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Market Power and Efficiency in a Computational
Electricity Market With Discriminatory
Double-Auction Pricing

James Nicolaisen, Valentin Petrov, and Leigh Tesfatsion

Abstract—This study reports experimental market power and consequence, calls have increasingly been made to restructure
efficiency outcomes for a computational wholesale electricity the electric power industry into a more competitive industry in
market operating in the short run under systematically varied \hich prices would better reflect true marginal costs. At the

concentration and capacity conditions. The pricing of electricity - .
is determined by means of a clearinghouse double auction with same time, concerns have been expressed that restructuring ef-

discriminatory midpoint pricing. Buyers and sellers use a mod- forts might actually result in efficiency losses. Moreover, equity
ified Roth—Erev individual reinforcement learning algorithm to  concerns have arisen regarding possible increased opportunities
determine their price and quantity offers in each auction round.  for some market participants to exercise market power, i.e., to

It is shown that high market efficiency is generally attained and - gocre g higher share of profits for themselves than would be
that market microstructure is strongly predictive for the relative ibl d titi ket diti 4
market power of buyers and sellers, independently of the values possible under competitive market conditions [4].

set for the reinforcement learning parameters. Results are briefly ~ 10 date, restructuring proposals for the electric power
compared against results from an earlier study in which buyers industry have focused primarily on the wholesale electricity

and sellers instead engage in social mimicry learning via genetic market. In this market, electricity is produced by generating
algorithms. companies (“generators”) from existing capacity and sold either
Index Terms—Agent-based computational economics, capacity, to other generators or to some form of energy service provider.
concentration, efficiency, genetic algorithm social learning, indi- 16 energy service providers subsequently resell the electricity
vidual reinforcement learning, market power, repeated double to household, industry, or commercial users in a retail market
auction, restructuring, wholesale electricity market. ' R o . e
Short-run production efficiency in a wholesale electricity
market requires that current demand be met using the least
|. INTRODUCTION costly mix of existing capacity. Any market mechanism pro-
NY ELECTRIC power industry must carry out three basi®0sed for the short-run efficient determination of trades in a
functions, regardless of its structure [1], [2]. First, it musf/holesale electricity market must therefore address four tasks
produce electricity from existing capacity. Second, it must dil: PP 11-12]. First, the buyers and sellers who would benefit
tribute this electricity to final consumers. Third, it must engag®m trade must be identified. Second, these buyers and sellers
in longer run planning and investment for the production of neust be matched so as to maximize total gains to trade. Third,
capacity. a specific price and quantity level must be determined for each
Until recently, most electricity has been supplied by verticallfpatched buyer-seller pair. Fourth, trades between matched
integrated statutory monopolies operating either as public utifiuyers and sellers must be carried out within the constraints of
ties or as regulated investor-owned utilities [3, Ch. 6]. The reffl€ electric power transmission grid.
ulatory compact has generally decreed that utilities should pro-One market mechanism currently under intense consider-
vide enough generation capacity to ensure an adequate suisign for wholesale electricity markets in many parts of the
of electricity for all users in return for receiving a fair rate ofvorld is aclearinghouse double auctiofs]-[7]. In such an
return on their capacity. auction, wholesale buyers and sellers of electricity participate
In recent years, however, this regulatory compact has beé&reatedly in auction rounds. At the beginning of each auction
widely eroded due to the growing irrationality of the rate strudound, the buyers and sellers submit price and quantity offers
ture and the public perception that current industry practices famultaneously to a clearinghouse. At the end of each auction
to provide the proper incentives to ensure market efficiency. JRuUnd, the clearinghouse matches the price and quantity offers
received during the round in accordance with publicly known
_ _ _ _ _ rotocols, subject to transmission grid constraints, and reports
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Ideally, the performance of any proposed auction mechanigmices are determined by means of a discriminatory pricing rule.
should be understood prior to its actual implementation. Thie also consider the implications of this discriminatory pricing
difficulty for wholesale electricity markets is that these marule for short-run market efficiency.
kets generally comprise small numbers of buyers and seller€One special concern of this study is the development of con-
with differentiated costs and capacities who interact repeatedigptual tools that permit market power effects due to market
over time. The buyers and sellers may, thus, have an incentivestaucture to be distinguished from market power effects due to
“game” an auction mechanism, i.e., to behave opportunisticaliyyer and seller learning. We focus particularly on the degree to
within the limits set by the auction protocol in an attempt to inwhich the discriminatory pricing rule induces structural versus
crease their individual gains to trade. In particular, buyers abéhavioral market power effects.
sellers may have an incentive to submit price offers that misrep-Another special concern of this study is the testing of an
resent their true willingness to pay or their true marginal costsnpirically based representation for individual learning. Our
and to submit quantity offers that misrepresent their true capa&tectricity buyers and sellers are assumed to learn in accor-
ities. dance with a modified versiérof a reinforcement learning al-

For example, it is well known that implicit collusion prob-gorithm due to Roth and Erev [16], [17]. The attractiveness of
lems can arise in uniform-price auctions for multiple units of the Roth—Erev learning algorithm is that its form embodies the
homogeneous good such as electricity [8], [9]. In uniform-pric@ost salient regularities observed in the decision-making be-
auctions, the marginally matched buyer and seller determine tigvior of human subjects across a wide variety of multiagent
price for all units, and auction participants may be able to catxperimental games.
lude tacitly to move this price in their favor. Klemperer [9, p. Our main experimental finding is that structural biases are in-
4] notes that it was partly to avoid such problems that electriciberent in discriminatory pricing rules and that these biases are
regulators in the U.K. recently proposed a set of New Electricityighly predictive for relative market power outcomes. Although
Trading Arrangements for the U.K. Under these arrangemerntggh market efficiency is generally attained, the buyers or sellers
an exchange market followed by a discriminatory-price auctiavho are less favored in terms of market power under the dis-
would replace the existing uniform-price auction. criminatory pricing rule are not able to overcome this struc-

