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Market Power and Efficiency in a Computational
Electricity Market With Discriminatory

Double-Auction Pricing
James Nicolaisen, Valentin Petrov, and Leigh Tesfatsion

Abstract—This study reports experimental market power and
efficiency outcomes for a computational wholesale electricity
market operating in the short run under systematically varied
concentration and capacity conditions. The pricing of electricity
is determined by means of a clearinghouse double auction with
discriminatory midpoint pricing. Buyers and sellers use a mod-
ified Roth–Erev individual reinforcement learning algorithm to
determine their price and quantity offers in each auction round.
It is shown that high market efficiency is generally attained and
that market microstructure is strongly predictive for the relative
market power of buyers and sellers, independently of the values
set for the reinforcement learning parameters. Results are briefly
compared against results from an earlier study in which buyers
and sellers instead engage in social mimicry learning via genetic
algorithms.

Index Terms—Agent-based computational economics, capacity,
concentration, efficiency, genetic algorithm social learning, indi-
vidual reinforcement learning, market power, repeated double
auction, restructuring, wholesale electricity market.

I. INTRODUCTION

A NY ELECTRIC power industry must carry out three basic
functions, regardless of its structure [1], [2]. First, it must

produce electricity from existing capacity. Second, it must dis-
tribute this electricity to final consumers. Third, it must engage
in longer run planning and investment for the production of new
capacity.

Until recently, most electricity has been supplied by vertically
integrated statutory monopolies operating either as public utili-
ties or as regulated investor-owned utilities [3, Ch. 6]. The reg-
ulatory compact has generally decreed that utilities should pro-
vide enough generation capacity to ensure an adequate supply
of electricity for all users in return for receiving a fair rate of
return on their capacity.

In recent years, however, this regulatory compact has been
widely eroded due to the growing irrationality of the rate struc-
ture and the public perception that current industry practices fail
to provide the proper incentives to ensure market efficiency. In
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consequence, calls have increasingly been made to restructure
the electric power industry into a more competitive industry in
which prices would better reflect true marginal costs. At the
same time, concerns have been expressed that restructuring ef-
forts might actually result in efficiency losses. Moreover, equity
concerns have arisen regarding possible increased opportunities
for some market participants to exercise market power, i.e., to
secure a higher share of profits for themselves than would be
possible under competitive market conditions [4].

To date, restructuring proposals for the electric power
industry have focused primarily on the wholesale electricity
market. In this market, electricity is produced by generating
companies (“generators”) from existing capacity and sold either
to other generators or to some form of energy service provider.
The energy service providers subsequently resell the electricity
to household, industry, or commercial users in a retail market.

Short-run production efficiency in a wholesale electricity
market requires that current demand be met using the least
costly mix of existing capacity. Any market mechanism pro-
posed for the short-run efficient determination of trades in a
wholesale electricity market must therefore address four tasks
[1, pp. 11–12]. First, the buyers and sellers who would benefit
from trade must be identified. Second, these buyers and sellers
must be matched so as to maximize total gains to trade. Third,
a specific price and quantity level must be determined for each
matched buyer-seller pair. Fourth, trades between matched
buyers and sellers must be carried out within the constraints of
the electric power transmission grid.

One market mechanism currently under intense consider-
ation for wholesale electricity markets in many parts of the
world is a clearinghouse double auction[5]–[7]. In such an
auction, wholesale buyers and sellers of electricity participate
repeatedly in auction rounds. At the beginning of each auction
round, the buyers and sellers submit price and quantity offers
simultaneously to a clearinghouse. At the end of each auction
round, the clearinghouse matches the price and quantity offers
received during the round in accordance with publicly known
protocols, subject to transmission grid constraints, and reports
these matches back to the buyers and sellers. The prices set by
the clearinghouse are eitherdiscriminatory(set individually for
each matched buyer-seller pair) oruniform(set equal across all
matched buyer-seller pairs). The practical advantage of such an
auction mechanism is that its trading and settlement rules do
not require the clearinghouse to know in advance the number
of participants, their private costs, or their privately held beliefs
and preferences.
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Ideally, the performance of any proposed auction mechanism
should be understood prior to its actual implementation. The
difficulty for wholesale electricity markets is that these mar-
kets generally comprise small numbers of buyers and sellers
with differentiated costs and capacities who interact repeatedly
over time. The buyers and sellers may, thus, have an incentive to
“game” an auction mechanism, i.e., to behave opportunistically
within the limits set by the auction protocol in an attempt to in-
crease their individual gains to trade. In particular, buyers and
sellers may have an incentive to submit price offers that misrep-
resent their true willingness to pay or their true marginal costs
and to submit quantity offers that misrepresent their true capac-
ities.

For example, it is well known that implicit collusion prob-
lems can arise in uniform-price auctions for multiple units of a
homogeneous good such as electricity [8], [9]. In uniform-price
auctions, the marginally matched buyer and seller determine the
price for all units, and auction participants may be able to col-
lude tacitly to move this price in their favor. Klemperer [9, p.
4] notes that it was partly to avoid such problems that electricity
regulators in the U.K. recently proposed a set of New Electricity
Trading Arrangements for the U.K. Under these arrangements,
an exchange market followed by a discriminatory-price auction
would replace the existing uniform-price auction.

Implicit collusion is more difficult in discriminatory-price
auctions. Nevertheless, auction participants may still have an in-
centive to engage in opportunistic behavior with regard to their
price and quantity offers. Moreover, as found in [10] in the con-
text of a one-sided auction for electricity generators, a discrim-
inatory auction may permit large generators with many gener-
ating plants to have informational advantages over smaller gen-
erators.

Consequently, while it is highly desirable to predict in
advance the market power and efficiency implications of pro-
posed new auction protocols for wholesale electricity markets,
the complexity of these markets makes it difficult to do so
using standard analytical tools or human-subject laboratory
experiments.1 Empirical study is also difficult since relevant
data is scarce. This suggests a potentially useful role for
computational experiments.

This study constructs an agent-based computational model of
a wholesale electricity market that can be used as a laboratory
for systematic experimentation.2 We use this laboratory to in-
vestigate market power and efficiency outcomes for a short-run
wholesale electricity market with double-auction pricing and
with buyers and sellers who continually update their price of-
fers on the basis of past profit experiences. We consider how
the relative market power of the buyers and sellers varies in re-
sponse to changes in concentration and capacity when auction

1As discussed in [7] and [11]–[13], researchers studying auctions by means of
analytical tools and human-subject laboratory experiments have focused largely
on simpler auction contexts in which the scope for opportunistic behavior is
limited, e.g., single-round single-unit auctions in which the participants have
extensive common knowledge. Rustet al. [14] is an important exception.

2Other researchers who have undertaken agent-based computational studies
of wholesale electricity markets with double-auction pricing include [6] and
[15]. Various resources on agent-based computational economics (ACE) in gen-
eral, including surveys, an annotated syllabus of readings, software, and pointers
to individual researchers and research groups, can be found at the ACE website
at http://www.econ.iastate.edu/tesfatsi/ace.htm.

prices are determined by means of a discriminatory pricing rule.
We also consider the implications of this discriminatory pricing
rule for short-run market efficiency.

One special concern of this study is the development of con-
ceptual tools that permit market power effects due to market
structure to be distinguished from market power effects due to
buyer and seller learning. We focus particularly on the degree to
which the discriminatory pricing rule induces structural versus
behavioral market power effects.

Another special concern of this study is the testing of an
empirically based representation for individual learning. Our
electricity buyers and sellers are assumed to learn in accor-
dance with a modified version3 of a reinforcement learning al-
gorithm due to Roth and Erev [16], [17]. The attractiveness of
the Roth–Erev learning algorithm is that its form embodies the
most salient regularities observed in the decision-making be-
havior of human subjects across a wide variety of multiagent
experimental games.

Our main experimental finding is that structural biases are in-
herent in discriminatory pricing rules and that these biases are
highly predictive for relative market power outcomes. Although
high market efficiency is generally attained, the buyers or sellers
who are less favored in terms of market power under the dis-
criminatory pricing rule are not able to overcome this struc-
tural market power bias through learning. This is the case even
though the less favored agents have the potential to gain positive
market power through appropriate strategic pricing. The sym-
metric nature of the double auction, which requires both sides of
the market to submit price offers simultaneously, appears to pre-
vent either buyers or sellers from successfully learning to gain a
relative market power advantage through strategic price offers.

Section II presents our computational electricity market
framework, including a detailed description of the auction
mechanism, the learning algorithm used by traders to determine
their price offers, and the calculation of benchmark competitive
market outcomes. In Section III, we explain the experimental
design of our study in terms of both tested hypotheses and
tested parameter values. Section IV reports our basic experi-
mental findings and Section V provides a detailed discussion
of these findings. The concluding Section VI summarizes our
key findings and discusses the relationship of these findings
to work by other authors, in particular [18] on the relative
efficiency effects of market structure versus learned behavior.

