
DOI 10.1007/s10614-006-9053-3 © Springer 2006
Computational Economics (2006) 28:333–354

Revisiting Individual Evolutionary Learning
in the Cobweb Model – An Illustration
of the Virtual Spite-Effect

JASMINA ARIFOVIC1 and MICHAEL K. MASCHEK2

1Department of Economics, Simon Fraser University, 8888 University Drive, Burnaby, BC,
Canada V5A1S6; E-mail: arifovic@sfu.ca
2Department of Economics, Simon Fraser University, 8888 University Drive, Burnaby, BC,
Canada V5A1S6; E-mail: mmaschek@sfu.ca

Accepted 10 July 2006

Abstract. We examine the Cournot oligopoly model in the context of social and individ-
ual learning. In both models of learning, firms update their decisions about how much to
produce via variants of the genetic algorithm updating procedure. Arifovic (1994) found
that both models of social and individual learning converged to the Walrasian, competi-
tive equilibrium. Vriend (2000) reports that the model of social learning converges to the
Walrasian equilibrium outcome, while the model of individual learning converges to the
Cournot–Nash equilibrium. We revisit the issue and conduct simulations varying elements
of the updating algorithms, as well as of the underlying economic model. In the analysis of
the outcomes of our simulations, we conclude that the convergence to the Cournot–Nash
equilibrium is due to two things: the specific way in which production rules’ performance
is evaluated coupled with a specific cost function specification.

Key words: social learning, individual learning, spite effect, robustness.

JEL classification: B41; C63; C81; D83; H41

1. Introduction

The models of evolutionary learning have been primarily used to model social
learning where an entire population(s) evolves through imitation, exchange of
ideas, and experimentation. However, as some applications show, these algorithms
can also be used to model individual learning, where evolution takes place on a set
of competing beliefs of an agent. Which evolutionary paradigm is more appropri-
ate depends on the context and on the particular model in question. At the macro-
economic level, it seems plausible that, over time, learning takes place at the level
of the economy; i.e. that agents observe each other’s decisions and imitate those
agents that have been successful in the past. Notions of imitation of successful
firms or investors have been around in economic literature for a long time. Social
learning represents explicit modeling of these notions. On the other hand, if the

334 JASMINA ARIFOVIC AND MICHAEL K. MASCHEK

objective of research is the examination of strategic interactions in game-theoretic
framework, then individual learning may be a more appropriate paradigm.

The Cournot oligopoly is one of the models that have been widely studied
in the agent-based literature using different variants of the evolutionary algo-
rithms. The research includes Arifovic (1994), Chen, Shu-Heng and Chia-Hsuan
Yeh (1994), Dawid and Kopel (1998), Franke (1998), Brock and Hommes (1998),
Vriend (2000), etc. In particular, both Arifovic (1994) and Vriend (2000) study the
social learning and individual learning paradigm in this type of economic environ-
ment. Arifovic’s results showed convergence to the Walrasian competitive equilib-
rium under both social and individual learning, while Vriend obtains convergence
to the Walrasian equilibrium for his social learning model, and convergence to
Cournot–Nash outcome for his individual learning model. His study pointed out
that we had to be careful about how we applied evolutionary algorithms in the
context of social versus individual learning. He explains the difference of the two
outcomes in social and individual learning with the existence of the spite effect in
the social learning model. This same effect is absent from his individual learning
model.

The argument is that, in a social learning setup where firms are imitating the
firms that earned higher profits, the forces of the underlying Cournot-oligopoly
model will drive them towards the Walrasian competitive equilibrium. Thus, when
the price is above the equilibrium one (implying that the average per firm quan-
tity and the aggregate quantity are below the competitive equilibrium ones) firms
producing higher levels of output will be imitated more frequently and will drive
the individual and the aggregate quantities towards the Walrasian equilibrium out-
come. Conversely, if the average per firm production and aggregate production are
greater than the Walrasian competitive equilibrium ones, the firms producing rel-
atively lower quantities will be imitated, and thus their rules will gain more cop-
ies. As a result, the average and the aggregate quantity will be reduced, thus again
driving the price towards the Walrasian equilibrium. In Vriend’s individual learn-
ing setup, while the spite effect still exists in the market itself, it does not interfere
with the learning process. As a result, firms are able to reach Cournot–Nash out-
come.

On the other hand, in the Arifovic’s individual evolutionary learning setup,1 the
spite effect is still present in the learning process itself, and thus, the convergence
to the Walrasian competitive outcome takes place. The objective of our paper is
to investigate the role of the spite effect in the model of individual evolutionary
learning. We start with Arifovic’s (1994) model as our baseline model, and then
introduce, one at the time, changes to the baseline model, and examine whether
these changes have an impact on the existence of the spite effect.

The two approaches differ in a number of implementation details. One of the
main differences is the use of hypothetical profits. In the model of individual
evolutionary learning, in each time period, a firm chooses one of its rules as its
actual decision rule. However, once the market clearing price is determined, all

REVISITING INDIVIDUAL EVOLUTIONARY LEARNING IN THE COBWEB MODEL 335

other rules are assigned hypothetical profits, i.e. profits they would have earned in
the market at the current market price.

The difference in the way we updated profits in the models of individual learn-
ing should be ultimately settled by testing them against empirical data. In this case,
the obvious way to do it is through conducting experiments with human subjects.
This has now been established as a well recognized and accepted methodology for
testing the models of individual learning that have been aimed at modeling behav-
ior in the game theoretic framework. The algorithm that updates only the prof-
its (fitness values) of those strategies in the agent’s set that were actually used is
very much in the spirit of, for example, Reinforcement Learning (Erev and Roth,
1998). Updating the hypothetical profits of all the strategies in the set based on
the information from the previous period is in the spirit of Experience Weighted
Attraction Learning, (Camerer and Ho, 1999). Both of these types of algorithms
have been extensively used in the learning literature, and often, compared to and
tested against the data obtained in the experiments with human subjects. For an
overview, see Camerer (2003).