Implicit collusion is more difficult in discriminatory-price tural market power bias through learning. This is the case even
auctions. Nevertheless, auction participants may still have aniheugh the less favored agents have the potential to gain positive
centive to engage in opportunistic behavior with regard to theirarket power through appropriate strategic pricing. The sym-
price and quantity offers. Moreover, as found in [10] in the commetric nature of the double auction, which requires both sides of
text of a one-sided auction for electricity generators, a discrirtite market to submit price offers simultaneously, appears to pre-
inatory auction may permit large generators with many genefent either buyers or sellers from successfully learning to gain a
ating plants to have informational advantages over smaller gealative market power advantage through strategic price offers.
erators. Section Il presents our computational electricity market

Consequently, while it is highly desirable to predict iframework, including a detailed description of the auction
advance the market power and efficiency implications of proaechanism, the learning algorithm used by traders to determine
posed new auction protocols for wholesale electricity marketbgir price offers, and the calculation of benchmark competitive
the complexity of these markets makes it difficult to do smarket outcomes. In Section Ill, we explain the experimental
using standard analytical tools or human-subject laboratatgsign of our study in terms of both tested hypotheses and
experiments. Empirical study is also difficult since relevanttested parameter values. Section IV reports our basic experi-
data is scarce. This suggests a potentially useful role forental findings and Section V provides a detailed discussion
computational experiments. of these findings. The concluding Section VI summarizes our

This study constructs an agent-based computational modekef findings and discusses the relationship of these findings
a wholesale electricity market that can be used as a laboratayywork by other authors, in particular [18] on the relative
for systematic experimentatiédnWe use this laboratory to in- efficiency effects of market structure versus learned behavior.
vestigate market power and efficiency outcomes for a short-run
wholesale electricity market with double-auction pricing and II. ELECTRICITY MARKET FRAMEWORK
with buyers and sellers who continually update their price of-
fers on the basis of past profit experiences. We consider h
the relative market power of the buyers and sellers varies in re-Our computational electricity market incorporates several
sponse to changes in concentration and capacity when aucfi@aures anticipated to be key aspects of short-run wholesale

] ] ) ) electricity markets operating under restructuring. Small num-
1As discussed in [7] and [11]-[13], researchers studying auctions by mean

analytical tools and human-subject laboratory experiments have focused Iar&%s .Of buyers and seIIers'sut.)mlt price offers repe.at?dly to _a
on simpler auction contexts in which the scope for opportunistic behavior @éaringhouse double auction in an attempt to maximize their
limited, e.g., single-round single-unit auctions in which the participants have
extensive common knowledge. Restal. [14] is an important exception. 3In preliminary versions of this study (ISU Economic Report no. 52, August
20ther researchers who have undertaken agent-based computational sti2fie8, revised February 2001), it is stated that the original Roth—Erev algorithm
of wholesale electricity markets with double-auction pricing include [6] anis used. It was subsequently determined, however, that our code implementation
[15]. Various resources on agent-based computational economics (ACE) in gactually included a “small” modification of this learning algorithm. As will be
eral, including surveys, an annotated syllabus of readings, software, and pointdaisified below, the resulting modified learning algorithm turns out to have im-
to individual researchers and research groups, can be found at the ACE wehsit¢ant advantages over the original Roth—Erev learning algorithm in the current
at http://www.econ.iastate.edu/tesfatsi/ace.htm. double-auction setting.

Overview
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profits. The buyers and sellers have multi-unit capacities and TABLE |
differentiated revenues and costs, private information that other BUYER-SELLER MATCHING |LLUSTRATION
traders cannot observe directly. Moreover, each buyer and seller Sellers Buyers
continuously updates its price offers on the basis of its past $4/20MWh;  $9/10 MWh

$5/10MWh; $8/10MWh

profit experiences in a manner that permits the exploitation of $6/10MWh.  §7/10 MWh

profit opportunities arising from the pricing behavior of other
traders. Matches: (1-1) for 10 MWh at Unit Price $6.50/MWh;

More precisely, our computational electricity market models %%gﬁ%ﬁ%i%‘;ﬁﬁiﬁ%
the short-run wholesale trading of electricity by traders attached Seller 3 Not Matched.
to an electric power transmission grid. The transmission grid is a
fully connected graph with traders as the nodes and transmission
lines as the edges. Each trader is assigned a maximum amount dihe buyer with the highest bid price is first matched with the
electricity capacity that it can buy or sell in each auction roundseller with the lowest ask price. The unit price for the contract is
as well as a certain available transmission capability (ATC) wiget at the midpoint of the bid-ask spread. If there is nonzero ATC
respect to each other trader. Traders with electricity to buy dretween the buyer and the seller, then the buyer is matched with
referred to aduyersand traders with electricity to sell are re-the seller for an amount of electricity calculated as the minimum
ferred to assellers of three amounts: the ATC, the capacity of the buyer, and the
The following parameter values are specified for each buy@apacity of the seller. Thus, if the ATC is 5 MWh, the buyer’s
capacity in megawatt-hours, (constant) marginal revenue g@&pacity is 10 MWh and the seller's capacity is 20 MWh, then
megawatt-hour purchased and resold in a secondary reta# contract is made for 5 MWh because this is the maximum
market, and fixed costs. Also, the following parameter valu€giantity that the power grid can support. The carryover amount
are specified for each seller: capacity in megawatt-houit,buy or sell is then calculated and the next pair is matched in
(constant) marginal cost per megawatt-hour generated, aarilar fashion.
fixed costs. These parameter values are private to each trader.Table | gives an example of a matching outcome for a market
The buyers and sellers trade electricity repeatedly in a deemprising three buyers and three sellers in which the ATC be-
criminatory-price double auction run by an independent cledween any paired buyer and seller is assumed to be 10 MWh.
inghouse, henceforth referred to asliacriminatory auction At the end of the auction round, each trader implements its
The goal of each buyer and seller is to maximize its own profitguction-assigned trades and obtains a profit outcome. Each
The discriminatory auction is performed in rounds. In eadfader then uses this profit outcome to calculate updated choice
round, the buyers and sellers simultaneously subidi(offers probabilities for selecting among its feasible price offers in the
to buy) andasks(offers to sell) to the clearinghouse. Each bidghext auction round. This updating is accomplished by means of
and ask consists of a single price-quantity pair. The linearity s&modified version of a reinforcement learning algorithm due to
sumed for the traders’ revenue and cost functions, together withth and Erev [16], [17]. The latter algorithm will be motivated
the discriminatory auction protocol, ensures that the profit-magnd illustrated prior to introducing the modified version.
imizing quantity offered by each trader is simply its capacity
quantity. As detailed more fully in Section 11-B, the clearingC. Motivation for the Roth—Erev Algorithm
house matches these bids and asks, using as its criterion thg a series of studies, Roth and Erev [16], [17] have sought
maximization of perceived total profit, and communicates theggunderstand how people learn individually to behave in games
matches back to the buyers and sellers. with multiple strategically interacting players. To this end, they
At the end of the auction round, the matched buyers amr@ve developed a three-parameter reinforcement learning algo-
sellers carry out their assigned trades and record their profit otithm, hereafter referred to as tRE algorithm