II. ELECTRICITY MARKET FRAMEWORK

A. Overview

Our computational electricity market incorporates several
features anticipated to be key aspects of short-run wholesale
electricity markets operating under restructuring. Small num-
bers of buyers and sellers submit price offers repeatedly to a
clearinghouse double auction in an attempt to maximize their

3In preliminary versions of this study (ISU Economic Report no. 52, August
2000, revised February 2001), it is stated that the original Roth–Erev algorithm
is used. It was subsequently determined, however, that our code implementation
actually included a “small” modification of this learning algorithm. As will be
clarified below, the resulting modified learning algorithm turns out to have im-
portant advantages over the original Roth–Erev learning algorithm in the current
double-auction setting.
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profits. The buyers and sellers have multi-unit capacities and
differentiated revenues and costs, private information that other
traders cannot observe directly. Moreover, each buyer and seller
continuously updates its price offers on the basis of its past
profit experiences in a manner that permits the exploitation of
profit opportunities arising from the pricing behavior of other
traders.

More precisely, our computational electricity market models
the short-run wholesale trading of electricity by traders attached
to an electric power transmission grid. The transmission grid is a
fully connected graph with traders as the nodes and transmission
lines as the edges. Each trader is assigned a maximum amount of
electricity (capacity) that it can buy or sell in each auction round
as well as a certain available transmission capability (ATC) with
respect to each other trader. Traders with electricity to buy are
referred to asbuyersand traders with electricity to sell are re-
ferred to assellers.

The following parameter values are specified for each buyer:
capacity in megawatt-hours, (constant) marginal revenue per
megawatt-hour purchased and resold in a secondary retail
market, and fixed costs. Also, the following parameter values
are specified for each seller: capacity in megawatt-hours,
(constant) marginal cost per megawatt-hour generated, and
fixed costs. These parameter values are private to each trader.

The buyers and sellers trade electricity repeatedly in a dis-
criminatory-price double auction run by an independent clear-
inghouse, henceforth referred to as adiscriminatory auction.
The goal of each buyer and seller is to maximize its own profits.

The discriminatory auction is performed in rounds. In each
round, the buyers and sellers simultaneously submitbids(offers
to buy) andasks(offers to sell) to the clearinghouse. Each bid
and ask consists of a single price-quantity pair. The linearity as-
sumed for the traders’ revenue and cost functions, together with
the discriminatory auction protocol, ensures that the profit-max-
imizing quantity offered by each trader is simply its capacity
quantity. As detailed more fully in Section II-B, the clearing-
house matches these bids and asks, using as its criterion the
maximization of perceived total profit, and communicates these
matches back to the buyers and sellers.

At the end of the auction round, the matched buyers and
sellers carry out their assigned trades and record their profit out-
comes. They then use these profit outcomes to determine their
price offers for the next auction round.

B. Auction Round Implementation

A single auction round proceeds as follows. First, each trader
selects a feasible price offer in accordance with the trader’s cur-
rent “choice probabilities”—the determination of these choice
probabilities is explained in Section II-E. Each trader submits
this price offer to the clearinghouse along with a quantity offer
equal to the trader’s capacity.4 The clearinghouse then sepa-
rately sorts the buyers and sellers by their price offers in de-
scending and ascending order, respectively.5

4Recall from Section II-A that the profit-maximizing quantity offer for each
trader in each auction round is simply its capacity quantity.

5Before each (bubble) sort, the ordering of the traders is randomized to avoid
unintended incumbency effects in cases where some buyers or sellers make iden-
tical price offers.

TABLE I
BUYER-SELLER MATCHING ILLUSTRATION

The buyer with the highest bid price is first matched with the
seller with the lowest ask price. The unit price for the contract is
set at the midpoint of the bid-ask spread. If there is nonzero ATC
between the buyer and the seller, then the buyer is matched with
the seller for an amount of electricity calculated as the minimum
of three amounts: the ATC, the capacity of the buyer, and the
capacity of the seller. Thus, if the ATC is 5 MWh, the buyer’s
capacity is 10 MWh and the seller’s capacity is 20 MWh, then
the contract is made for 5 MWh because this is the maximum
quantity that the power grid can support. The carryover amount
to buy or sell is then calculated and the next pair is matched in
similar fashion.

Table I gives an example of a matching outcome for a market
comprising three buyers and three sellers in which the ATC be-
tween any paired buyer and seller is assumed to be 10 MWh.

At the end of the auction round, each trader implements its
auction-assigned trades and obtains a profit outcome. Each
trader then uses this profit outcome to calculate updated choice
probabilities for selecting among its feasible price offers in the
next auction round. This updating is accomplished by means of
a modified version of a reinforcement learning algorithm due to
Roth and Erev [16], [17]. The latter algorithm will be motivated
and illustrated prior to introducing the modified version.

C. Motivation for the Roth–Erev Algorithm

In a series of studies, Roth and Erev [16], [17] have sought
to understand how people learn individually to behave in games
with multiple strategically interacting players. To this end, they
have developed a three-parameter reinforcement learning algo-
rithm, hereafter referred to as theRE algorithm.

The basic intuition underlying any reinforcement learning al-
gorithm is that the tendency to implement an action should be
strengthened (reinforced) if it produces favorable results and
weakened if it produces unfavorable results [19]. Roth and Erev
take thislaw of effectprinciple, widely accepted in the psycho-
logical learning literature, as the basic starting point in their
search for a robust model of individual learning. In addition,
they argue for an additional learning principle, also adhered to
widely in the psychological learning literature, which they refer
to as thepower law of practice. The latter principle asserts that
learning curves tend to be initially steep, after which they flatten
out.

Psychologists generally have focused on individual learning
in “games against nature” for which there is only one deci-
sion maker. In contrast, Roth and Erev are interested in indi-
vidual learning in strategic environments with multiple decision
makers. Roth and Erev argue that, in such contexts, the law of
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effect and the power law of practice fail to account sufficiently
for the observed responsiveness of decision makers to other de-
cision makers in their choice environments.

Based on extensive observations of individual learning in
multiagent games, Roth and Erev argue for two additional
learning principles that help to capture learning responsiveness,
which they refer to asexperimentationand therecency(or
forgetting) effect. The former principle asserts that, not only
are choices that were successful in the past more likely to be
employed in the future, but similar choices will be employed
more often as well. The latter principle asserts that recent
experience generally plays a larger role than past experience in
determining behavior.

The RE algorithm incorporates each of these four learning
principles to some degree. Roth and Erev show that this
algorithm is able to track successfully the observed interme-
diate-term behavior of human subjects over a wide variety of
multiagent repeated games with unique equilibria achievable
using stage-game strategies.

D. Form of the Roth–Erev Algorithm

The three parameters characterizing the RE algorithm are a
scaling parameter , a recency parameter, and anexper-
imentation parameter . The implementation of the RE algo-
rithm will now be illustrated for a group of buyers and sellers
participating in a double auction. For simplicity, each buyer and
seller is assumed to learn in accordance with an RE algorithm
characterized by the same three values for these parameters.

The feasible price offer domain for each buyer and seller is
approximated by a discrete grid consisting offeasible actions
(bid or ask prices) , where is the same for each trader. At the
beginning of the first auction round 1, each traderassigns an
equalpropensity to each of its feasible actions, given by

, where is the average profit that buyers
and sellers can achieve in any given auction round.

Moreover, each trader assigns an equalchoice probability
to each of its feasible actions, given by .

Each trader then probabilistically selects a feasible action
to submit to the clearinghouse in accordance with its current
choice probabilities. On the basis of all received bids and asks,
the clearinghouse determines buyer-seller matches. It then com-
municates these matches back to the traders along with a quan-
tity amount and a midpoint price for each match. Each trader
then implements its assigned trades and records the total profits

that it gained from this trading activity.
Now suppose that trader is at the end of the th auction

round for arbitrary positive and that in the th auction round
trader has submitted a feasible actionto the clearinghouse
and achieved total profits from its resulting auction-
directed trading activity. Traderthen updates its existing action
propensities on the basis of its newly earned profits, as
follows. Given any feasible action, the propensity
for choosing in the next auction round is determined as

where

value of the recency parameter;
value of the experimentation parameter;
update function reflecting the experience gained from
past trading activity.

The recency parameterslowly reduces the importance of
past experience, thus implementing the recency effect. The up-
date function takes the form

The selected action is, thus, reinforced or discouraged on the
basis of the profits earned subsequent to this selec-
tion, but some propensity to experiment among all other feasible
actions is also retained. Thus, is an implementation of the
experimentation principle.

Given the updated propensities for auction round
, trader ’s updated choice probabilities for

selecting among its feasible actionsin auction round
take the form

In summary, Roth–Erev traders solve a myopic stimulus-re-
sponse problem of the following form. Given this profit out-
come, what price should I next choose? They do not engage in
any explicit look-ahead reasoning, e.g., if I choose this price
now, how will this affect the price choices of my rivals in the
future?