Arifovic (1994) and Vriend (2000) implement their learning algorithms in the
economic environments with different cost specifications. We chose to use Vriend’s
cost specification and parameter values in order to examine what changes in Arifo-
vic’s algorithm are required to obtain Vriend’s results in the environment that he
used in his work. The parameter values that Vriend used result in the zero Walr-
asian equilibrium price. In order to examine the behavior of the model in the envi-
ronment with non-zero Walrasian equilibrium price, we also perform simulations
over, what we call, an alternative set of parameter values where we keep Vriend’s
cost specification, but with non-zero Walrasian equilibrium price. Overall, our find-
ings show that the convergence to the Cournot–Nash equilibrium is due to two
things: the specific way in which the performance of firms’ rules is evaluated cou-
pled with a specific cost function specification.

Alkemade, La Poutre and Amman (2006) is a second paper in this issue that
studies the robustness of evolutionary algorithm design in a version of the Cournot
oligopoly game. They consider two approaches to modeling relationship between
economic agents and their strategies. According to the first approach, each agent
is equated with a strategy. Thus a population of strategies also represents a pop-
ulation of agents that they are representing. According to the second approach,
economic agents and population of strategies are separated, and an economic
agent can choose from the entire population of strategies. They show that the
first approach may lead to premature convergence of the genetic algorithm. The
authors argue that this is due to the excessive sensitivity of the first approach to
the changes in the evolutionary parameter settings. Their results support the view
that the second approach, where agents and strategies are decoupled, is a pre-
ferred approach with respect to robustness of the evolutionary algorithm simu-
lations. Both Alkemade et al. and our paper demonstrate the importance of the
selection of modeling strategies, and implementation of robustness tests.

336 JASMINA ARIFOVIC AND MICHAEL K. MASCHEK

The following section (Section 2) contains a brief description of the economic
environment in which the subsequent analysis takes place. In Section 3., we first
describe Arifovic’s (1994) algorithms for individual learning. This is followed by
a description of Vriend’s algorithm. Finally, the characteristics distinguishing these
two approaches are summarized. In Section 4, we describe the results of our sim-
ulations. Section 5 contains a detailed analysis of our results. We report our con-
clusions in Section 6.

2. Description of the Economic Framework

The economic environment under consideration is a partial equilibrium model of
a market with a single good where demand is exogenously given, and the supply
is determined as an aggregate of firms’ individual quantity decisions. As men-
tioned in the introduction, we adopt Vriend’s (2000) cost specification. In the
competitive equilibrium version of the model, firms derive their optimal quantity
decisions not taking into consideration the quantities produced by other firms. In a
Cournot–Nash equilibrium version, they derive optimal quantity decisions utilizing
the quantity decisions made by other firms.

The demand side of the market is given by the following inverse demand
equation

P(Q)=a +bQc.

where Q =∑m
i=1 qi , and qi is quantity supplied by firm i , i =[1, . . . ,m]. Each firm,

i =[1, . . . ,m] faces an identical cost function.

Ci (qi)= K + kqi . (1)

Then, the equation for finding the optimal aggregate quantity in case of the Walr-
asian equilibrium outcome is

QW =
(

k −a

b

)1/c

and the solution characterizing the Cournot–Nash equilibrium is determined by

QN =
[

k −a

b(c
m +1)

]1/c

.

3. Application of Learning Algorithms

In the following two sub-sections, we outline the algorithms utilized in Arifovic
(1994) and in Vriend (2000). We refer to these algorithms as the individual evolu-
tionary learning (IEL) and the classifier system (CS), respectively.2 Once we outline
the ways the two algorithms work, we will focus on the examination of the type
of changes that are required to dampen the spite effect in the IEL model.

REVISITING INDIVIDUAL EVOLUTIONARY LEARNING IN THE COBWEB MODEL 337

3.1. INDIVIDUAL EVOLUTIONARY LEARNING

In the model of IEL, each firm has a population (collection) of decision rules that
are represented by binary strings. A decision rule specifies a quantity to be pro-
duced. In each period, an active rule is selected using a roulette wheel selection
mechanism where each rule’s probability of being selected as an active rule is given
by its relative fitness. Supplies of individual firms are aggregated, and the market
clearing price is computed. Based on this price, a hypothetical profit of each rule
is computed and becomes its new fitness value. The intuition behind this is the
following. Once a firm observes the price level, it looks back at the entire list of
rules and re-evaluates them based on the new information that became available in
order to see how each one of them would have performed given the actual price
level.

Genetic algorithm (GA), see Holland (1992), updating takes place after each
period, using reproduction, crossover and mutation. A more detailed implementa-
tion of these genetic operators is outlined in the Appendix. Before a new period
begins, the firm has to assign hypothetical profits or hypothetical fitness values, to
the newly generated rules. It does this by using the last period’s price level. Thus,
these rules can also take part in the selection of the active rule for the following
period. The algorithm consists of the following sequence of steps:

• In each time period t , using roulette wheel type of selection, one of the rules
is selected to become the rule that determines firm’s actual production decision.
This rule is referred to as the active rule. The probability that a particular rule
is selected is given by its relative fitness, i.e.

µ
′
i,t = µi,t

∑n
j=1 µ j,t

• Based on the individual production decisions, and using the inverse demand
equation, market clearing price, Pt , is computed.

• Using Pt , hypothetical profit that each rule would have earned had it been used
as an actual rule is computed. This is determined taking the market price as
given. Then, the fitness of each rule is set equal to this hypothetical profit.

