g. simulations in engineering)?

• Which are the features of ABMs that favor heterogeneity in empirical validation approaches?
 – Features specific to the development of ABMs in economics
 – More general methodological problems still under debate
Empirical Validation in Neo-Classical Models
Empirical Validation in Neo-Classical Models

A lot of different, competing approaches do exist…
- Haavelmo-Cowles (1944) Approach
- Structural Modeling Approach (Hansen and Sargent, 1980)
- VAR Approach (Sims, 1980)
- Calibration Approach (Kydland and Prescott, 1982)
- LSE Approach (Hendry, 1988)
Empirical Validation in Neo-Classical Models

• A lot of different, competing approaches do exist…
 – Haavelmo-Cowles (1944) Approach
 – Structural Modeling Approach (Hansen and Sargent, 1980)
 – VAR Approach (Sims, 1980)
 – Calibration Approach (Kydland and Prescott, 1982)
 – LSE Approach (Hendry, 1988)

• Some remarks on validation approaches in NCM …
 – Validation is not employed to assess empirical validity of “core” theoretical assumptions (as often happens also in ABMs)
 – Heterogeneity of approaches partly reflects the open debate on validation in “philosophy of economics” (J.S. Mill; Friedman; Hutchinson, Blaug; McKloskey, Mirowski; Lawson, Mäki; etc.)
Empirical Validation in Simulation Models (1/2)

- **Simulated Models in Engineering**
 - Kwasnicki (1998): Debate on
 - Judging the model according to
 - Usefulness, Fecundity, Consistency, Simplicity
 - Or according to its
 - **Correctness** (validation of the model)
Simulated Models in Engineering

- Kwasnicki (1998): Debate on
- Judging the model according to
 - Usefulness, Fecundity, Consistency, Simplicity
- Or according to its
 - Correctness (validation of the model)

Many dimensions in model validation: Which priority?

- Correctness
 - A high degree of homomorphism between “layers”
- Many layers at which this homomorphism could apply
 - Theory, Model, Model’s Variables, Real-World Variables
 - (if the model is simulated) Computer Program
Empirical Validation in Simulation Models (2/2)

<table>
<thead>
<tr>
<th>Validity Concepts</th>
<th>Layers</th>
<th>Validity Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Validity</td>
<td>Computer Program
(Actual implementation of the model in a programming language)</td>
<td></td>
</tr>
<tr>
<td>(model vs. program)</td>
<td>Model</td>
<td>Model Validity
(model vs. theory)</td>
</tr>
<tr>
<td>Theory Validity</td>
<td>Theory</td>
<td></td>
</tr>
<tr>
<td>(theory vs. real-world)</td>
<td>Operational Validity
(theory vs. model variables)</td>
<td></td>
</tr>
<tr>
<td>Empirical Validity</td>
<td>Model Variables
(used in the model to proxy theoretical concepts)</td>
<td></td>
</tr>
<tr>
<td>(model variables vs. empirical variables)</td>
<td>Real World Variables
(Empirically Observable Variables)</td>
<td></td>
</tr>
</tbody>
</table>
… A first assessment …
… A first assessment …

• Empirical validation of ABMs in economics
 – Many alternative methodological approaches
 – They differ as to several crucial dimensions (scope, data)
… A first assessment …

- Empirical validation of ABMs in economics
 - Many alternative methodological approaches
 - They differ as to several crucial dimensions (scope, data)

- Is it a problem confined only to ABMs in economics?
 - A lot of competing approaches characterize also
 - Mainstream economics
 - Other fields employing simulations as tool of analysis
 - Heterogeneity in empirical validation approaches in economics
 ABM may reflect underlying unsettled debate on philosophy of economics
This Paper

- Heterogeneity in ABM Empirical Validation Exercises
 - Is it really so?
 - Taxonomizing empirical validation approaches in ABM

- Is it a problem confined only to ABMs in economics?
 - What about neoclassical economics?
 - What happens in other fields (e.g. simulations in engineering)?