E. Modified Roth–Erev Algorithm

The RE algorithm outlined in Section II-D has two draw-
backs: 1) parameter degeneracy and 2) no probability updating
in response to zero profits.6

First, the updating of the choice probabilities is slow ifis
set close to and ceases entirely if is set equal
to . Consequently, care must be taken in specifying
values for and .

Second, a much more substantial difficulty in a double-auc-
tion context is that each trader only updates its choice probabil-
ities in response tononzeroprofit outcomes. A zero-profit out-
come leaves a trader’s choice probabilities unchanged because
each of the trader’s current propensity values is shrunk to the
same degree. In a double auction, traders must learn to make
price offers for which bids exceed asks in order for matching
(hence, positive profits) to occur at all. An absence of proba-
bility updating in response to zero profits can therefore result
in a substantial loss of market efficiency as traders struggle to
learn how to make profitable price offers.

A simple modification of the RE algorithm addresses both
of these problems while still maintaining consistency with the
learning principles embodied in the original RE algorithm.

6Kroujiline pointed out the parameter degeneracy problem to us. Koesrindar-
toto alerted us about the zero-profit updating problem in a particularly com-
pelling way. In his own double-auction experiments with Roth–Erev learners
participating in 1000 auction rounds, persistent market inefficiency arose for
certain parameter specifications because the choice probabilities associated with
various zero-profit (nonmatching) price offers remained at persistently positive
levels.
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Specifically, we replace the update function in the original
RE algorithm with the following modified update function:

This modification essentially introduces different values for
the recency parameterfor selected versus nonselected actions
while at the same time omitting the profit term in the updating
equation for propensities corresponding to nonselected actions.
In particular, the effect is to reduce the magnitude of the recency
parameter for nonselected actions fromto

. Clearly, degeneracy no longer occurs for ,
but how does this modification also ameliorate the zero-profit
updating problem?

Note that the shrinkage induced by in the propensity
value for the selected action is now larger than the shrinkage
induced by in the propensity values for nonselected
actions. Consider, then, what happens when a zero-profit
outcome results from a selected action. All propensities are
shrunk, but the propensity corresponding toundergoes the
most shrinkage. Consequently, in the next auction round, the
choice probabilities for the nonselected actions will increase
relative to the choice probability for , encouraging the trader
to move away from the action that resulted in zero profits.

On the other hand, suppose the selected actionresults in a
positive profit outcome. Then the positive profit reinforcement
in the propensity updating equation forwill tend to outweigh
the larger shrinkage and hence to induce a relative increase in
the updated choice probability for this action in the next auction
round.

In summary, when the update function in the RE algo-
rithm is replaced with the modified update function , the
zero-profit updating problem is ameliorated. The choice proba-
bilities corresponding to action choices resulting in zero-profit
outcomes tend to decrease relative to other choice probabilities
while the choice probabilities corresponding to action choices
resulting in positive-profit outcomes tend to increase.

In the current study, it will be assumed that electricity buyers
and sellers adaptively update their price offers in accordance
with this modifiedRE algorithm, hereafter referred to as the
MRE algorithm.

F. Competitive Equilibrium Calculation

The main objective of this study is to determine market
power and efficiency outcomes by comparing the profits that
buyers and sellers of electricity obtain in a discriminatory
auction against the profits they would obtain under competitive
equilibrium. This section explains the meaning and calculation
of competitive equilibrium.

A competitive equilibrium in a market for a positively valued
good is a (positive) unit price , a total quantity supplied

, and a total quantity demanded such that
. That is, the total quantity supplied must

equal the total quantity demanded.
The notation and indicates that these supply

and demand quantities depend on the priceof the good. How
is this dependence determined?

The total supply at each given price is simply the sum of the
quantities of good that each seller plans to sell at that price.
Letting denote how much of the good sellerplans to
sell at each price

Similarly, the total demand at each given price is the sum of
the quantities of good desired by each buyer of the good at that
price. Letting denote how much of the good buyerplans
to buy at each price

Note that the supplies and demands of the individual sellers
and buyers are represented as functions of the market price.
This dependence comes from the assumption that these indi-
vidual supplies and demands are the solutions of competitive
profit maximization problems, i.e., profit maximization prob-
lems in which the traders are assumed to take the market price

as given.
Specifically, for the electricity model at hand, the competitive

profit maximization problem for each sellertakes the following
form:

s.t.

The marginal cost parameterdenotes how much it costs seller
to generate each megawatt-hour of electricity and the capacity

parameter denotes an upper bound on the amount that seller
can generate in any one auction round. The solution to this

maximization problem is

if
if
if

Note that seller is assumed to take the market price
as given and, hence, as exogenous to its profit maximization
problem. The assumption in the competitive model is that the
sellers believe that their quantity choices have no effect on the
market price. Consequently, if they try to sell electricity at a
price above the market price, they will sell nothing; buyers will
buy electricity from the sellers with the lowest price. If they try
to sell electricity at a price below the market price, they will
succeed in selling all they can generate, but they could also do
so at the market price and make higher profit. Thus, there is
no incentive for the sellers to sell at any price other than the
market price.

Similarly, for the electricity model at hand, the competitive
profit maximization problem for each buyer takes the fol-
lowing form:

s.t.

Here, represents the marginal revenue received by buyer
for each megawatt-hour of electricity that buyerresells in a
secondary retail electricity market and is an upper bound
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Fig. 1. Competitive equilibrium for a three-buyer three-seller model. Each
trader has the same capacity (20 MWh).

on how much electricity buyer can resell in any one auction
round. The solution to this profit maximization problem is

if
if
if

The buyers are assumed to believe that their quantity choices
have no effect on the market price, so this price is taken as an
exogenous parameter in their profit maximization problems.

A competitive equilibrium is said to occur at any price
that equates and . It is possible that infinitely
many competitive equilibria exist. An example of this is shown
in Fig. 1. In this case, there are three buyers and three sellers,
each with a capacity of 20 MWh. The competitive equilibrium is
located where the supply and demand functions intersect, which
happens to be along the vertical line segment labeled CE be-
tween $16/MWh and $17/MWh. Every point on this vertical line
segment is a competitive equilibrium. For concreteness, we al-
ways take the competitive price to be the midpoint of all possible
competitive prices. Hence, in the current example we would take
the competitive price to be $16.50/MWh, the average of the
highest and lowest possible competitive prices $17/MWh and
$16/MWh at the competitive equilibrium quantity 40 MWh.

It is important to recognize that the buyers and sellers in our
computational electricity market do not actually solve the com-
petitive profit maximization problems presented above. Rather,
these profit maximization problems are used as zero-market-
power benchmarks against which our experimental auction out-
comes can be compared.

III. EXPERIMENTAL DESIGN

A. Tested Hypotheses

For simplicity, it is assumed that all buyers in the compu-
tational electricity market are energy service providers and all
sellers are generators, implying that generators do not sell to
other generators. Let denote the number of buyers and let

denote the number of sellers. The relative concentration
(RCON) of the market is then defined to be

Let CB denote the maximum amount of electricity that each
buyer can resell in a retail market and let CS denote the
maximum amount of electricity that each seller can generate,
both measured in megawatt-hours. Then, the relative capacity
(RCAP) of the electricity market is defined as

Let PBCE denote the profits7 that buyers would obtain in
competitive equilibrium and let PBA denote the profits that
buyers instead obtain when prices and quantities are determined
in the discriminatory auction. Then, the market power of buyers
(MPB) is defined as

If the buyers can exert control over the price of electricity in
the auction, i.e., if the buyers can exercise market power, then
they should be able to raise their profits above their competitive
profit level and MPB should be positive.

Similarly, let PSCE denote the profits that sellers would ob-
tain in competitive equilibrium and let PSA denote the profits
that sellers instead obtain in the discriminatory auction. Then,
the market power of sellers (MPS) is defined as

If the sellers can exert control over the price of electricity in the
auction, i.e., if the sellers can exercise market power, then they
should be able to raise their profits above their competitive profit
level and MPS should be positive.

The level of total profits achieved by all buyers and sellers in
the computational electricity market attains its maximum value
in competitive equilibrium by construction. The market power
indexes MPB and MPS measure the extent to which the profit
levels achieved separately by buyers and sellers in the discrimi-
natory auction differ from the profit levels they would achieve in
competitive equilibrium. This redistribution of profits between
buyers and sellers may come at the expense of smaller total
profits for all buyers and sellers combined.

For example, suppose someinframarginal trader (i.e., some
trader who would match in competitive equilibrium) engages
in opportunistic auction behavior, either underbidding its true
willingness to pay or asking more than its true marginal cost.
In this case, it could happen that anextramarginaltrader (i.e.,
a trader who would fail to match in competitive equilibrium)
would be able to match in the discriminatory auction by sub-
mitting a higher bid or lower ask than the opportunistic trader,
leaving the latter unmatched.

To check for possible inefficiencies arising under the discrim-
inatory auction, we introduce the following efficiency measure.