• Updating of the population of rules that will be used at period t +1 takes place
via the application of the genetic algorithm operators.

– First, a new collection (population) of N copies of rules is selected using the
roulette wheel selection process. This new collection (population) of copies
represents the mating pool that undergoes the crossover operator.

– Two copies are selected out of the mating pool without replacement. Cross-
over takes place with probability pcross. Thus, N · pcross rules undergoes appli-
cation of the crossover operator on average.

– Next, mutation is performed with probability pmut independently across the
positions.3

338 JASMINA ARIFOVIC AND MICHAEL K. MASCHEK

– Each newly generated binary string is first decoded into an integer number,
and the integer value is then normalized to the range of values between 0 and
q where q is the maximum production capacity.

– Finally, the fitness value of the newly created rules is determined by comput-
ing the hypothetical profit that the rule would have earned in the previous
time period.

• Each firm uses its population of rules to make production decision at period
t +1.

• Initial populations of binary strings are generated randomly.

It should be noted that the above description of IEL does not include the elec-
tion operator that is discussed in the enhanced version of the algorithm described
in Arifovic (1994). This operator controls the mutation rate endogenously. The
results reported in Arifovic (1994) show that, with the application of this oper-
ator, the exact convergence to the competitive outcome can be achieved. In this
paper, we look at the convergence in the statistical sense as we did not want to
add another layer of complexity to the basic algorithm in our analysis.

3.2. CLASSIFIER SYSTEM

Each firm has again an entire population of rules, represented by binary strings.
As with IEL, each rule specifies a quantity to be produced. Each rule has a fitness
value associated with it. In each time period, an active rule, the one that deter-
mines the firm’s production decision, is selected via an auction-like type of mech-
anism. The chosen rule becomes the active rule in that time period. The market
clearing price is computed, and the fitness value of the active rule in each firm’s
population is updated.

The fitness measure µ is computed as a monotonic transformation of the actual
profit level:

µ= [log(π)− log(π)]
[log(π)− log(π)]

where π is the profit level associated with the rule, π is the lowest possible profit
a firm may earn, and π is the maximum level of profit. In order to determine the
minimum profit, the market clearing price is calculated using the maximum pro-
duction of each firm (which is 2048). This price and the respective level output
are used to compute π . In order to determine the maximum profit, the mimimum
(non-zero) production allowable is used to the determine the market clearing price.
This price is then used in conjunction with the respective output level to determine
these extreme values. The fitness values calculated in this way lie in the [0,1] range.

Thus, the algorithm contains the following sequential steps:

• In each time period, an auction among the rules takes place, in order to deter-
mine which one of the rules becomes active. Becoming active implies that this

REVISITING INDIVIDUAL EVOLUTIONARY LEARNING IN THE COBWEB MODEL 339

will be the rule that the firm will use to make its production decision in the
current period.

– First, each rule’s bid value is determined in the following way:

bid=fitness+ ε

with ε ∼= N (0,0.075). With probability 0.025, the bid is ignored.
– Next, the highest bid is determined. The rule with the highest bid becomes the

active rule, i.e. the rule that determines the firm’s action.

• The price that clears the market is computed by summing up over individual
firms’ production decisions and using the inverse demand equation.

• The profit that each firm earns is calculated and the fitness associated with the
active rule is updated.

• Auction, computation of price level and updating of the fitness values of the
active rules takes place for g periods (g = 100). This is refereed to as the
GA-rate.

• Every g periods (referred to as the GA-rate), the genetic algorithm updating
takes place. The updating takes place on the population of rules for each indi-
vidual firm i , i ∈{1, N }.
– The rules’ utilities (actual fitnesses) are linearly rescaled to the interval [0,1].
– From the set of N = 40,4 the roulette wheel selection operator is applied to

the 30 fittest rules in order to select two mating parents.
– With a given probability, pcross, apply the crossover operator to the two

strings selected in the previous step.
– Select one of the two newly generated offspring randomly as a new rule.
– Assign a fitness value to the new rule that is equal to the average fitness of

the two parents.
– Mutate each bit of the rule with probability pmut, independently across the

positions.
– If the newly generated rule is not a duplicate of the existing rules, replace one

of the 10 weakest rules.
– Decode each newly generated binary string (that becomes the member of the

population) into an integer number. The production levels in Vriend’s imple-
mentation are given by integer numbers only.

– Repeat these steps until 10 new rules are created. These new rules replace the
10 worst performing rules of the previous period.

• Initial populations of rules are randomly generated.

3.3. MAIN DIFFERENCES BETWEEN IEL AND CS

Table I summarizes the main differences between the individual evolutionary learn-
ing model, and the classifier system.

340 JASMINA ARIFOVIC AND MICHAEL K. MASCHEK

Table I. Differences between IEL and CS.

IEL CS

[1] Selection operator Roulette wheel Roulette wheel
[2] Binary encoding length 30 11 (Integer encoding)
[3] Reproduction eligibility Entire population Performance based subset
[4] Duplicate rules Allowed Not allowed
[5] Fitness Level of profits Monotonic transformation

of profits
[6] Active Rule selection Roulette wheel Stochastic auction
[7(a)] GA updating (Rate) Every period Every g periods
[7(b)] Fitness updating All rules Active rule

(hypothetical profits)

Table II. Parameter Specification.

Baseline Alternative

Demand parameter a −1E-97 −1E-97
Demand parameter b 1.5E95 1.5E-95
Demand parameter c −39.99999997 −39.99999997
Fixed production costs K −4.097E-94 −2.060E-84
Marginal production costs k 0 1.0E-90

Number of firms N 40

We wish to determine which of the characteristics distinguishing these two algo-
rithms require inclusion for convergence to the Cournot–Nash equilibrium. Equiv-
alently, our motivation is in determining which of these characteristics require
exclusion for convergence to the Walrasian equilibrium.