comes. They then use these profit outcomes to determine theirhe basic intuition underlying any reinforcement learning al-

price offers for the next auction round. gorithm is that the tendency to implement an action should be
strengthened (reinforced) if it produces favorable results and
B. Auction Round Implementation weakened if it produces unfavorable results [19]. Roth and Erev

A single auction round proceeds as follows. First, each trad@ke thislaw of effecprinciple, widely accepted in the psycho-
selects a feasible price offer in accordance with the trader’s ctftgical learning literature, as the basic starting point in their
rent “choice probabilities’—the determination of these choic@arch for a robust model of individual learning. In addition,
probabilities is explained in Section II-E. Each trader submit§ey argue for an additional learning principle, also adhered to
this price offer to the clearinghouse along with a quantity offe¥idely in the psychological learning literature, which they refer
equal to the trader’s capacityThe clearinghouse then sepaIO as thepower law of practiceThe latter principle asserts that
rately sorts the buyers and sellers by their price offers in glearning curves tend to be initially steep, after which they flatten

scending and ascending order, respectively. out. . o )
Psychologists generally have focused on individual learning
4dRe(?aIIfr0rr:1 Section II—Aéhat the ?rqfit—maximizing quantity offer for eachin “games against nature” for which there is only one deci-
trader in each auction round is simply its capacity quantity. , sion maker. In contrast, Roth and Erev are interested in indi-
SBefore each (bubble) sort, the ordering of the traders is randomized to avo T L . . ith ltivle decisi
unintended incumbency effects in cases where some buyers or sellers make iféiual learning in strategic environments with multiple decision
tical price offers. makers. Roth and Erev argue that, in such contexts, the law of
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effect and the power law of practice fail to account sufficiently r value of the recency parameter;

for the observed responsiveness of decision makers to other de= value of the experimentation parameter;

cision makers in their choice environments. E(-) update function reflecting the experience gained from
Based on extensive observations of individual learning in past trading activity.

multiagent games, Roth and Erev argue for two additional The recency parameterslowly reduces the importance of
learning principles that help to capture learning responsiveneggast experience, thus implementing the recency effect. The up-
which they refer to aexperimentationand therecency(or date functionE(-) takes the form
forgetting effect The former principle asserts that, not only o .
are choices that were successful in the past more likely to be g 1 _ R(G,K,n)(1=¢), k=k

. .. . . E(J,k,k,n,K,C) R,‘ k/ e k k/'
employed in the future, but similar choices will be employed (K n) &=, 7
more often as well. The latter principle asserts that recePrt]e

experience generally plays a larger role than past experience It i:?)lfefﬁgd ?g;‘i'tosg I’tsyk‘t/hus,er::’?]fgécsel?bzzdIjgrc])tu{g%l’?ii Zglt::-
determining behavior. p (4, k', n) q

The RE algorithm incorporates each of these four Iearniﬁi n, but some propensity to experiment among all other feasible

principles to some degree. Roth and Erev show that il tlon_sk IS als_o reta_me_d.ThuE(-) is animplementation of the
experimentation principle.

algorithm is able to track successfully the observed interme-G. h dated it D f i d
diate-term behavior of human subjects over a wide variety of lven the uF,) ated propensitigs. (n+ ) or auction roun
+ 1, tradery’s updated choice probabilities;; (n + 1) for

multiagent repeated games with unique equilibria achievabte” . . T )
using stage-game strategies. selecting among its feasible actiohsn auction roundn + 1

take the form

D. Form of the Roth—Erev Algorithm pir(n+1) = gin{n + 1)
Jr - vK R )
The three parameters characterizing the RE algorithm are a Sm=1@im(n+1)
scaling parametes(1), arecency parameter, and anexper- |y symmary, Roth—Erev traders solve a myopic stimulus-re-

imentation parametee. The implementation of the RE algo-gponse problem of the following form. Given this profit out-
rithm will now be illustrated for a group of buyers and sellergome \what price should I next choose? They do not engage in
participating in a double auction. For simplicity, each buyerar}:g1y explicit look-ahead reasoning, e.g., if | choose this price

seller is assumed to learn in accordance with an RE algoritt{g,, how will this affect the price choices of my rivals in the
characterized by the same three values for these parameterg, i ,re?

The feasible price offer domain for each buyer and seller is
approximated by a discrete grid consistingdfeasible actions g \odified Roth—Erev Algorithm
(bid or ask pricesk, whereK is the same for each trader. At the
beginning of the first auction round 1, each tragexssigns an
equalpropensityy; (1) to each of its feasible actioks given by
g;x(1) = s(1)X/K, whereX is the average profit that buyers
and sellers can achieve in any given auction round.

Moreover, each trader assigns an equahoice probability
p;x(1) to each of its feasible actiorts given byp;i (1) = 1/ K.