7For expositional simplicity, we refer to the net earnings of the buyers as
profits, ignoring all further downstream retail activities by these agents.
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The efficiencyof the market operating under the auction pro-
tocol is defined to be the ratio EA of total auction profits to
total profits in competitive equilibrium, measured in percentage
terms. That is, using previously introduced notation, we define

We test the market power and efficiency implications of dis-
criminatory auction pricing for our computational wholesale
electricity market in the form of three hypotheses.

H1—As RCAP Increases, MPB Decreases While MPS
Increases, All Else Equal:Intuitively, buyers should have a
harder time exercising market power when there is excess
demand capacity, i.e., when the maximum amount of electricity
that the buyers want to purchase exceeds the amount that the
sellers are able to generate. Thus, one might expect the MPB
market power index for buyers to decrease and the MPS market
power index for sellers to increase with increases in RCAP, all
else equal.

H2—As RCON Decreases, MPB Decreases While MPS
Increases, All Else Equal:Intuitively, sellers should have an
easier time exercising market power as electricity generation
becomes concentrated in the hands of fewer sellers per buyer.
Thus, the MPB market power index for buyers should decrease
and the MPS market power index for sellers should increase as
RCON decreases, all else equal. For example, hypothesis H2 is
consistent with the claim in [20, p. 952] that the market power
exercised by generators in the British electricity spot market
would have been reduced substantially if the industry had been
subdivided into five generators rather than two.

H3—Most Potential Gains to Trade are Exhausted, i.e., EA
is Close to 100%. Any Unrealized Profitable Trades are Those
Offering the Smallest Gains:Hypothesis H3 conjectures that
the level of total profits achieved by buyers and sellers in the
discriminatory auction will be close to the level of total profits
achieved under competitive equilibrium, which is the maximum
possible level. Consequently, the conjecture is that the size of
the total profit pie under the discriminatory auction is essen-
tially independent of the division of this pie among the buyers
and sellers and hence essentially independent of any auction-in-
duced market power effects. Hypothesis H3 is consistent with
the high efficiency found in a wide variety of human-subject
experiments with double auctions [11].

B. Tested Parameter Values

The experimentally tested values for the number of
buyers, the number of sellers, the capacity CB of each
buyer, and the capacity CS of each seller are given in Table II.
The capacities of the buyers and sellers are representative of
typical generation and demanded loads.

The capacities for the buyers and sellers are selected to pro-
vide the following three test ratios for the relative capacity mea-
sure RCAP: 1:2, 1:1, and 2:1. All buyers are assumed to have
identical capacities and similarly for all sellers. For simplicity,
in this first experimental study, the ATC between each buyer and
seller is set at 100 MWh to ensure that the ATC is not a binding

TABLE II
TESTEDPARAMETER VALUES

TABLE III
LINEAR REVENUE AND COST CURVES

constraint on any buyer-seller match under these capacity spec-
ifications.8

Buyers and sellers are assumed to have linear revenue and
cost functions subject to capacity constraints, so that their mar-
ginal revenues and marginal costs are constant over their quan-
tity choices up to capacity. The cost functions specified for the
sellers are scaled linear approximations of the cost functions of
actual generating units.

Table III shows the specification for marginal revenue (mar-
ginal cost) for each buyer (seller) in the experiments reported
below. The fixed costs of the buyers and sellers are set to zero
for a simpler model. For a seller, this could be representative
of a generator already up and running (i.e., synchronized to the
transmission grid) and waiting for a match in the auction to con-
nect to the system and deliver electricity.

The marginal costs of the sellers are chosen to cover three
types of operating costs: expensive, medium, and cheap. These
three types might be representative of an older generation unit,

8As stressed in [21], determining the effects of ATC constraints on market
power is a subtle issue, since ATC constraints make it more likely that conges-
tion can be induced strategically for market power advantages. This topic will
be taken up in future studies.
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an older unit that has been updated, and a new unit, or of dif-
ferent types of fuel usage. Note from Table III that, when all six
sellers are simulated, two of each type are included to model the
competition between similar companies. The buyers’ marginal
revenues are similar to the marginal costs of the sellers, but with
enough of a difference to yield a competitive equilibrium profit.
This assures the existence of a competitive equilibrium price,
which is then used to calculate the benchmark profit levels for
market power and efficiency.

Buyers and sellers are not permitted to submit bid or ask
prices to the auction that would definitely result in negative
profits if accepted. To implement this rationality postulate, the
set of feasible bid price offers for each buyer is specified to be
the interval MWh , where MR denotes the
buyer’s true (constant) marginal revenue. Also, the set of fea-
sible ask price offers for each seller is specified to be interval

MWh , where MC denotes the seller’s true
(constant) marginal cost. The lower bound MWh is
low enough to encompass all possible ask prices by sellers and
the upper bound MWh is high enough to encompass
all possible bid prices by buyers.

To check the sensitivity of the market power and efficiency
outcomes to the specific values set for the parameters charac-
terizing the MRE reinforcement learning algorithm, the nine
RCAP/RCON configurations in Table II are tested three times
using three different settings for these parameter values.

Recall from Section II-E that the MRE algorithm is char-
acterized by three parameters: a scaling parameter, a re-
cency parameter, and an experimentation parameter. Erev
and Roth [18, p. 864] note that a good fit to their experimental
data covering twelve distinct types of human-subject games was
obtained for all values of these parameters lying in the following
ranges: , , and .

In the first two tests for Table II reported below, the param-
eter values for the MRE algorithm are calibrated to facilitate the
emergence for each trader of a dominant price offer with a rela-
tively large choice probability by the final auction round in each
run. In the first test, each run consists of 1000 auction rounds and
in the second test, each run consists of 10 000 auction rounds.
The parameter calibration was accomplished in two stages, as
follows.

First, given the number of auction rounds per run, the density
of the price offers within each trader’s feasible price offer range
was specified to help ensure an adequate sampling frequency for
each possible offer. For the 1000 auction rounds per run case,

possible price offers were randomly selected within
each feasible price offer range, implying that each trader could
in principle sample each price 33 times during each run. The
average profit achievable in any auction round for this case
was set at . For the 10 000 auction rounds per run
case, possible price offers were randomly selected
within each feasible price offer range, implying that each trader
could in principle sample each price 100 times during the course
of each run. A value was set for this case.

Second, by direct search, the values for the three MRE algo-
rithm parameters , , and were calibrated until the bid or
ask price histogram for each of the traders became single peaked
by the final auction round in each run. The calibrated parameter

values found for the 1000 auction round case were ,
, and . The calibrated parameter values found

for the 10 000 auction round case were , ,
and .9 For both cases, the calibrated values for
and fall within the Erev–Roth good fit ranges presented above,
whereas the calibrated values fordo not.

In the third test for Table II, the scaling parameter , the
recency parameter, and the experimentation parameterfor
the MRE algorithm are instead set equal to the values obtained
by Erev and Roth [18, p. 863] by a best overall fit of the RE
algorithm to experimental data from twelve distinct types of
games run with human subjects. These values are ,

, and . The MRE algorithm with the latter
parameter values is referred to below as thebest fit MRE algo-
rithm.

IV. EXPERIMENTAL RESULTS

Tables IV–VI report aggregate and individual market power
outcomes and efficiency outcomes for the three distinct learning
specifications outlined in Section III-B. Specifically, in the first
learning specification, each trader is assumed to use the cali-
brated MRE algorithm with each run consisting of 1000 auction
rounds. In the second learning specification, each trader is as-
sumed to use the calibrated MRE algorithm with each run con-
sisting of 10 000 auction rounds. In the third learning specifica-
tion, each trader is assumed to use the best fit MRE algorithm
with each run consisting of 1000 auction rounds.

Each cell in each table corresponds to a unique RCAP/RCON
configuration in parallel to Table II. For each table cell, the auc-
tion was run 100 times using 100 different seeds for the pseu-
dorandom number generator. For each run, the profit levels at-
tained in the final auction round by buyers as a whole and by
sellers as a whole, as well as by individual buyers and sellers,
were calculated and compared against competitive profit levels
to obtain aggregate and individual MPB and MPS market power
indexes. In addition, for each run, the value for the market effi-
ciency measure EA in the last auction round was calculated and
recorded.

The means and standard deviations of the aggregate and in-
dividual MPB and MPS market power indexes were then calcu-
lated across all 100 runs for each table cell. The aggregate results
are given at the top of each table cell and the results for indi-
vidual buyers and sellers are listed underneath. A mean market
power outcome with a positive or negative sign is marked with
an asterisk if it is substantially different from zero in the sense
that the indicated sign does not change when the outcome is ei-
ther increased or decreased by one standard deviation. Finally,
the mean and standard deviation for the market efficiency mea-
sure EA calculated across all 100 runs are given at the bottom
of each table cell.