As such, we begin with what will be referred to as the baseline simulation
(Simulation 1). This simulation will utilize the IEL algorithm as described in
Section 3.1 and the cost specification employed in Vriend (2000). The details of
the cost specification are contained in Table II. Note that there is no marginal
cost of production under this baseline specification, and a subsidy exists to
ensure that the minimum possible level of profits remains positive. This allows
for the application of the monotonic transformation of profits inherent in the CS
algorithm.

We methodically alter this baseline simulation in order to incorporate the char-
acteristics distinguishing it from the CS algorithm. Each characteristic is incorpo-
rated into the baseline simulation in isolation when possible. We consider in more
detail each of these characteristics below.

REVISITING INDIVIDUAL EVOLUTIONARY LEARNING IN THE COBWEB MODEL 341

3.3.1. Integer Encoding of Individual Production Rules – Simulation 2

An action is represented by a binary string of length k. Each binary string in an
individual firm’s set represents a level of production that falls between an upper
and lower bound ([q,q]= [0,2048]).

This is accomplished through the application of a normalization parameter. In
order to convert an encoded production rule, the binary string representing that
rule is first translated into its integer value equivalent. The normalization parame-
ter is then applied to this integer equivalent in order to obtain a production level
that is within the relevant bounds. A normalization parameter, nk

q , dependent on
the upper bound of production, q, and the string length utilized for encoding, k,
is determined by the following equation.

nk
q = k/q

where k is the value of the largest possible integer represented by a binary string
of length k.

Higher specifications for the binary strings encoding production levels are asso-
ciated with a higher precision, or step value, in the resulting rules available to the
individual firms. The baseline simulation utilizes a string length, k, of 30 bits. In
Simulation 2, we use the encoding length implemented in the CS. In this work,
production levels are only allowed to be the integer numbers. Using the same
upper bound on production, q, string length, k, is set equal to 11. No other
aspects of the baseline simulation are altered.

3.3.2. Alternative Updating Procedure – Simulation 3

Reproduction makes copies of individual rules via roulette wheel (proportionate
selection). The criterion used in copying is the value of the fitness function. Rules
with higher fitness value are assigned higher probability of contributing an off-
spring that undergoes further genetic operation. Each rule is selected probabilisti-
cally according to its relative fitness with replacement. When N copies of the rules
are made (the number of rules in a population is kept constant and equal to 40),
the reproduction is completed. These copies constitute a mating pool which then
undergoes application of other genetic operators. Rules are paired, and crossover
occurs with a given probability. The mutation operator follows.

The CS algorithm utilizes a procedure wherein reproduction occurs over the top
30 rules in order to replace the worst performing 10. Rules are ranked in terms of
their fitness, and the 10 worst performing rules are dropped from the set. From the
set of rules not discarded, two are selected probabilistically according to their rela-
tive fitness. With a given probability, these rules undergo crossover (with mutation)
and one of the offspring replaces a rule discarded in the previous step. This process
continues until the ten discarded rules are replaced. This alternative specification for

342 JASMINA ARIFOVIC AND MICHAEL K. MASCHEK

the updating process of the learning algorithm is implemented in Simulation 3. No
other aspects of the baseline simulation are altered, save this process of updating.

3.3.3. Alternative Updating Procedure without Duplicate Rules – Simulation 4

In the CS’s specification of the genetic algorithm, no duplicate rules are allowed in
the relevant set. Specifically, each rule in the relevant set must be unique. If in the
process of creating new rules, a potential rule is identical to one already in the set,
it is thrown away and a new rule is created. Building on Simulation 3 (where the
updating process utilized by Vriend (2000) is substituted for the baseline updating
process), Simulation 4 does not allow duplicate rules within the set of rules avail-
able to an individual firm.

3.3.4. Alternative Fitness Transformation – Simulation 5

In the baseline IEL simulation, fitness is calculated using the hypothetical level of
profit. On the other hand, in the classifier system, a monotonic transformation of
the actual profit level in order to determine a rule’s fitness measure, µ, is imple-
mented. This way of calculating the fitness values is implemented in Simulation 5.
All other aspects of the baseline simulation remain the same.

3.3.5. Alternative Fitness Transformation with Bid Rule Selection – Simulation 6

Utilizing the transformed profit levels as fitness, Vriend (2000) employs a proce-
dure for selecting the active rule that differs from that of the baseline simulation.
Thus, each rule has a bid, which is determined by adding to the rescaled values of
fitness a random variable drawn from a normal distribution (N [0,0.075]).5 With a
given probability, the bid of a rule is ignored, or tossed out of the set of relevant
bids. The remaining bids are ranked and the rule associated with the highest bid
becomes the active rule used to determine production level in the current period.

Simulation 6 builds on its predecessor (Simulation 5) by utilizing this form of
active rule selection. Therefore, with the exception of utilizing the fitness transfor-
mation used in Simulation 5 and the stochastic auction determining the active rule
described above, all other aspects of the baseline simulation remain unchanged.6

3.3.6. Increasing the GA-rate and Dropping Hypothetical Profits – Simulation 7

The GA-rate determines the frequency with which the rule set is updated using the
genetic operators. That is, irrespective of whether the relevant rule set is over the
individual or over the entire population, the rule set is updated only every g peri-
ods, defined and parameterized by the GA-rate. When the GA-rate is not a single
period, the fitness of a rule is only updated following its selection as the active
rule. As each individual firm has a single active rule in each period, only one rule’s

REVISITING INDIVIDUAL EVOLUTIONARY LEARNING IN THE COBWEB MODEL 343

fitness is updated in each period per firm. Hypothetical profits are not used. Thus,
the GA-rate must be sufficiently large in order to allow rules to be played before
selection, and therefore their fitness updated from the previous application of the
operator. In Simulation 7, we will follow Vriend (2000) in his selection of this free
parameter, setting the GA-rate to 100.