- Which are the features of ABMs that favor heterogeneity in empirical validation approaches?
 - Features specific to the development of ABMs in economics
 - More general methodological problems still under debate
Heterogeneity of ABMs’ Structure
Heterogeneity of ABMs’ Structure

• **Object of Analysis**
 – Qualitative - Quantitative, Single - Multiple
 – Transients - Long-run, Micro - Macro
Heterogeneity of ABMs’ Structure

- **Object of Analysis**
 - Qualitative - Quantitative, Single - Multiple
 - Transients - Long-run, Micro - Macro

- **Goal of Analysis**
 - In-Sample, Descriptive (most often)
 - Out-of-Sample (forecasting)
 - Prediction/Control (policy implications)
Heterogeneity of ABMs’ Structure

• **Object of Analysis**
 - Qualitative - Quantitative, Single - Multiple
 - Transients - Long-run, Micro - Macro

• **Goal of Analysis**
 - In-Sample, Descriptive (most often)
 - Out-of-Sample (forecasting)
 - Prediction/Control (policy implications)

• **Methodology of Analysis: Robustness of results to**
 - micro/macro parameters
 - initial conditions (ergodicity)
 - across-run variability
Heterogeneity of ABMs’ Structure
Heterogeneity of ABMs’ Structure

- **Modelling Assumptions**
 - **Size of the space of**
 - Micro/macro parameters
 - Micro/macro variables
 - Decision rules
 - **Treatment of time/updating**
 - Discrete / Continuous, Parallel / Asynchronous
 - **Type of decision rules**
 - Adaptive (myopic) vs. optimizing (best-reply), Deterministic vs. Stochastic
 - **Type of interaction structure**
 - Local vs. Global, Deterministic vs. Stochastic
 - **Dynamics of decision rules and interaction structures**
 - Exogenously given/changing, Endogenously selected
This Paper

- Heterogeneity in ABM Empirical Validation Exercises
 - Is it really so?
 - Taxonomizing empirical validation approaches in ABM

- Is it a problem confined only to ABMs in economics?
 - What about neoclassical economics?
 - What happens in other fields (e.g. simulations in engineering)?

- Which are the features of ABMs that favor heterogeneity in empirical validation approaches?
 - Features specific to the development of ABMs in economics
 - More general methodological problems still under debate
Hot Issues in Empirical Validation of ABMs
Hot Issues in Empirical Validation of ABMs

• Treatment of initial conditions and parameters
 – How can we deal with all “possible worlds”?
Hot Issues in Empirical Validation of ABMs

• Treatment of initial conditions and parameters
 – How can we deal with all “possible worlds”?

• Comparing ABMs’ outputs and real-world observations
 – Simulated Distributions vs. Unique Real-World Observations
Hot Issues in Empirical Validation of ABMs

• Treatment of initial conditions and parameters
 – How can we deal with all “possible worlds”?

• Comparing ABMs’ outputs and real-world observations
 – Simulated Distributions vs. Unique Real-World Observations

• Unconditional Objects Critique
 – If many processes are able to explain the same set of SFs, what does replication of SFs add to our knowledge?
Hot Issues in Empirical Validation of ABMs

• Treatment of initial conditions and parameters
 – How can we deal with all “possible worlds”?

• Comparing ABMs’ outputs and real-world observations
 – Simulated Distributions vs. Unique Real-World Observations

• Unconditional Objects Critique
 – If many processes are able to explain the same set of SFs, what does replication of SFs add to our knowledge?

• Is available data sufficient?
 – Need for additional, more detailed microeconomics data
 – Need to validate microeconomic foundations with experimental data
Treatment of initial conditions and parameters
Treatment of initial conditions and parameters

• **Need for restricting the set of all “conceivable worlds”**
 – ABMs (often) as an over-parameterized description of the “world”
 – Each point as a “conceivable” world
 – To which extent (and how) should one employ empirical data to select among all possible worlds?
Treatment of initial conditions and parameters

• **Need for restricting the set of all “conceivable worlds”**
 – ABMs (often) as an over-parameterized description of the “world”
 – Each point as a “conceivable” world
 – To which extent (and how) should one employ empirical data to select among all possible worlds?

• **Direct vs. Indirect Calibration**
 – Calibration of parameters and initial conditions on available data
 – Focusing on parameters and initial conditions that allow for replication of SFs of interest
Treatment of initial conditions and parameters

• Need for restricting the set of all “conceivable worlds”
 – ABMs (often) as an over-parameterized description of the “world”
 – Each point as a “conceivable” world
 – To which extent (and how) should one employ empirical data to select among all possible worlds?