As explained in Section III-A, hypothesis H1 predicts that
the MPB market power index for buyers should decrease while
the MPS market power index for sellers should increase, all

9It is interesting to note that under the original RE algorithm, no updating
of choice probabilities would occur for this 10 000 auction round case since
e = [K�1]=K = 0:99. In contrast, as will be seen below, the MRE algorithm
results in good learning and very high market efficiency.
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TABLE IV
EXPERIMENTAL MARKET POWER AND EFFICIENCY OUTCOMES FOR THECALIBRATED MRE ALGORITHM WITH 1000 AUCTION ROUNDS AND PARAMETER VALUES

s(1) = 1:00, r = 0:04, AND e = 0:97

ZP indicates that zero profits were earned both in the auction and in competitive equilibrium.

else equal, in response to increases in RCAP. Looking at the
market power outcomes reported in Tables IV–VI, however, it
is seen that Hypothesis H1 is not supported under any of the
three learning specifications. MPB actually tends to increase
and MPS to decrease with increases in RCAP for each given
RCON level, a direct contradiction of H1.

Also, hypothesis H2 predicts that the MPB market power
index for buyers should decrease while the MPS market power
index for sellers should increase, all else equal, in response to
decreases in RCON. The latter measure is simply the ratio of
the number of sellers to buyers. As seen in Tables IV–VI, how-
ever, the changes in buyer and seller market power levels in re-
sponse to changes in RCON are small and unsystematic for each
given level of RCAP, in contradiction to hypothesis H2. This is

particularly true for the experiments comprising 10 000 auction
rounds per run reported in Table V.10

Finally, hypothesis H3 predicts that high market efficiency
will be obtained. The mean and standard deviation outcomes
for market efficiency EA reported at the bottom of each cell in
Tables IV–VI reveal that high market efficiency is indeed gener-
ally obtained for each tested RCAP/RCON configuration. Con-
sequently, hypothesis H3 is strongly supported. Note that the
calibrated MRE algorithm with 10 000 auction rounds per run

10In human-subject experiments with actual electricity industry participants,
Weiss [4, p. 1] finds that “increasing the number of sellers in a given (electricity)
market does not necessarily reduce market power (of sellers), as suggested by
most standard theory.” However, in Weiss’s study, this failure of H2 is due to
the existence of ATC constraints that effectively create local monopolies at some
power grid nodes, constraints that are not present in the current study.
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TABLE V
EXPERIMENTAL MARKET POWER AND EFFICIENCY OUTCOMES FOR THECALIBRATED MRE ALGORITHM WITH 10 000 AUCTION

ROUNDS AND PARAMETER VALUES s(1) = 1:00, r = 0:02, AND e = 0:99

ZP indicates that zero profits were earned both in the auction and in competitive equilibrium.

strictly dominates the other two learning specifications with re-
gard to market efficiency. That is, the efficiency outcomes re-
ported in each table cell for Table V are as high or higher than
the efficiency outcomes reported in the corresponding table cells
for Tables IV and VI.

V. DISCUSSION

What explains the failure of the market power hypotheses H1
and H2 in the current electricity market context? On the sur-
face, this failure seems to contradict basic economic intuition.
Also, why is the market efficiency hypothesis H3 so strongly
supported?

A careful case-by-case examination of the microevents un-
derlying the outcomes reported in Tables IV–VI goes a long
way toward dispelling the mystery. Briefly, one sees that the
aggregate measures RCAP and RCON are simply too crude to
reflect well the opportunities for exercising market power that
individual buyers and sellers actually face. To understand the
latter, the market microstructure must be carefully examined. In
particular, as stressed in [18], it is important to distinguish be-
tween market outcomes that are due to market microstructure
and market outcomes that are due to learned behavior.

Two different definitions for market power will next be given
that permit the separate identification of market power due to
structural causes and market power due to learning.
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TABLE VI
EXPERIMENTAL MARKET POWER AND EFFICIENCY OUTCOMES FOR THEBESTFIT MRE ALGORITHM WITH 1000 AUCTION ROUNDS AND PARAMETER VALUES

s(1) = 9:00, r = 0:10, AND e = 0:20

ZP indicates that zero profits were earned both in the auction and in competitive equilibrium.

A. Structural Versus Strategic Market Power

First suppose that no trader misrepresents its true reservation
price, i.e., suppose each buyer bids its true marginal revenue and
each seller asks its true marginal cost. Under the discriminatory
midpoint pricing rule, the exact relative positioning of the re-
sulting “true” market demand and supply curves can still confer
market power on some buyers and not on others and on some
sellers and not on others. Call thisstructural market power.

In the current movement to restructure the electricity industry,
all participants are well aware that the choice of auction protocol
can substantially affect their relative profitability. Thus, a con-
sideration of the structural market power allocated to different

market participants under alternative auction protocols would
presumably be of major interest.

Second, by engaging in unilateral misrepresentation of their
true reservation prices, some buyers and/or some sellers may
have potentially exercisable market power in addition to (or even
in the absence of) structural market power. Call this (unilateral)
strategic market power.

B. Structural Market Power Outcomes

Analytically derived structural market power outcomes are
presented in Table VII for the nine tested RCAP/RCON config-
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TABLE VII
ANALYTICALLY DERIVED STRUCTURAL MARKET POWER OUTCOMES

urations in Table II.11 The outcomes in Table VII reveal three
interesting regularities.

First, buyers have negative structural market power and
sellers have positive structural market power for six of the nine
tested RCAP/RCON configurations, namely, for the six cells in
the first two columns in Table VII. Consequently, in the current
electricity market context, it is generally the buyers who are
structurally disadvantaged in the auction with regard to market
power.

Second, for each level of RCON, the mean structural MPB
across all buyers increases as RCAP increases and the mean
structural MPS across all sellers decreases as RCAP increases,
in direct contradiction to the market power hypothesis H1.

11In cell (1,1) of Table VII, the inframarginal Sellers 3 and 6 have the
same marginal cost, but are matched with different buyers at different prices
depending on their order of selection. In cell (3, 3), the inframarginal Buyers 1
and 4 have the same marginal revenue, but are matched with different sellers
at different prices depending on their order of selection. The structural market
power levels reported for these traders are theirexpectedmarket power levels
under the assumption that they are randomly ordered for matching purposes.

Third, for each level of RCAP, the mean structural MPB
across all buyers and the mean structural MPS across all sellers
are invariant to changes in RCON. This directly contradicts the
market power hypothesis H2.

Comparing the experimental market power outcomes
reported in Tables IV–VI against the analytically derived
structural market power outcomes reported in Table VII,
one sees that the experimentally determined market power
outcomes closely track the structural market power outcomes.
Consequently, in the current electricity market context, market
microstructure is strongly predictive for observed market power
outcomes.

C. Strategic Market Power Outcomes

What about strategic market power? Call a traderinfra-
marginal if it would engage in a positive amount of trade in
competitive equilibrium andextramarginalotherwise. As will
be clarified in Section V-E below, every inframarginal buyer
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and seller in each of the nine tested RCAP/RCON configura-
tions in Table II has positive strategic market power under the
discriminatory auction protocol. That is, assuming all other
inframarginal traders bid or ask their true reservation prices, the
remaining inframarginal trader can always increase its profits
above what it would obtain if it bid or asked its true reservation
price. If the trader is a buyer, it can accomplish this by suitably
lowering its bid price below its true marginal revenue. If the
trader is a seller, it can accomplish this by suitably raising its
ask price above its true marginal cost. Under the discriminatory
midpoint-pricing rule, this opportunistic behavior would then
move the auction price in a direction favorable to the trader.

Nevertheless, structurally disadvantaged traders never learn
to effectively exercise strategic market power in our auction
experiments. By construction, the exercise of strategic market
power is measured by the discrepancies between the experimen-
tally determined market power outcomes in Tables IV–VI and
the analytically derived levels for structural market power given
in Table VII. While there are some discrepancies in magnitudes,
there are no instances in which a trader with negative structural
market power attains a positive market power level in the auc-
tion. Moreover, instances in which a trader with a positive struc-
tural market power level attains a negative market power level
in the auction are rare.

Specifically, the only sign discrepancies in mean market
power for all buyers or all sellers are as follows: Table IV has
two sign discrepancies [mean MPB for all buyers in cells (1, 3)
and (2, 3)], Table V has one sign discrepancy [mean MPB for
all buyers in cell (1, 3)], and Table VI has no sign discrepancies.
In each case, the sign discrepancy in the mean MPB level for all
buyers is due to a sign discrepancy occurring for the mean MPB
level of a single buyer: namely, Buyer 1. Note, also, that these
sign discrepancies are all to the disadvantage of Buyer 1, i.e., its
realized auction market power is negative whereas its structural
market power is positive. Finally, note that none of the mean
MPB values showing a sign discrepancy is marked with an
asterisk. This implies that the sign discrepancy disappears
within one standard deviation of the reported mean observation.

These findings show that apart from the small number of sign
discrepancy cases noted above, learning has no effect on therel-
ativeexercise of market power by buyers and sellers. When the
discriminatory auction protocol gives greater structural market
power to buyers, the buyers retain this relative market power
advantage in the auction experiments and similarly for sellers.
Indeed, when buyers attain a positive mean market power level
in the auction, the mean market power level attained by sellers
in the auction is negative and vice versa. As will be clarified
in Section V-E, this “zero-sum game” finding reflects the high
market efficiency levels attained in the auction experiments.