4. Results

In order to ensure that the results are robust to different sequences of random
numbers, each specification of the individual learning algorithm outlined above is
simulated 25 times, each run utilizing a different seed value for the initialization of
the random number generator. All simulations have a duration of 200 generations;
the duration of simulations as in Arifovic (1994). The exception is simulation
number seven where, due to the high specification of the GA-rate, an increased
simulation duration of 5000 periods is required (Vriend, 2000). The Gray coding
is used for all of the design specifications.7 In all of our simulations, following
Vriend (2000), we used the probability of crossover, pcross = 0.3, and the
probability of mutation, pmut = 0.033. In all of the simulations, the number of
firms, m, in the market is equal to 40, and the number of rules, N that each firm
has is also equal to 40.

Each of the seven specifications of the algorithm are simulated over two
distinct specifications for cost. The baseline cost specification is adopted from
Vriend (2000). Our alternative cost specification increases the marginal cost faced
by firms from its baseline specification of zero.8 This also ensures positive Walr-
asian equilibrium price. The values each cost parameter takes in the baseline and
alternative specification are contained in Table II along with the demand parame-
ters that do not change across different specifications. Again, the demand param-
eters are taken from Vriend (2000). The resulting Cournot–Nash and Walrasian
(competitive) equilibria associated with each specification are outlined in Table III.
We use two different cost specifications in order to examine the impact that a spe-
cific cost parametrization may have on the dynamics of the learning behavior.

For each specification, average per firm production levels and the standard devi-
ation around these average production levels are presented in Table IV. Graphical
illustration of the results reported in Table IV are presented in Figure 1 where

Table III. Equlibrium quantities and prices.

Baseline Alternative

Quantity Price Quantity Price

Cournot–Nash 942.4 1.3313E-88 629.83 1.3336E-81
Walrasian 1593.5 0 1065.0 1.0E-90

344 JASMINA ARIFOVIC AND MICHAEL K. MASCHEK

Table IV. Individual learning – average per firm output (in thousands).

Simulation Baseline Alternative

1 1.5482 (0.1347) 1.1007 (0.1057)
2 1.5474 (0.1349) 1.1044 (0.1055)
3 1.5837 (0.0320) 1.0648 (0.0218)
4 1.5831 (0.0323) 1.0660 (0.0230)
5 1.4790 (0.1132) 1.0159 (0.1571)
6 1.4819 (0.0896) 1.0592 (0.0950)
7 1.0935(0.0832) 1.0228 (0.0881)

Walrasian and Cournot–Nash equilibrium quantities are represented by straight
line. Average quantities (over 25 runs for each design and cost specification) with
plus and minus one standard deviation are presented as vertical lines for each sim-
ulation design that are enumerated from 1 to 7 on the x-axis.

Table IV and Figure 1 show that the average quantities reach the values close to
the Walrasian equilibrium values in simulation designs 1–6, for both cost specifica-
tions. The only simulation that converges to the Cournot–Nash equilibrium is Sim-
ulation 7, for the baseline cost specification (within two standard deviations). With
alternative cost specification, the outcome of the Simulation 7 design is again the
Walrasian equilibrium. It appears that for convergence to the Cournot–Nash equi-
librium, the IEL framework requires both a cost specification that has no marginal
costs and a learning algorithm that does not use hypothetical profits.

Figures 2–6 illustrate the behavior of the average per firm output observed in
simulations 2–6 for the alternative cost specification. The two straight lines indi-

0 1 2 3 4 5 6 7 8
600

800

1000

1200

1400

1600

1800

Experiment Number

Q
ua

nt
ity

Cournot–Nash – Baseline
Cournot–Nash – Alternate

Walras – Baseline

Baseline Simulations

Alternate Simulations

Walras – Alternate

Figure 1. Graphical representation of Table IV.

REVISITING INDIVIDUAL EVOLUTIONARY LEARNING IN THE COBWEB MODEL 345

20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Figure 2. Average per firm output – Simulation 2 (Baseline cost specification).

cate the Cournot-Nash per firm quantity (the lower), and the Walrasian competi-
tive equilibrium quantity (the higher). They show that the average per firm output
is in the neighborhood of the Walrasian competitive outcome. Figures 7 and 8
illustrate the behavior of the average per firm output for the simulation design 7.
As can be observed in Figure 7, which represents a simulation with the baseline
cost specification, the average output remains close to the Cournot–Nash equilib-
rium outcome. In Figure 8, which represents a simulation with the alternative cost
specification, we can see that the average output is back close to the Walrasian
outcome for the alternative cost specification. (Note that all of the Figures, 2–8,

20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Figure 3. Average per firm output – Simulation 3 (Baseline cost specification).

346 JASMINA ARIFOVIC AND MICHAEL K. MASCHEK

20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Figure 4. Average per firm output – Simulation 4 (Baseline cost specification).

20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Figure 5. Average per firm output – Simulation 5 (Baseline cost specification).

represent behavior observed in one of the 25 runs of each of different simulation
designs.)

5. Analysis

According to Vriend (2000), the difference between social and individual learning
lies in the fact that, while social learning is exposed to the spite effect inherent
within the Cournot framework, the rules that evolve in the individual model of
learning are not directly exposed to this effect. The effect drives a wedge between
the results for simulations utilizing the individual and social learning algorithms.

REVISITING INDIVIDUAL EVOLUTIONARY LEARNING IN THE COBWEB MODEL 347

20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Figure 6. Average per firm output – Simulation 6 (Baseline cost specification).