Each tradeyj then probabilistically selects a feasible actign S q h bstantial difficulty in a doubl
to submit to the clearinghouse in accordance with its current econd, a much more substantial diticuily in a double-auc-

choice probabilities. On the basis of all received bids and ask§n contextis that each trader_ only updates its choice _probab|l-
W?—S in response taonzeroprofit outcomes. A zero-profit out-

the clearinghouse determines buyer-seller matches. It then cd | trader’s choi babilit h db
municates these matches back to the traders along with a qu%c?{ne eaves a trader's choice probabilities unchanged because

tity amount and a midpoint price for each match. Each tradereaCh of the trader’s current propensity values is shrunk to the

then implements its assigned trades and records the total prosfﬁgne degree. In a dou_ble auction, tradgrs must learn 1o make
R(j,,1) that it gained from this trading activity. price offers for which bids exceed asks in order for matching

Now suppose that traderis at the end of thexth auction (h(_ance, po_sitivg profits) to occur at aII._An absence of proba-
round for arbitrary positive: and that in the:th auction round .b'"ty updatlng In response to Z€ro .proflts can therefore result
trader; has submitted a feasible actighto the clearinghouse in a substantial loss of market efficiency as traders struggle to

and achieved total profitB(j, &', »n) from its resulting auction- Ie"Xn .hOWI to m‘zl.(]f p{pfltabflethpn(l:?eEoffle rs.'th dd both
directed trading activity. Tradgrthen updates its existing action fthSImp € rl;o ' |car:§)|n Ot'll et i algonthm ?t ressegth '?h

propensitiesy; . (n) on the basis of its newly earned profits, a ese problems while still maintaining consistency with the
follows. Given any feasible actiot, the propensityjx (n + 1) earning principles embodied in the original RE algorithm.

for choosingk in the next auction round + 1 is determined as  &roujiline pointed out the parameter degeneracy problem to us. Koesrindar-
toto alerted us about the zero-profit updating problem in a particularly com-
pelling way. In his own double-auction experiments with Roth—Erev learners
. — 2\ g / participating in 1000 auction rounds, persistent market inefficiency arose for
gix(n +1) = (1 =r)gjx(n) + B, b, Ko, K ) certain parameter specifications because the choice probabilities associated with
various zero-profit (nonmatching) price offers remained at persistently positive
where levels.

The RE algorithm outlined in Section 1I-D has two draw-
backs: 1) parameter degeneracy and 2) no probability updating
in response to zero profits.

First, the updating of the choice probabilities is slowe ifs
set close tdK — 1]/K and ceases entirely  is set equal
to [K — 1]/ K. Consequently, care must be taken in specifying
values fore and K.
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Specifically, we replace the update functi&i-) in the original The total supply at each given price is simply the sum of the
RE algorithm with the following modified update function:  quantities of good that each seller plans to sell at that price.
Gk ) / Letting ¢; (P) denote how much of the good selleplans to
. R(j,K',n)(1—-¢), k=k sell at each price®
ME(G, kK n, K, ¢) = . . p
(J7 ’ » 1y 76) {%k(”)ﬁ, k?ék/
. — o . Qs(P) = Xiqi(P).

This modification essentially introduces different values for

the recency parameterfor selected versus nonselected aCti9r§imiIar|y, the total demand at each given price is the sum of

while at the same time omitting the profit term in the updating, quantities of good desired by each buyer of the good at that

equation for propensities corresponding to nonselected aCtioﬁﬁce. Lettingg; (P) denote how much of the good buygplans
In particular, the effect is to reduce the magnitude of the rece buy at each pricé®

parameter for nonselected actions frefo +* = (r — ¢/[K —
1]). Clearly, degeneracy no longer occurs o= [K — 1]/ K,
but how does this modification also ameliorate the zero-profit

: ° _ o
uplc\ila?n?hp:otglemh. inkage induced Tinth it Note that the supplies and demands of the individual sellers
ote that the shrinkage induce fy— ] in the Propensity” ,nqg buyers are represented as functions of the market Brice
value for the selected action is now larger than the shrinka: Ris dependence comes from the assumption that these indi-
induced by[1 — r*] in the propensity values for nonselecteq, ual supplies and demands are the solutions of competitive

actions. Consider, then, what happens when a zero-pr%ﬁl fit maximization problems, i.e., profit maximization prob-

outcome results from a s_elected actidn_AII Propensities are 1o i which the traders are assumed to take the market price
shrunk, but the propensity correspondingktoundergoes the as given

most shrinkage. Consequently, in the next auction round, t eSpecifically, for the electricity model at hand, the competitive

choice probabilities for the nonselected actions will increa?)?ofitmaximization problem for each sellaakes the following
relative to the choice probability fdr', encouraging the traderform_

to move away from the action that resulted in zero profits.
On the other hand, suppose the selected aéfioasults in a

positive profit outcome. Then the positive profit reinforcement

in the propensity updating equation fdrwill tend to outweigh

Qp(P) = Z;q;(P).

Manz. Pqi —;q;St.0<¢q; < Cs;.

The marginal cost parameiey denotes how much it costs seller
18 generate each megawatt-hour of electricity and the capacity
Oﬂ]arameteCSi denotes an upper bound on the amount that seller
1 can generate in any one auction round. The solution to this
maximization problem is

the updated choice probability for this action in the next aucti
round.

In summary, when the update functiéf-) in the RE algo-
rithm is replaced with the modified update functidhF(-), the
zero-profit updating problem is ameliorated. The choice proba-
bilities corresponding to action choices resulting in zero-profit
outcomes tend to decrease relative to other choice probabilities
while the choice probabilities corresponding to action choices

resulting in positive-profit outcomes tend to increase. Note that selleri is assumed to take the market prige
In the current study, it will be assumed that electricity buyetg given and, hence, as exogenous to its profit maximization
and sellers adaptively update their price offers in accordanGg,piem. The assumption in the competitive model is that the

with this modified RE algorithm, hereafter referred to as thgg|iers believe that their quantity choices have no effect on the