D. Efficiency Outcomes

Apart from roundoff and truncation error, the market effi-
ciency measure EA defined in Section III-A equals 100% in
any given auction round if and only if the set of active traders
in the auction round coincides with the set of active traders in

competitive equilibrium.12 This implies, in particular, that no
extramarginal trader manages to trade in the auction and that no
inframarginal trader fails to trade in the auction.

Comparing the mean and standard deviation outcomes re-
ported in Tables IV–VI for EA, one sees that the highest mean
market efficiency outcomes are uniformly attained in Table V.
The latter table reports outcomes for the case in which all buyers
and sellers use the calibrated MRE algorithm with 10 000 auc-
tion rounds per run. In each cell of Table V, the market effi-
ciency measure EA attains a mean value of 94% or better. Nev-
ertheless, generally high mean market efficiency outcomes are
also reported in Tables IV and VI for distinctly different settings
of the MRE algorithm parameters and with only 1000 auction
rounds per run.

The overall implication of these generally high market effi-
ciency levels is that the discriminatory auction essentially re-
duces to a zero-sum game. That is, total buyer and seller profits
are approximately given by total competitive profits in each ex-
periment and the key remaining issue is how these profits are re-
distributed among buyers and sellers as one switches from com-
petitive equilibrium pricing to discriminatory auction pricing.

Profit distribution under the discriminatory auction is mea-
sured by market power. If total profit remains constant as one
switches from competitive to auction pricing, then market
power simply measures the manner in which the auction redis-
tributes this constant total profit between buyers and sellers.
In this case, apart from roundoff error, a positive attained
market power level for one type of trader necessarily implies a
negative attained market power level for the other. As noted in
Section V-C, it is indeed seen in Tables IV–VI that table cells
reporting a high mean market efficiency level also generally
report a mean market power level for all buyers that is opposite
in sign to the mean market power level for all sellers.

E. Microanalysis for Illustrative Cases

To better understand the underlying reasons for the findings
reported in Section IV, a more detailed microanalysis will now
be given for two of the tested RCAP/RCON combinations in
Table II, namely, cell (3, 1) and cell (3, 2).

First, consider cell (3, 1) in Table II with
. The market for this case comprises six buyers, each with ca-

pacity 10 MWh, and three sellers, each with capacity 40 MWh.
The marginal revenues and marginal costs for these buyers and
sellers are listed in Table III. Making use of these capacity,
revenue, and cost specifications, the true demand and supply
curves can be constructed; these are depicted in Fig. 2. The com-
petitive outcome based on these demand and supply curves is

MWh and MWh.
The low RCAP value 1/2 for this case implies the existence

of excess potential supply, which suggests that buyers should be

12This simple characterization for market efficiency has to be slightly qual-
ified in the presence of marginal traders with identical marginal revenues or
marginal costs who do not all end up trading in competitive equilibrium. In this
case, market efficiency holds regardless of which of these marginal traders actu-
ally carries out the marginal competitive equilibrium trades. This indeterminacy
is absent for the nine tested configurations in Table II.



NICOLAISEN et al.: MARKET POWER AND EFFICIENCY IN A COMPUTATIONAL ELECTRICITY MARKET 517

favored. Yet the experimental market power outcomes reported
for this case in cell (3, 1) in Tables IV–VI show that Seller 3 is
the only trader in the discriminatory auction that is successfully
able to attain a positive market power level on average. Why is
this the case?

It will now be shown that Seller 3 is the only trader that has
positive structural market power. On the other hand, all infra-
marginal buyers and sellers have countervailing strategic market
power. This prevents any trader with negative structural market
power under the auction protocol from being able to success-
fully exercise its strategic market power to the point that it at-
tains a positive market power level.

Under the discriminatory auction protocol, it is the 80 MWh
unused capacity of Sellers 1 and 2 that constitutes the excess po-
tential supply reflected in . These two sellers have
relatively high marginal costs of $35/MWh and $16/MWh, re-
spectively. If all traders bid and ask their true reservation prices
in the auction, Sellers 1 and 2 will not obtain an auction match.
Nevertheless, since they also fail to trade in competitive equilib-
rium, their profits under the auction are the same as under com-
petitive equilibrium. This implies that their structural market
power is zero even though their MPS indexes are not well de-
fined.

Similarly, the relatively low marginal revenue $12/MWh of
Buyers 3 and 6 prevents any auction match for these buyers if
all traders bid and ask their true reservation prices. Thus, since
they also fail to trade in competitive equilibrium, their struc-
tural market power is zero even though their MPB indexes are
not well defined. Seller 3 has a relatively low marginal cost of
$11/MWh and its total electricity supply capacity is 40 MWh.
Buyers 1 and 4 have a relatively high marginal revenue (will-
ingness to pay) of $37/MWh and their total electricity demand
capacity is 20 MWh. Under the discriminatory midpoint pricing
rule, assuming all traders bid or ask their true reservation prices,
Buyers 1 and 4 would purchase 20 MWh from Seller 3 at a
price of $24/MWh, a price that exceeds the competitive price
of $14/MWh. The profit of Seller 3 on this 20 MWh contract
would, thus, be $260, greater than its competitive profit $60,
and the profit of Buyers 1 and 4 would each be $130, less than
their competitive profit $230.

Buyers 2 and 5 with marginal revenue $17/MWh would then
end up purchasing Seller 3’s remaining 20 MWh at the com-
petitive price $14/MWh, giving Seller 3 a (competitive) profit
of $60 and Buyers 2 and 5 each a (competitive) profit of $30.
The MPS structural market power index for Seller 3 is then cal-
culated to be 1.67, the MPB structural market power index for
Buyers 1 and 4 is 0.43, and the MPB structural market power
indexes for Buyers 2 and 5 are zero.

These observations imply that, contrary to the implications of
hypothesis H1, excess potential supply (a low RCAP value) can
fail to ensure that any buyer has positive structural market power
in the discriminatory auction. The reason for this is that excess
potential supply can come from the excess capacity of high-cost
sellers who are extramarginal under competitive equilibrium.
Assuming all traders bid or ask their true reservation prices,
these sellers will not be able to obtain matches in the discrimina-
tory auction. Consequently, the presence of these extra-marginal
sellers confers neither advantage nor disadvantage on any other

Fig. 2. Cell (3, 1) true demand and supply curves for six buyers and three
sellers with 10 MWh and 40 MWh capacities, respectively.

trader with regard to structural market power, yet their presence
can change the value of RCAP. Similar observations apply for
extramarginal buyers in the reverse case of excess potential de-
mand.

What about strategic market power? Consider, once again,
cell (3, 1) in Table II with true demand and supply curves de-
picted in Fig. 2. It turns out that Seller 3 and Buyers 1, 4, 2, and
5 all have some degree of strategic market power under the dis-
criminatory auction protocol.

Specifically, by unilaterally misrepresenting their true will-
ingness to pay by bidding below their true marginal revenue
$37/MWh, Buyers 1 and 4 can each increase their auction
profits. Indeed, if either buyer were to bid $12/MWh plus
some small amount epsilon, hence, above the price $12/MWh
at which the extramarginal Buyers 3 and 6 would be able
to match, they would obtain a profit close to $250 on their
10 MWh purchase from Seller 3. The latter profit is greater
than their $230 competitive profits and much greater than the
$130 auction profits that they would earn by bidding their true
marginal revenue. The MPB strategic market power indexes
for Buyers 1 and 4 are approximately 0.09. Similarly, the MPB
strategic market power indexes for Buyers 2 and 5 (who should
also strategically bid $12/MWh plus epsilon) are approximately
0.67.

On the other hand, Seller 3 also has strategic market power.
Suppose Seller 3 unilaterally raises its ask price from its true
marginal cost $11/MWh up to $16/MWh minus epsilon, but
no higher (to prevent Seller 2 from matching). Then, the con-
tract price of Seller 3 with Buyer 1 and Buyer 4 for 20 MWh
under the discriminatory midpoint pricing rule would be close to
$26.50/MWh. This would give Seller 3 a profit of $310, higher
than the $260 profits it would earn in the auction by asking its
true marginal cost, and much higher than its $60 competitive
profits.

In addition, by asking $16/MWh minus epsilon, Seller 3’s
contract price with Buyers 2 and 5 for 20 MWh would be ap-
proximately $16.50/MWh. This would give Seller 3 a profit of
$110, which is higher than the $60 profits that Seller 3 would
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earn on this 20 MWh contract either in the discriminatory auc-
tion with bidding and asking of true reservation prices or in com-
petitive equilibrium. The total profit of Seller 3 would there-
fore be $420. Hence, the MPS strategic market power index for
Seller 3 is 2.50.

Thus, Seller 3 and Buyers 1, 2, 4, and 5 in cell (3, 1) all have
positive strategic market power. As previously determined, how-
ever, only Seller 3 has positive structural market power. Exam-
ining the results reported for cell (3, 1) in Tables IV–VI, it is
seen that none of the buyers succeeds in exercising its strategic
market power to the point that it ends up with a positive MPB
market power level in the auction. The problem for the buyers
is that strategic market power is being exercised on both sides
of the market. When ask prices are being raised by sellers at the
same time that bid prices are being lowered by buyers, the ten-
dency is for the midpoint price of each bid-ask spread to remain
essentially the same.