• Direct vs. Indirect Calibration
 – Calibration of parameters and initial conditions on available data
 – Focusing on parameters and initial conditions that allow for replication of SFs of interest

• What can we learn from the remaining set?
 – Almost impossible to restrict to a unique world
 – Comparative dynamics exercises: Which interpretation?
 – Danger of counterfactuals in evolutionary worlds
 • “indeterminacy weakens the link between antecedent and consequent in the counterfactual” (Cowan and Foray, 2002, p. 552)
ABMs’ outputs vs. real-world observations
ABMs’ outputs vs. real-world observations

- **Distributional objects vs. unique observations**
 - ABM provides DGP which we think real-world observations came from
 - ABM’s output are distributional objects
 - Real-world observations are unique
 - Homogeneity assumptions are required to transform unique empirical data in distributional objects (e.g. firm sizes or country growth-rates)
ABMs’ outputs vs. real-world observations

- **Distributional objects vs. unique observations**
 - ABM provides DGP which we think real-world observations came from
 - ABM’s output are distributional objects
 - Real-world observations are unique
 - Homogeneity assumptions are required to transform unique empirical data in distributional objects (e.g. firm sizes or country growth-rates)

- **How can the two be compared?**
 - How can one know whether real-world observations are “typical” or “low-probability” events (with respect to the “true” DGP)?
 - ABMs: Suppose observed data are “typical” and compare them with statistics (average) of simulated data
 - Crucial to learn about the shape of the entire simulated distribution before comparing its typical outcomes with data (average may not be relevant)
 - Otherwise: Any single (low probability) simulated trace may be important to discover real-world underlying causal relationships
Unconditional Objects Critique
Unconditional Objects Critique

- **ABM as a replicator of SFs**
 - Given a set of SFs or statistical regularities there are many underlying alternative processes (DGPs) able to replicate it
 - SFs are “unconditional objects” (properties of stationary distributions) and cannot provide information on the dynamics of the process that generated them (Brock, 1999)
 - Replicating does not mean explaining
Unconditional Objects Critique

• **ABM as a replicator of SFs**
 – Given a set of SFs or statistical regularities there are many underlying alternative processes (DGPs) able to replicate it
 – SFs are “unconditional objects” (properties of stationary distributions) and cannot provide information on the dynamics of the process that generated them (Brock, 1999)
 – Replicating does not mean explaining

• **How can we learn on the “true” generating process?**
 – Brock (1999): Having a model that is able to reproduce a certain set of SFs is good because it always conveys information on the general forces at work and thus restricts the set of all possible generating mechanisms
 – Validating micro-economics of the model, not only macro-economic outputs (Gilbert, 2004; Duffy, yesterday). A lot of detailed and reliable (empirical, experimental) data on microeconomic variables is required…
 – Looking for explanations as causal relations in simulated ABMs output: New tools from econometrics (graphical models) may help…
Open questions’ for generation of new data

1. To what extent can we actually collect the data needed for empirically validate the microeconomic-level of ABMs?

2. Validating microeconomics layer: How can we deal with the fact that types/classes of behaviors/learning are endogenously selected and evolve through time?

3. If the empirical data is incomplete, or seems to contain competing viewpoints, what do we do?

4. How do we go beyond individual traces or observations, to generate distributions of real-world data?

5. How do we deal with non-ergodicity in our real-world data?

6. On what basis do we start to search for ‘fresh facts’ (as compared to existing stylized facts)?
Conclusions
Conclusions

- Critical overview of empirical validation in ABMs
 - When models are taken to the data, many competing approaches
Conclusions

• Critical overview of empirical validation in ABMs
 – When models are taken to the data, many competing approaches

• Investigating possible reasons
 – Methodological debate in social sciences and economics still open
 – Neoclassical models suffer from similar degree of heterogeneity
 – A lot of variety in other fields employing simulations as modeling tool
 – Heterogeneity in economics ABMs’ structure
Conclusions

- **Critical overview of empirical validation in ABMs**
 - When models are taken to the data, many competing approaches

- **Investigating possible reasons**
 - Methodological debate in social sciences and economics still open
 - Neoclassical models suffer from similar degree of heterogeneity
 - A lot of variety in other fields employing simulations as modeling tool
 - Heterogeneity in economics ABMs’ structure

- **Crucial problems in empirical validation of ABMs**
 - Treatment of parameters and initial conditions
 - Comparing simulated distributions with unique real-world observations
 - Learning about generating mechanisms from replication of SFs
 - Need for additional data