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Figure 7. Average per firm output – Simulation 7 (Baseline cost specification).

5.1. THE SPITE-EFFECT

The spite-effect in the social lerning environment works in the following way.
Suppose that the average output per firm is lower than the Walrasian competitive
equilibrium quantity. This implies that the aggregate quantity is also going to be
lower (and the market clearing price higher) than the Walrasian equilibrium values.
If we have in mind an agent-based model with heterogenous decisions about how
much to produce, firms that are producing above this average quantity are going
to earn higher profits. Consequently, as a result of reproduction in a GA setup,
they will be imitated by more firms, and thus the aggregate production level will
increase. This will drive the price towards the Walrasian competitive equilibrium
level.

348 JASMINA ARIFOVIC AND MICHAEL K. MASCHEK

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Figure 8. Average per firm output – Simulation 7 (Alternative cost specifica-
tion).

Now, suppose that the average output per firm is higher than the Walrasian
competitive equilibrium quantity. As a result, the price is going to be below the
Walrasian equilibrium levels. In this case, firms producing below this average quan-
tity are going to be more frequently imitated during the GA updating. As such,
the individual and aggregate quantities will decrease. A decrease in the aggregate
quantity will drive the market clearing price towards the Walrasian equilibrium
level. As a result, a population of social learners will converge to the Walrasian
output.

Vriend (2000) argues that there is no existence of the spite-effect in his individual
learning model. In this model, the individual rules that compete with each other in
the learning process do not interact in the Cournot market. In each time period,
a firm uses only one rule and evaluates its performance. Hence, instead of looking
how well other firms with different rules were doing, a firm now checks how well
it had been doing in the past when it used these rules itself. The spite effect will
still exist in the Cournot market, but will not effect the learning process itself.

However, what we call virtual spite-effect exists in the IEL models. First, con-
sider Arifovic’s IEL model where all of the hypothetical profits are updated in
each time period. The market-clearing price that can be above or below the
Walrasian equilibrium price will affect the fitness values of the firm’s decision rules.
Suppose that the market price is above the Walrasian equilibrium price. Regard-
less of what the actual rule a firm chose, it is going to evaluate all of the rules in
its set. Thus, the rules that proposed higher production will be rewarded by more
copies during the reproduction process, and will also increase their probability of
being chosen as active rules in the following period. This, in turn, would increase
the aggregate supply and lower the market clearing price. Hypothetical profits and
resulting fitness values of the rules recommending relatively high production would

REVISITING INDIVIDUAL EVOLUTIONARY LEARNING IN THE COBWEB MODEL 349

go down, and the rules recommending relatively low production would be pro-
moted in each firm’s collection. As a result, aggregate supply would fall, pushing
the market clearing price upward, toward the Walrasian equilibrium value (If there
is slight overshooting, the same process will be repeated.)

On the other hand, if the market price is below the Walrasian equilibrium level,
regardless of what the firm actually chose, all of the rules’ fitness values will be
updated using that price. As a result, a population of firm’s decision rules will be
driven towards producing less. This will also result in a higher probability of selec-
tion of the rules that propose lower quantities. Overall, the virtual spite-effect will
still work its way through a model where firms update the hypothetical profits of
all of their rules.

5.2. NECESSARY CONDITIONS FOR COURNOT-NASH CONVERGENCE

Next, we argue that both exclusion of hypothetical profits (fitness values), and
utilization of a specific cost specification (baseline) are conditions necessary for a
reduction of the impact of the virtual spite-effect that is sufficient for the conver-
gence to the Cournot–Nash equilibrium outcome.

We begin with a thought experiment in which the simulation is at or near the
competitive equilibrium outcome. Assume that one firm experiments (via the muta-
tion operator) with a rule that reduces its production level below the equilibrium
level. This pushes the market price above that of its competitive value. Under the
zero marginal cost assumption of the baseline model, prices are now positive.

Consider first the experimenting firm. As hypothetical profits (and associated fit-
ness values) are not utilized, and only the rule played by this firm has its fitness
updated. This fitness is below that of the old rule the agent was playing prior to
this experimentation. As such, the old rule has higher fitness, and is more likely to
be re-adopted rather than playing the deviating rule. There is, therefore, pressure
on the firm to revert back to the equilibrium strategy.

Now, consider all other firms in the simulation. These individuals were still play-
ing the equilibrium strategy. As the experimenting firm pushed the price into pos-
itive territory, the fitness of the equilibrium rule now increases. As hypothetical
profits and fitness values are not utilized, no other rules’ fitness is altered. As such,
the equilibrium strategy gains relative fitness against all others. It remains likely to
be played in the subsequent periods.

Taken together, there is a significant pressure in the simulation to revert back
to the competitive equilibrium. The equilibrium is stable with respect to a single
firm’s deviation from an equilibrium strategy to one in which they supply slightly
less. This is not the case, however, if this deviation is towards producing more
output.

Now, let us consider a single firm deviating from the competitive equilibrium
strategy towards producing slightly more. Under the baseline cost specification,
this pushes prices into negative territory. Again, consider first the agent that

350 JASMINA ARIFOVIC AND MICHAEL K. MASCHEK

deviated. The strategy played will obtain lower fitness than that of the equilibrium
strategy. Its fitness is updated. Again, only the rule representing the deviation has
its fitness updated. As this rule is now associated with a fitness value less than that
of the equilibrium strategy, it becomes less likely to be played. As in the previous
deviation, the firm is now likely to revert to her equilibrium strategy.

Next, consider all other firms not deviating from the competitive equilibrium.
The fitness of the rule associated with this equilibrium now falls considerably. (This
is opposite of the observation in the previous deviation we considered.) This rule’s
fitness falls, and it makes the equilibrium rule less likely to be played in the sub-
sequent periods. As all other firms are less likely to play the equilibrium rule, it
becomes more likely for these agents to experiment with deviations from the equi-
librium production value.