An examination of the actual price offers submitted to the
auction by Seller 3 and Buyers 1, 2, 4, and 5 in cell (3, 1) reveals
this effect. Seller 3 learns to submit ask prices higher than its
marginal cost and this exercise of strategic market power by
Seller 3 foils the attempts by the buyers to lower their auction
price by underbidding their true marginal revenues.

Specifically, as seen in Fig. 3, the average ask price of Seller
3 in the final auction round is roughly $15/MWh regardless of
the precise parameter values set for the MRE algorithm. Note
from Table III that $15/MWh exceeds Seller 3’s true marginal
cost of $11/MWh and is just below the price $16/MWh at which
the extramarginal Seller 2 could feasibly enter the market.

On the other hand, on average, the bid prices of Buyer 1 and
Buyer 4 in the final auction round are roughly $24/MWh for
each tested MRE algorithm specification. This level is lower
than their true marginal revenue $37/MWh, but also higher than
the level $12/MWh at which the extramarginal Buyers 3 and
6 could feasibly enter the market. Also, on average, the bid
prices of Buyers 2 and 5 in each final auction round are roughly
$15/MWh, below their true marginal revenue of $17/MWh, but
high enough to prevent entry by Buyers 3 and 6.

Thus, all active traders in cell (3, 1) exercise strategic market
power to some degree by asking higher than true marginal costs
or bidding below true marginal revenues. Nevertheless, the net
result of these countervailing forces is that Seller 3’s structural
market power advantage prevails.

Regarding market efficiency, bid and ask price data for cell (3,
1) reveal that all inframarginal traders learn to place their bids
and asks within ranges that prevent the entry of extramarginal
traders. Moreover, the buyers end up bidding above asks, on
average, so that coordination failures are relatively infrequent.
The result is high market efficiency, despite the fact that Seller
3 achieves a relatively high market power level.

Higher market efficiency is achieved for cell (3, 1) as the
overall volatility of the bid and ask prices in the final auction
round decreases. As indicated in Fig. 3 for Seller 3, the greatest
overall volatility is observed for the calibrated MRE algorithm
with 1000 auction rounds per run and the least overall volatility
is observed for the calibrated MRE algorithm with 10 000 auc-
tion rounds per run. This decline in volatility is particularly
marked for Buyers 2 and 5.

Next, consider cell (3, 2) in Table II with
and . The market for this case comprises six
buyers, each with capacity 10 MWh, and three sellers, each
with capacity 20 MWh. The marginal revenues and marginal
costs for these buyers and sellers are listed in Table III.
Making use of these specifications for capacities, revenues, and
costs, the true demand and supply curves can be constructed;
these are depicted in Fig. 4. The competitive outcome based
on these demand and supply curves is MWh and

MWh.
An analysis of the results reported for cell (3, 2) in Ta-

bles IV–VI proceeds along lines similar to the foregoing
analysis for cell (3, 1), with one interesting exception. As seen
by comparing Fig. 4 with Fig. 2, Buyers 2 and 5 and Seller 2 in
cell (3, 2) face a much greater challenge with regard to learning
how to select their bid and ask prices than any inframarginal
trader in cell (3, 1). This is because the price range in which
they can successfully match is much narrower.

Indeed, under the calibrated MRE algorithm with 1000 auc-
tion rounds per run, it is seen in cell (3, 2) of Table IV that Buyer
2 fails to match at all and Buyer 5 matches only rarely. An exam-
ination of bid and ask data for cell (3, 2) in Table IV reveals that
the bid prices of these buyers are extremely volatile and they al-
most never exceed the marginal cost of Seller 2. Consequently,
this learning specification does not permit price discovery for
these buyers.

Seller 2 in cell (3, 2) of Table IV manages to match frequently
enough with Buyer 1 and Buyer 4 to sustain a positive average
market power level, although with extremely high standard de-
viation. The average ask price of Seller 2 is roughly $20/MWh,
which is higher than the marginal revenue $17/MWh of Buyers
2 and 5. The average ask price of Buyers 1 and 4 in cell (3,
2) of Table IV is roughly $25/MWh. Interestingly, the average
ask price of Seller 3 in cell (3, 2) of Table IV is only about
$16/MWh, which is below the marginal revenue of Buyers 2
and 5. Nevertheless, given the extreme volatility of these latter
buyers’ bids, matches with these buyers essentially never occur.

Buyers 2 and 5 in cell (3, 2) perform better under the MRE
algorithm specifications reported in Tables V and VI. For ex-
ample, bid data for Buyers 2 and 5 in cell (3, 2) of Table VI
reveal that they manage to bid close to their true marginal rev-
enue $17/MWh in the final auction round in about one third of
the 100 runs and this percentage improves for Table V.

In contrast, Seller 2 in cell (3, 2) performs worse in Tables V
and VI, failing to match at all in Table V. In Table VI, the average
ask price of Seller 2 in cell (3, 2) is only about $16/MWh, close
to its true marginal cost. This permits matches with Buyers 2 and
5, but with very little gains to trade. In contrast, the average ask
price of Seller 3 in cell (3, 2) of Table VI is around $15/MWh.
Thus, as the seller submitting the lowest ask on average, Seller
3 is now matched most frequently with Buyers 1 and 4, thus
crowding out Seller 2 and forcing Seller 2 to trade with Buyers
2 and 5 for much lower gain. The average ask price of Buyers 1
and 4 in cell (3, 2) of Table VI is about $24/MWh.

Despite the increased challenge that some traders face
to achieve matches in cell (3, 2), the coordination failures
mostly involve marginal traders with small gains to trade.
Consequently, high market efficiency is still achieved.
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(a)

(b)

(c)

Fig. 3. Plot of Seller 3’s ask price in cell (3, 1) in the final generation across all 100 runs under three different MRE algorithm specifications. (a) Table IV,
calibrated MRE algorithm with 1000 auction rounds per run. (b) Table V, calibrated MRE algorithm with 10 000 auction rounds per run. (c) Table VI, best fit MRE
algorithm with 1000 auction rounds per run.

VI. CONCLUDING REMARKS

A. Summary of Key Findings

The careful testing of auction protocols for a restructured
electricity market by means of an agent-based computational
model imposes two requirements on this model. First, the

model should adequately reflect the actual microstructure of
the market. Second, the artificial traders in the model should
behave in ways that approximate the behavior of real traders.

This study attempts to capture in a computational model the
basic features of a restructured wholesale electricity market op-
erating in the short run, abstracting from longer run contracting
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Fig. 4. Cell (3, 2) true demand and supply curves for six buyers and three
sellers with10 MWh and 20 MWh capacities, respectively.

considerations. We have assumed that, under restructuring,
a small number of heterogeneous buyers (energy service
providers) actively participate in this market along with a small
number of heterogeneous sellers (generators). The buyers and
sellers submit price and quantity offers repeatedly to a clear-
inghouse double auction that employs discriminatory midpoint
pricing. The capacities, marginal revenues, and marginal costs
of the buyers and sellers are private information. These features
imply that the buyers and sellers face an inherently complex
strategic situation.13

Moreover, we have attempted to implement learning in a
manner supported by empirical data. Each buyer and seller
is assumed to update its price offers over time in accordance
with the MRE learning algorithm, a modified version of an
individual reinforcement learning algorithm developed by Roth
and Erev [16], [17]. The latter researchers developed their algo-
rithm on the basis of extensive data obtained from experiments
with human subjects in multiagent decision environments.

As detailed in Section III-A, we test two hypotheses regarding
relative market power: H1 and H2. As seen in Section IV, one
key finding of this study is that hypothesis H1 is not supported.
When RCON is held fixed, the effects of increasing RCAP are
often in the opposite direction of the effects predicted by H1.

A second key finding of this study is that hypothesis H2 also
receives no support. Holding RCAP fixed, changes in RCON
have only small unsystematic effects on market power in con-
tradiction to H2.14 This latter finding strongly cautions against
the common practice of confounding capacity and concentration
effects in market power studies by letting firm size and numbers
of firms vary together in an uncontrolled way.

13Indeed, in game-theoretic terms, it can be shown that the computational
electricity market has numerous “pure Nash equilibria,” i.e., numerous offer
configurations that satisfy the following condition: given the price and quantity
offers of all other traders, no individual trader can increase its profits by means
of a unilateral deviation from its own current price and quantity offers.

14Interestingly, a similar finding of unsystematic effects for changes in
RCON, taking RCAP as given, is reported in [22] for a computaional labor
market.

The problem with hypotheses H1 and H2 in the current elec-
tricity market context is that they attempt to predict relative
market power effects purely on the basis of aggregate aspects of
market structure as measured by RCAP and RCON. However,
as seen in Section IV, neither aggregate turns out to be well cor-
related with the actual opportunities open to individual buyers
and sellers to exercise market power under the discriminatory
auction protocol.