MRE algorithm market price. Consequently, if they try to sell electricity at a
- o ) price above the market price, they will sell nothing; buyers will
F. Competitive Equilibrium Calculation buy electricity from the sellers with the lowest price. If they try
The main objective of this study is to determine markde sell electricity at a price below the market price, they will
power and efficiency outcomes by comparing the profits thaucceed in selling all they can generate, but they could also do
buyers and sellers of electricity obtain in a discriminatorgo at the market price and make higher profit. Thus, there is
auction against the profits they would obtain under competitivi® incentive for the sellers to sell at any price other than the
equilibrium. This section explains the meaning and calculatienarket price.
of competitive equilibrium. Similarly, for the electricity model at hand, the competitive
A competitive equilibrium in a market for a positively valueddrofit maximization problem for each buygrtakes the fol-
good is a (positive) unit price?, a total quantity supplied lowing form:
Qs(P), and a total quantity demande@p(P) such that
Qs(P) = Qp(P). That is, the total quantity supplied must Max,,r;q; — Pg; s.t.0 < ¢; < CB;.
equal the total quantity demanded.
The notationQ s (P) and@p (P) indicates that these supplyHere,r; represents the marginal revenue received by byyer
and demand quantities depend on the pfoef the good. How for each megawatt-hour of electricity that buyeresells in a
is this dependence determined? secondary retail electricity market agdB, is an upper bound

CSZ‘, if P>
0, ifP<aw



NICOLAISEN et al: MARKET POWER AND EFFICIENCY IN A COMPUTATIONAL ELECTRICITY MARKET 509

P ($/MWh) Ng denote the number of sellers. The relative concentration
(RCON) of the market is then defined to be
37
35 _QS(P) RCON = &
B

Let CB denote the maximum amount of electricity that each

17 buyer can resell in a retail market and let CS denote the
16 CE maximum amount of electricity that each seller can generate,
both measured in megawatt-hours. Then, the relative capacity
(RCAP) of the electricity market is defined as

12 L Qo(P)
11 Ng-CB
20 40 60 MWh Let PBCE denote the profitsthat buyers would obtain in

competitive equilibrium and let PBA denote the profits that
Fig. 1. Competitive equilibrium for a three-buyer three-seller model. EadPUYers instead obtain when prices and quantities are determined

trader has the same capacity (20 MWh). in the discriminatory auction. Then, the market power of buyers
(MPB) is defined as

on how much electricity buyer can resell in any one auction MPB — PBA — PBCE

round. The solution to this profit maximization problem is o PBCE

If the buyers can exert control over the price of electricity in
the auction, i.e., if the buyers can exercise market power, then
they should be able to raise their profits above their competitive
profit level and MPB should be positive.

Similarly, let PSCE denote the profits that sellers would ob-

The buyers are assumed to believe that their quantity choid@¥ in competitive equilibrium and let PSA denote the profits
have no effect on the market prié& so this price is taken as anthat sellers instead obtain in the discriminatory auction. Then,
exogenous parameter in their profit maximization problems. the market power of sellers (MPS) is defined as

A competitive equilibrium is said to occur at any pri¢e PSA — PSCE
that equateQ_sl(P) anq_Qp(P)_. It is possible that !nfﬁnitely MPS = T PSCE
many competitive equilibria exist. An example of this is show

in Fig. 1. In this case, there are three buyers and three selle&éhe sellers can exert control over the price of electricity in the

each with a capacity of 20 MWh. The competitive equilibrium iguction, i.e., if the s_ellers can e?<ercise market power, Fhen thgy
located where the supply and demand functions intersect, whfhowd be able to raise their prgflts above their competitive profit
happens to be along the vertical line segment labeled CE yel and MPS should t_)e pos!tlve. .
tween $16/MWh and $17/MWh. Every point on this vertical line The level of total profits achieved by all buyers and sellers in

segment is a competitive equilibrium. For concreteness, we H]? compu_t_atlonal glegtnmty market attgms its maximum value
i competitive equilibrium by construction. The market power

ways take the competitive price to be the midpoint of all possib, . .
y P P P P exes MPB and MPS measure the extent to which the profit

competitive prices. Hence, in the current example we would ta] . . S
the competitive price to be $16.50/MWh, the average of t %vels achieved separately by buyers and sellers in the discrimi-
’ tory auction differ from the profit levels they would achieve in

highest and lowest possible competitive prices $17/MWh ahg' " o ) o .
$16/MWh at the competitive equilibrium quantity 40 MWh. competitive equilibrium. This redistribution of profits between

It is important to recognize that the buyers and sellers in Oprfc_etrsfand”st;allers ma()j/ colllne at thg_ exgense of smaller total
computational electricity market do not actually solve the con‘?—r?:' sfora Iuyers and se r?ng combine Ii der (i
petitive profit maximization problems presented above. Rather, or example, suppose sormdramarginal trader i.e., some

these profit maximization problems are used as zero—markgf”!der who would match in competitive equilibrium) engages

power benchmarks against which our experimental auction 0m_opportunistic auction behavior, either underbidding its true
comes can be compared willingness to pay or asking more than its true marginal cost.

In this case, it could happen that artramarginaltrader (i.e.,
a trader who would fail to match in competitive equilibrium)

0 if P> T
Qj(P) = [0, CBJ] if P= T4
OBj if P< Ty

IIl. EXPERIMENTAL DESIGN would be able to match in the discriminatory auction by sub-
mitting a higher bid or lower ask than the opportunistic trader,
A. Tested Hypotheses leaving the latter unmatched.