This is where the particular, baseline specification of costs becomes important.
Thus far, the argument made applies equally well in qualitative terms to a situa-
tion, in which equilibrium price is positive. However, when prices are pushed into
negative territory due to a single firm’s deviation, the profit maximizing output
level for all other firms becomes zero. This has the effect of encouraging rather
large cuts in production. That is, for the firms that begin experimenting with non-
equilibrium strategies, those whose rules propose the highest cut in the produc-
tion will observe the highest fitness values for these rules in the subsequent periods
assuming prices remain negative.

This is not the scenario when equilibrium prices are positive. Here, when devia-
tion encourages a cut in production, this cut does not have to be as drastic as that
associated with a zero price simulation, as the profit maximizing level of output
will not be zero.

The cost specification of Vriend encourages and rewards very big cuts in pro-
duction, pushing the simulation towards the Cournot–Nash equilibrium. Aggregate
production falls considerably, and as such those playing the reduced output strate-
gies enjoy the higher profits associated with cooperative cuts in output. As big cuts
were rewarded, the Cournot–Nash outcome is fostered.9

However, sustaining the Cournot–Nash outcome requires sustained coordination
on lower individual quantities. If this is the case, why does the simulation then
not proceed toward converging back to the competitive equilibrium? The answer
is linked to the fact that hypothetical profits or potential fitnesses are not being
utilized.

If the simulation is to drift back towards competitive outcomes, individual
firms must begin increasing production levels. The likelihood of these strategies
being played is directly linked to the fitness level associated with them. However,
these fitness values are only updated when they are played. As such, when firms
consider playing these rules, the fitness value they associate with them is that
remembered from the last instance they were played. Firms only “remember” the
situation in which price was pushed into negative territory and these rules suffered

REVISITING INDIVIDUAL EVOLUTIONARY LEARNING IN THE COBWEB MODEL 351

low fitness values. As such, the likelihood of adopting these strategies may be very
low, aiding to sustain the low production simulation outcome.

Thus, although there will still be a virtual spite effect, it is mitigated by two fac-
tors: only updating the fitness of those rules that are actually used, and the cost
specification with zero marginal cost.

In contrast, when we consider firms that update the hypothetical profits of all
of their rules based on the newly available information, the virtual spite effect
becomes an important characteristic within the model of individual learning. The
same forces that work at the level of social learning will now be in place on
the sets of rules updated by individual firms. This implies that greater speeds of
learning, which characterize the model where all hypothetical profits are updated
enables the existence of spite effects. Being slower, and ‘less sophisticated’, might
in this case help reach the preferred outcome.

6. Conclusions

We investigated the changes that are required for the convergence of the individ-
ual evolutionary learning algorithm to the Cournot–Nash equilibrium. Two things
appear to be crucial for this convergence: one is the specific way in which the
fitness function is updated, and the other is the specific cost function. The fit-
ness updating requires that only the fitness values of those strategies that are actu-
ally used for production decisions are updated. The required specification of firms’
costs is one that results in the zero (Walrasian) equilibrium price level. As our sim-
ulations show, both of the above are required in order to dampen the spite-effect
and allow for the convergence to the Cournot–Nash equilibrium. For example, if
this fitness updating is combined with the specification of the economic parameter
values that result in the positive equilibrium price, we do not observe departures
from the Walrasian equilibrium. Moreover, implementation of the cost specifica-
tion associated with a zero equilibrium price level and an alternative updating of
rules’ fitness (one in which all strategies update their fitness utilizing hypothetical
profits) again results in the Walrasian equilibrium outcome.

The question of whether a certain model of individual learning is appropri-
ate rests on testing them against empirical data. The existing experimental evi-
dence (e.g. Wellford, 1989) suggest that under the conditions that correspond to
the individual learning setup, i.e. where human subjects are not able to observe
the production decisions of other participants, the quantities and prices converge
to the Walrasian competitive equilibrium outcome.

Notes
1 This algorithm is referred to as the multiple-population algorithm in Arifovic (1994).

However, we will refer to it as the individual evolutionary learning algorithm as this term

352 JASMINA ARIFOVIC AND MICHAEL K. MASCHEK

better reflects the developments and applications in the learning literature. For an applica-
tion of a very similar learning algorithm see Arifovic and Ledyard (2004).

2 We choose these names for the following reasons. Arifovic and Ledyard (2004) have
recently used the type of algorithm very similar to Arifovic (1994) algorithm, and have
called it Individual Evolutionary Learning. Vriend (2000) refers to his individual learning
algorithm as a type of Classifier System.

3 More detailed account of reproduction, crossover and mutation is provided in the
Appendix.

4 Vriend (2000) used 40 as the number of firms in the social learning implementation.
He also kept 40 firms in the individual learning implementation. In addition, each of the
firms had a collection of 40 production rules. We decided to adopt the same numbers.

5 As descrubed earlier, fitness values are linearly rescaled from their existing values to
the [0,1] interval.

6 The transformation of profit levels associated with Simulation 5 is employed in Simu-
lation 6.

7 All of our results remain unchanged with binary coding only. We introduced Gray cod-
ing at the request of one of our referees. A short description of how it works and why it
is useful in dealing with genetic algorithm binary strings is given in the Appendix.

8 In order to ensure that the lowest possible profit level remains positive, we must
increase the size of the subsidy each firm faces. Hence, the positive marginal cost speci-
fication is associated with a more negative fixed cost of production.