In contrast, as shown in Section V, the microstructure of the
electricity market is strongly predictive for the relative ability
of buyers and sellers to exercise market power in the discrimi-
natory auction. More precisely, the relative market power levels
attained by buyers and sellers when they are permitted to learn to
make opportunistic price offers closely track the relative “struc-
tural” market power levels they attain when the buyers are in-
stead forced to bid their true willingness to pay and the sellers
are instead forced to ask their true marginal costs.

Interestingly, examining the market power results obtained
in an earlier electricity study [23, Table III] in which the buyer
and seller populations instead each engage in social mimicry
learning via a genetic algorithm (GA), it is seen that a similar
conclusion holds. Structural market power is strongly predic-
tive for the relative exercise of market power by the buyers and
sellers; the effects of GA social mimicry learning on relative
market power are small and unsystematic. For ease of compar-
ison, these GA results are reproduced here as Table VIII.15

Taken together, these relative market power outcomes suggest
that the microstructure of our electricity market under the dis-
criminatory auction protocol so strongly channels the behavior
of buyers and sellers that the precise form of their learning be-
havior is largely irrelevant. As noted next, however, this robust-
ness to variations in learning behavior does not extend fully to
efficiency outcomes.

As detailed in Section III-A, we also test a basic market ef-
ficiency hypothesis (H3). A third key finding of our study is
that this hypothesis H3 is strongly supported. The market effi-
ciency measure EA is 90% or better for almost all of the tested
RCAP/RCON configurations.

The particular parameter values specified for the MRE
learning algorithm used by traders in our current electricity
market study do affect the ability of some traders to avoid
coordination failure. However, in accordance with hypothesis
H3, the trades in question are marginal trades offering the
smallest gains and the resulting effects on market efficiency
generally tend to be small and unsystematic. Our experiments
suggest that the number of auction rounds per run may be a
more important determinant of market efficiency than these
learning parameter settings per se.

On the other hand, the market efficiency levels of the auction
outcomes obtained in [23] under the assumption that the elec-
tricity traders instead use GA social mimicry learning are re-
ported in Table VIII. These results show that market efficiency
obtained with GA social mimicry learning is substantially de-
graded relative to market efficiency obtained with individual

15Table VIII corrects a labeling problem in [23, Table III], namely, the row
labeledRCON = 1=2 should instead have been labeledRCON = 2 and vice
versa.
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TABLE VIII
EXPERIMENTALLY DETERMINED MARKET POWER AND EFFICIENCY OUTCOMESWITH GA SOCIAL LEARNING FROM [23]

ZP indicates that zero profits were earned both in the auction and in competitive equilibrium.

MRE learning. Consequently, market efficiency is not robust
with respect to switches from individual to social learning.16

As detailed in Section V-E, a careful examination of the bid
and ask behavior of individual buyers and sellers in our elec-
tricity market provides an explanation for these market power
and efficiency findings. Since both trader types can submit op-
portunistic price offers, each type has countervailing strategic
market power that holds in check the ability of the other type to
offset the structural market power biases inherent in the discrim-

16For an example of an oligopoly market in which a switch from individual
to social learning results in substantially higher average output, see [23, Fig. 5].
In Vriend’s example, all firms have identical costs.

inatory auction protocol per se. This is true whether the traders
use individual or social learning.

Nevertheless, under individual MRE learning, inframarginal
traders are better able to home in on bids and asks that are suf-
ficiently close to their true reservation prices to ensure posi-
tive bid-ask spreads and prevent entry by extramarginal traders.
Coordination failure is, thus, largely avoided, meaning that the
set of trades conducted under the discriminatory auction agrees
closely with the set of trades that would occur in competitive
equilibrium. The result is high market efficiency, despite the fact
that some buyers and sellers have substantially positive or neg-
ative structural market power levels. The root cause of the inef-
ficiency under GA social mimicry learning is a relatively high
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coordination failure rate due to inappropriate mimicry by struc-
turally distinct traders.

B. Comparison With Other Studies

Our findings regarding relative market power support the
conclusion reached by Weiss [4] for human-subject electricity
market experiments that active bidding by buyers may limit
the ability of sellers to exercise market power. However, since
Weiss only considers nodal and uniform pricing, he is not led to
consider the distinction between structural and strategic market
power.

In our context, the discriminatory auction protocol inherently
allocates market power to some traders in preference to others,
even in the absence of opportunistic bids and asks. On the other
hand, all buyers and sellers can attempt to secure strategic
market power in the sense that buyers can attempt to increase
their profits by bidding lower than their true marginal revenues
and sellers can attempt to increase their profits by asking higher
than their true marginal costs. Therefore, our market power
conclusion must be nuanced by saying that the presence of
active traders on each side of the market reduces the ability of
structurally disadvantaged traders to overcome the structural
market power biases inherent in the auction protocol through
the exercise of strategic market power. In addition, the ability to
exercise strategic market power is further limited in our context
by the threat of entry by extramarginal traders.

Our findings regarding market efficiency are reminiscent of
the conclusions reached by Gode and Sunder [18] and other pre-
vious researchers regarding the efficiency of continuous double
auctions. Acontinuous double auctionis a double auction in
which bids and asks are continuously received, trades can occur
at any time, and bids and asks are accepted by the traders them-
selves rather than matched by a clearinghouse. As noted in [5,
pp. 5–6], continuous double auctions have been observed in
human-subject experiments to induce very efficient outcomes
under a wide range of treatment conditions, much more so than
traditional economic theory would suggest.

A key question raised by Gode and Sunder [18] is the extent
to which the efficiency of any given market mechanism is at-
tributable to trader rationality or inherent in the design of the
mechanism. Their findings for continuous double auctions with
zero-intelligence traders suggest that efficiency is inherent in the
continuous double-auction mechanism per se.

Similarly, our market efficiency findings would seem to sug-
gest that efficiency is inherent in the design of the discrimi-
natory clearinghouse double-auction mechanism. Nevertheless,
this conclusion is tempered by two additional findings.

First, market efficiency is seriously degraded when the buyer
and seller populations each use GA social mimicry learning in-
stead of individual MRE learning. This form of social mimicry
is not particularly appropriate in the current electricity context
since buyers have different marginal revenues and sellers have
different marginal costs. Second, as indicated in footnote 6 of
Section II-E, market efficiency can also be seriously degraded
when buyers and sellers learn in accordance with the original
RE learning algorithm, implying that they do not respond to the
unfavorable stimulus of zero profits.

These two additional findings suggest that the following cau-
tion is in order. While the discriminatory clearinghouse double
auction may reliably deliver high market efficiency when buyers
and sellers refrain from inappropriate learning behavior, it may
not be robust against the active exercise of bad judgment.

The extent to which our market power and efficiency findings
generalize to wholesale electricity markets operating under dif-
ferent auction protocols is an interesting open question. For ex-
ample, would our findings generalize to clearinghouse double-
auctions with uniform pricing? Or to continuous double auc-
tions exhibiting the various special types of rules (opening price
rules, priority rules, etc.) listed in [25] on the basis of a survey
of systems in actual operation?

Under alternative auction protocols, the learning behavior of
traders might have more substantial effects on market power or
market efficiency because the traders have a greater leeway for
the exercise of strategic market power. In any case, it might be
that the MRE learning algorithm applied in the current study is
too simplistic to capture fully the strategic opportunities open to
the traders.

For example, Camerer and Ho [26] have developed an
individual learning algorithm that permits traders to use past
observations to form beliefs about what other traders will do
in the future. Would the observed strategic behavior of traders
under Camerer–Ho learning differ significantly from what we
have observed using individual MRE learning and GA social
mimicry learning? In particular, would the use of Camerer–Ho
learning permit traders to overcome structural market power
biases through strategic pricing? The inability of the traders in
our current experiments to overcome structural market power
biases through strategic pricing appears to be due more to the
symmetric design of the double auction (simultaneous bids and
asks) than to any lack of learning power per se. However, a
more systematic examination of this issue is clearly needed.

In addition, the representation of the traders’ actions in the
current study is very simplistic: each trader submits a single
price offer and a single quantity offer to the auction in each
auction round. In contrast, as described in [10], each generator
in the England and Wales day-ahead electricity market submits
price and quantity offers for up to three incremental levels of
output for each of its generating units, i.e., in each auction round,
each generator submits a supplyfunction rather than a single
price-quantity pair. The domain of possible offers by each gen-
erator is thus enormously enlarged from a set of points to a set
of functions.

To handle these real-world features, it seems essential to
permit the traders to engage in more comprehensive forms of
learning that include inductive reasoning (experimentation with
new ideas) as well as aspects of reinforcement learning, social
mimicry, and forecasting of future events. As discussed in
[27], social scientists are just beginning to appreciate the care
and attention needed to model computationally the learning
behavior of multiple social agents interacting in complex
real-world contexts.

These issues, critically important for the computational mod-
eling of restructured electricity markets, will be addressed in
future studies.
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