For simplicity, it is assumed that all buyers in the compu- 10 check for possible inefficiencies arising under the discrim-
tational electricity market are energy service providers and HItory auction, we introduce the following efficiency measure.

sellers are generators, implying that generators do not sell t&-q, expositional simplicity, we refer to the net eamings of the buyers as
other generators. LeVg denote the number of buyers and leprofits, ignoring all further downstream retail activities by these agents.
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The efficiencyof the market operating under the auction pro- TABLE I
tocol is defined to be the ratio EA of total auction profits to TESTED PARAMETER VALUES
total profits in competitive equilibrium, measured in percentage RCAP
terms. That is, using previously introduced notation, we define
172 1 2
PBA + PSA S oS oS
= 5= 5=
EA = 55cE +pscE < 100 CS=10 CS=10 cS=10
CB=10 CB=20 CB=40
We test the market power and efficiency implications of dis- RCON Ng=3 Ng=3 Ns=3
criminatory auction pricing for our computational wholesale 1 Np=3 NBi3 NBi3
electricity market in the form of three hypotheses. gngg (C:g; 11% 8183; 12%
H1—As RCAP Increases, MPB Decreases While MPS 2 Ns=3 Ne=3 Ns=3
Increases, All Else Equalintuitively, buyers should have a Ne=6 Np=6 Np=6
harder time exercising market power when there is excess CS =40 CS=20 CS=10
demand capacity, i.e., when the maximum amount of electricity CB=10 CB=10 CB=10
that the buyers want to purchase exceeds the amount that the
sellers are able to generate. Thus, one might expect the MPB TABLE Il
market power index for buyers to decrease and the MPS market LINEAR REVENUE AND COST CURVES
power index for sellers to increase with increases in RCAP, all
else equal. Buyers | Marginal Revenue
H2—As RCON Decreases, MPB Decreases While MPS 1 $37/MWh
Increases, All Else Equalintuitively, sellers should have an 2 $17/MWh
easier time exercising market power as electricity generation 3 $12/MWh
becomes concentrated in the hands of fewer sellers per buyer. 4 $37/MWh
Thus, the MPB market power index for buyers should decrease 3 $17/MWh
and the MPS market power index for sellers should increase as g ST2MWE
RCO.N decrgases, all glsg equal. For example, hypothesis H2 is Sellers | Margimal Cost
consistent with the claim in [20, p. 952] that the market power T S
exercised by generators in the British electricity spot market
would have been reduced substantially if the industry had been 2 $16/MWh
subdivided into five generators rather than two. 3 $11/Mwh
H3—Most Potential Gains to Trade are Exhausted, i.e., EA 4 $35/MWh
is Close to 100%. Any Unrealized Profitable Trades are Those 5 $16/MWh
Offering the Smallest GainsHypothesis H3 conjectures that 6 $11/MWh

the level of total profits achieved by buyers and sellers in the
discriminatory auction will be close to the level of total profits
achieved under competitive equilibrium, which is the maximuonstraint on any buyer-seller match under these capacity spec-
possible level. Consequently, the conjecture is that the sizeifgfations?

the total profit pie under the discriminatory auction is essen- Buyers and sellers are assumed to have linear revenue and
tially independent of the division of this pie among the buyegost functions subject to capacity constraints, so that their mar-
and sellers and hence essentially independent of any auctiongiimal revenues and marginal costs are constant over their quan-
duced market power effects. Hypothesis H3 is consistent wiity choices up to capacity. The cost functions specified for the
the high efficiency found in a wide variety of human-subjecsellers are scaled linear approximations of the cost functions of

experiments with double auctions [11]. actual generating units.
Table 11l shows the specification for marginal revenue (mar-
B. Tested Parameter Values ginal cost) for each buyer (seller) in the experiments reported

] below. The fixed costs of the buyers and sellers are set to zero
The experimentally tested values for the numBeés of for 5 simpler model. For a seller, this could be representative
buyers, the numbeiNs of sellers, the capacity CB of eachyt g generator already up and running (i.e., synchronized to the
buyer, and the capacity CS of each seller are given in Tablelansmission grid) and waiting for a match in the auction to con-
The capacities of the buyers and sellers are representativg, 8¢t o the system and deliver electricity.
typical generation and demanded loads. The marginal costs of the sellers are chosen to cover three
The capacities for the buyers and sellers are selected to Rifses of operating costs: expensive, medium, and cheap. These

sure RCAP: 1:2, 1:1, and 2:1. All buyers are assumed to have

identical capacities and similarly for all sellers. For simplicity, °As stressed in [21], determining the effects of ATC constraints on market
. . L . ower is a subtle issue, since ATC constraints make it more likely that conges-
inthis first experimental study, the ATC between each buyer a ioh can be induced strategically for market power advantages. This topic will
seller is set at 100 MWh to ensure that the ATC is not a bindimg taken up in future studies.
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an older unit that has been updated, and a new unit, or of dilues found for the 1000 auction round case vé¢i¢ = 1.00,

ferent types of fuel usage. Note from Table Il that, when all six = 0.04, ande = 0.97. The calibrated parameter values found

sellers are simulated, two of each type are included to model fioe the 10 000 auction round case we(é) = 1.00, r = 0.02,

competition between similar companies. The buyers’ margirahde = 0.99.9 For both cases, the calibrated values 40r)

revenues are similar to the marginal costs of the sellers, but wéthdr fall within the Erev—Roth good fit ranges presented above,

enough of a difference to yield a competitive equilibrium profitwhereas the calibrated values fodo not.

This assures the existence of a competitive equilibrium price,In the third test for Table Il, the scaling parameté¢t ), the

which is then used to calculate the benchmark profit levels foecency parameter, and the experimentation parametefor

market power and efficiency. the MRE algorithm are instead set equal to the values obtained
Buyers and sellers are not permitted to submit bid or adly Erev and Roth [18, p. 863] by a best overall fit of the RE

prices to the auction that would definitely result in negativalgorithm to experimental data from twelve distinct types of

profits if accepted. To implement this rationality postulate, thgames run with human subjects. These values@re= 9.00,

set of feasible bid price offers for each buyer is specified to be= 0.10, ande = 0.20. The MRE algorithm with the latter

the interval MR — $40/MWh, MR], where MR denotes the parameter values is referred to below aslikst fit MRE algo-

buyer’s true (constant) marginal revenue. Also, the set of fedthm.

sible ask price offers for each seller is specified to be interval

[MC, MC + $40/MWh], where MC denotes the seller’s true IV. EXPERIMENTAL RESULTS

(constant) marginal cost. The lower boudd — $40/MWh is

low enough to encompass all possible ask prices by sellers ana—ables V=V r(_ep_ort aggregate and individual '_“‘"‘.”‘et power
outcomes and efficiency outcomes for the three distinct learning

th boun®IC + $40/MWh is high ht o , . . o X .
a||epL:3F;F;?};|eog;3 pricJers$by/buyersls 'gh enough'fo encompassspemflcatlons outlined in Section IlI-B. Specifically, in the first
’ rgarning specification, each trader is assumed to use the cali-