9 What is required is large cuts in production. In this scenario, this is fostered by the
particular cost specification of Vriend. However, other possibilities exist. For example, if
one was to reduce the binary string length for the genetic encoding of the simulation and
adjust the normalization parameter appropriately, deviations in output would have a larger
step value. As such, small deviations may not be made possible and Cournot–Nash out-
comes may be observed.

Appendix

Reproduction makes copies of individual chromosomes via roulette wheel (propori-
onate selection). The criterion used in copying is the value of the fitness function.
Chromosomes with higher fitness value are assigned higher probabiity of contrib-
uting an offspring that undergoes further genetic operation. Thus, the probability
that a chromosome Ai,t will get a copy Ci,t is given by:

P(Ci,t)= µi,t
∑n

j=1 µ j,t
i =1, . . . ,n.

The algorithmic form of the reproduction operator is like a biased roulette wheel
where each string is allocated a slot sized in proportion to its fitness. The number
of spins of the wheel is equal to the number of strings in a population. Each spin
yields a reproduction candidate. Once a string is selected, its exact copy is made.
When n copies of strings are made (the number of strings in a population is kept
constant), the reproduction is completed. These copies constitute a mating pool
which then undergoes application of other genetic operators.

Crossover exchanges parts of pairs of randomly selected strings. It operates
in two stages. In the first, two strings are selected from the mating pool at

REVISITING INDIVIDUAL EVOLUTIONARY LEARNING IN THE COBWEB MODEL 353

random. Then in the second stage, a number k is selected, again, randomly from
(1, . . . , l −1) and two new strings are formed by swapping the set of binary values
to the right of the position k. The total of n/2 (n is an even integer) pairs are
selected and the crossover takes place on each pair with probability pcross. An
example of the crossover between two strings for l =8 and k =4 is given below:

1 0 1 0 | 1 1 1 1
1 1 0 1 | 0 0 1 0

After the crossover is performed, the two resulting strings are:

1 0 1 0 0 0 1 0
1 1 0 1 1 1 1 1

Mutation is the process of random change of the value of a position within a
string. Each position has a small probability, pmut, of being altered by mutation,
independent of other positions.

It works in the following way: A random number [0,1] is drawn. If the number
is less than or equal to the probability of mutation, pmut, the value of the position
is changed. If it is 1 it is changed to 0, and if it is 0, it is changed to 1. If the
random number turns out to be greater than pmut, the value of the position is left
unchanged. This is repeated ln times, i.e. for every position in every string.

GRAY CODING

In general, adjacent integers in the binary representation often lie many bit muta-
tions apart. It is therefore less likely that a mutation operator can effect small
changes for binary-coded strategies or decisions. Gray coding is often used as a
way to deal with this problem. It is an alternative encoding method in which adja-
cent integers differ by only a single bit (the Hamming distance between adjacent
integers equals one). This is referred to as the adjacency property. For example,
the binary coding of 7 is 000, 001, 010, 011, 100, 101, 110, 111, while a poten-
tial gray coding is 000, 001, 011, 010, 110, 111, 101, 100. Essentially, a Gray
code takes a binary sequence and shuffles it to form a new sequence in which the
adjacency property holds. Their use in the implementation of genetic algorithms
has been shown to improve the performance over implementation utilizing binary
encoding. This performance improvement is grounded on the increased potential
for small perturbations through successive single mutations of the encoded string
(see Holstein, 1971, for a consideration of genetic algorithm performance utilizing
Gray-coded integers in a pure mathematical optimization problem). In general,
adjacent integers in the binary representation often lie many bit mutations apart, it
is therefore less likely that a mutation operator can effect small changes for binary-
coded strategies or decisions.

354 JASMINA ARIFOVIC AND MICHAEL K. MASCHEK

References

Alkemade, F., La Poutre, H. and Amman, H. (2006). Robust evolutionary algorithm design
for socio-economic simulation. Computational Economics, (forthcoming).

Arifovic, J. (1994). Genetic algorithm learning and the cobweb model. Journal of economic
dynamics and control, 18, 3–28.

Arifovic, J. and Ledyard, J. (2004). Scaling up learning models in public good games. Jour-
nal of Public Economic Theory, 6, 205–238.

Brock, W. and Hommes, C. (1998). A rational route to randomness. Econometrica,
65, 1059–1097.

Camerer, C. and Ho, T. (1999). Experience weighted attraction learning in normal form
games. Econometrica, 67, 827–873.

Camerer, C. (2003). Behavioral Game Theory: Experiments in Strategic Interaction, Prince-
ton University Press.

Chen, S.-H. and Yeh, C.-H. (1994). Genetic programming learning and the Cobweb Model.
in P. Angeline and K.E. Kinnear, Jr. (eds), Advances in Genetic Programming 2, MIT
Press, Cambridge, MA, chapter 22.

Dawid, H. and Kopel, M. (1998). The appropriate design of a genetic algorithm in eco-
nomic applications exemplified by a model of the Cobweb type. Journal of Evolutionary
Economics, 8, 297–315.

Erev, I. and Roth, A. (1998). Predicting how people play games: Reinforcement learning in
experimental games with unique, mixed strategy equilibria. American Economic Review,
80, 848–881.

Franke, R. (1998). Coevolution and stable adjustment in the Cobweb model. Journal of
Evolutionary Economics, 8, 383–406.

Holland, J.H. (1992) Adaptation in Natural and Artificial Systems. An Introductory Analysis
with Applications to Biology, Control, and Artificial Intelligence, 2nd edition. Cambridge,
MA: MIT Press.

Vriend, N. (2000). An illustration of the essential difference between individual and social
learning, and its consequences for computational analyses. Journal of Economic Dynam-
ics and Control, 24, 1–19.

Wellford (1989). A Laboratory Analysis of Price Dynamics and Expectations in the
Cobweb Model, Discussion Paper No. 89–15. University of Arizona: Tuscon.