To check the sensitivity of the market power and efficienc ) ) . .
outcomes to the specific values set for the parameters cha r@ted MRE algorithm with each run consisting of 1000 auction
%ounds. In the second learning specification, each trader is as-

terizing the MRE reinforcement learning algorithm, the nin

RCAP/RCON configurations in Table Il are tested three time‘c‘éjmed t?f()sgége cahlbrated '\QREl algon;hn(; lthh gach run_fgon—
using three different settings for these parameter values. sisting o auction rounds. In the third learning specifica-

Recall from Section II-E that the MRE algorithm is charlion, each trader is assumed to use the best fit MRE algorithm

acterized by three parameters: a scaling para a re- with each run consisting of 1000 auction rounds'
cency para%eterf ari]d an experimentatignppargyrﬁne?a;rErev Each cell in each table corresponds to a unique RCAP/RCON
and Roth [18, p. é64] note that a good fit to their experimentﬁ?nﬁguraﬂon in parallel to Table Il. For each table cell, the auc-

data covering twelve distinct types of human-subject games %{‘ was run 100 times using 100 different seeds for the pseu-

obtained for all values of these parameters lying in the followin andpm ”“’T‘ber geqerator. For each run, the profit levels at-
tained in the final auction round by buyers as a whole and by

rangesO < s(1) < 1000, 0 < r < 0.20, and0.02 < ¢ < 0.30. R
In the first two tests for Table Il reported below, the IC)arams_ellers as a whole, as well as by individual buyers and sellers,

eter values for the MRE algorithm are calibrated to facilitate tﬂgergtcglculated atnd C?jmp da_lrt_a(;j a?l?/ll E‘Et co;n'&eptgve pLOf;t levels
emergence for each trader of a dominant price offer with a ref:g-o anaggregate and individua an market power

tively large choice probability by the final auction round in eacmdexes' In addmon,_ for each run, t_he value for the market effi-
cigncy measure EAin the last auction round was calculated and

run. In the first test, each run consists of 1000 auction rounds a ded

in the second test, each run consists of 10 000 auction round %re?néans and standard deviations of the aggregate and in

The parameter calibration was accomplished in two stages, ) )
P P g d?wdual MPB and MPS market power indexes were then calcu-

follows.
First, given the number of auction rounds per run, the densl ed across all 100 runs for each table cell. The aggregate results
' ' e given at the top of each table cell and the results for indi-

of the price offers within each trader’s feasible price offer ran b q el listed und th A ket
was specified to help ensure an adequate sampling frequenc fgfja Uyers and sellers are listed underneath. A mean marke
qwer outcome with a positive or negative sign is marked with

each possible offer. For the 1000 auction rounds per run ca . . . .
n asterisk if it is substantially different from zero in the sense

K = 30 possible price offers were randomly selected withi t the indicated sian d t ch hen th i Nt
each feasible price offer range, implying that each trader cod nein 'C?je Z'gn oesdng c ang;a Wd er(; de c_)ut.comltza_|s ﬁ"
in principle sample each price 33 times during each run. T er increased or decreased by one standard deviation. Finatly,

e mean and standard deviation for the market efficiency mea-

average profitX achievable in any auction round for this cas )
was set at¥ = 15,000. For the 10 000 auction rounds per rursure EA calculated across all 100 runs are given at the bottom
il f each table cell.

case,K = 100 possible price offers were randoml selectedl X . . . .
p P Y As explained in Section IlI-A, hypothesis H1 predicts that

within each feasible price offer range, implying that each trader . .
could in principle sample each price 100 times during the cou%@ MPB market power |n_dex for buyers should deprease while
the MPS market power index for sellers should increase, all

of each run. A valueX = 50,000 was set for this case.
Second, by direct search, the values for the three MRE algo-

rithm parameters(l), r, ande were calibrated until the bid or 9t i; interesting_t_o note that under the _original RE algorithm, no updat_ing
K price hist for each of the traders became single pea f choice probabilities would occur for this 10000 auction round case since

ask price histogram inglep ,gd[K— 1]/ K = 0.99. In contrast, as will be seen below, the MRE algorithm

by the final auction round in each run. The calibrated parameteguits in good learning and very high market efficiency.
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TABLE IV
EXPERIMENTAL MARKET POWER AND EFFICIENCY OUTCOMES FOR THECALIBRATED MRE ALGORITHM WITH 1000 AUCTION ROUNDS AND PARAMETER VALUES
s(1) = 1.00, r = 0.04, AND e = 0.97

Relative Capacity
1/2 1 2

MP  StdDev MP  StdDev MP  StdDev

All Buyers: -0.27  (0.18) All Buyers: -0.23 *  (0.17) All Buyers: -0.06 (0.28)

All Sellers: 0.46  (0.88) All Sellers: 0.29  (0.48) All Sellers: -0.24 (0.33)

Buyer[1]: -0.24  (0.26) Buyer[1]: -0.21* (0.19) Buyer[1]: -0.06 (0.28)
Buyer[2]: -0.68* (0.50) Buyer[2]: -0.87  (0.96) Buyer[2 ]: ZP  (0.00)
2 Buyer[3]: ZP  (0.00) Buyer[3]: ZP (0.00) Buyer[3]: ZP  (0.00)
Seller[1]: ZP  (0.00) Seller{1]: ZP  (0.00) Seller[1]: ZP  (0.00)

Seller[2]: ZP  (0.00) Seller[2]: 1.75 (5.46) Seller[2]: -0.24 (0.46)

Seller[3]: 037 (1.97) Sellerf3]:  0.17  (0.85) Seller{3]: -0.24 (0.37)

Seller[4]: ZP  (0.00) Seller[4]: ZP  (0.00) Seller[4]: ZP  (0.00)

Seller[5]: ZP  (0.00) Seller{5]: 139 (47D Seller{5]: -0.22 (0.44)

Seller[6]: 0.54 (1.32) Seller{6]:  0.19  (0.80) Seller{6]: -0.25 (0.37)

Efficiency: 96.01 (0.08) Efficiency: 96.30  (0.11) Efficiency: 77.60 (0.15)

MP  StdDev MP StdDev MP  StdDev

. All Buyers: -0.37* (0.20) All Buyers: -0.26* (0.17) All Buyers: -0.13  (0.37)
Relative All Sellers:  0.55  (0.67) All Sellers: 0.44  (0.56) All Sellers: -0.27 (0.37)
Concentration Buyer[1]: -0.33* (0.20) Buyer[1]: -0.24* (0.18) Buyer[1]: -0.13 (0.37)
Buyer[2]: -0.73* (0.50) Buyer[2]: -1.00 (0.00) Buyer[2]: ZP  (0.00)

1 Buyer[3]: ZP  (0.00) Buyer{3]: zpP (0.00) Buyer[3]: ZP  (0.00)
Seller[1]: ZP  (0.00) Seller[1]: ZP  (0.00) Seller{1]: ZP (0.00)

Seller[2]: Zp  (0.00) Seller[2]: 2.37  (6.49) Seller[2): -0.29 (0.51)

Seller[3]: 0.40  (0.86) Seller[3]:  0.27  (0.90) Seller[3]: -0.25 (0.37)

Efficiency: 86.88 (0.18) Efficiency: 96.48  (0.05) Efficiency: 90.98 (0.24)

MP  StdDev MP StdDev MP  StdDev

All Buyers: -0.33*  (0.16) All Buyers: -0.25% (0.16) All Buyers: 0.01 (0.33)

All Sellers: 0.55%  (0.50) All Sellers: 0.44 (0.44) All Sellers: -0.21  (0.25)

Buyer[1]: -0.29* (0.19) Buyer[1]: -0.21*  (0.17) Buyer[1]: 0.01 (0.43)

Buyer[2]: -0.68* (0.52) | Buyer[2]: -1.00  (0.00) Buyer[2]: ZP (0.00)

12 Buyer[3]: ZP  (0.00) | Buyer[3]: ZPp (0.00) Buyer[3]: ZP (0.00)
Buyer[4]: -0.29* (0.17) Buyer[4]: -0.25%  (0.24) Buyer[4]: -0.03 (0.44)

Buyer[5]: -0.68* (0.49) Buyer[5]: -0.98*  (0.20) Buyer[5]: ZP  (0.00)

Buyer|[6]: ZP (0.00) Buyer[6]: ZP (0.00) Buyer([6]: ZP  (0.00)

Seller[1]: ZP  (0.00) Seller[1]: zpP (0.00) Seller[1]: ZP (0.00)

Seller[2]:  ZP  (0.00) | Seller[2]: 0.77  (4.60) Seller[2]: -0.25 (0.37)

Seller[3]: 0.37 0.76) Seller[3]: 0.41 (0.72) Seller[3]: -0.18 (0.31)

Efficiency: 85.53  (0.18) Efficiency: 96.39 (0.04) Efficiency: 96.55 (0.13)

ZP indicates that zero profits were earned both in the auction and in competitive equilibrium.

else equal, in response to increases in RCAP. Looking at tharticularly true for the experiments comprising 10 000 auction
market power outcomes reported in Tables IV-VI, however, ibunds per run reported in TablelV.
is seen that Hypothesis H1 is not supported under any of the~inally, hypothesis H3 predicts that high market efficiency
three learning specifications. MPB actually tends to increasdll be obtained. The mean and standard deviation outcomes
and MPS to decrease with increases in RCAP for each giviem market efficiency EA reported at the bottom of each cell in
RCON level, a direct contradiction of H1. Tables IV=VIreveal that high market efficiency is indeed gener-
Also, hypothesis H2 predicts that the MPB market powdly obtained for each tested RCAP/RCON configuration. Con-
index for buyers should decrease while the MPS market pow§duently, hypothesis H3 is strongly supported. Note that the
index for sellers should increase, all else equal, in responsec@iibrated MRE algorithm with 10 000 auction rounds per run
decreases in RCON. The latter measure is simply the ratio ofg, human-subject experiments with actual electricity industry participants,
the number of sellers to buyers. As seen in Tables IV-VI, howveiss [4, p. 1] finds that “increasing the number of sellers in a given (electricity)

ever, the changes in buyer and seller market power levels in fswket does not necessarily reduce market power (of sellers), as suggested by
most standard theory.” However, in Weiss’s study, this failure of H2 is due to

SPO”Se to changes 'n.RCON ar? S_ma" and unSySt_emat'C fo_r 97@@ xistence of ATC constraints that effectively create local monopolies at some
given level of RCAP, in contradiction to hypothesis H2. This igower grid nodes, constraints that are not present in the current study.
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TABLE V
EXPERIMENTAL MARKET POWER AND EFFICIENCY OUTCOMES FOR THECALIBRATED MRE ALGORITHM WITH 10000 AUCTION
ROUNDS AND PARAMETER VALUES s(1) = 1.00, r = 0.02, AND e = 0.99

Relative Capacity
12 1 2

MP  StdDev MP StdDev MP  StdDev

All Buyers: -0.04  (0.07) All Buyers: -0.07 (0.26) All Buyers: -0.07 (0.24)

All Sellers: 0.19  (0.32) All Sellers: 0.21*  (0.19) All Sellers: -0.06 (0.19)

Buyer[1]: -0.04  (0.06) Buyer[1]: -0.07*  (0.05) Buyer[1]: -0.07 (0.24)

Buyer[2]: -0.04  (0.33) Buyer{2]: -0.30 (0.47) Buyer[2 ]: ZP  (0.00)

2 Buyerf3]: ZP  (0.00) Buyer[3]: zpP (0.00) Buyer[3]: ZP (0.00)
Seller[1]: ZP  (0.00) Seller[1]: ZPp (0.00) Seller[1]: ZP  (0.00)

Seller[2}: ZP  (0.00) Seller[2]: -0.15 0.79) Seller[2]: -0.06 (0.24)

Seller{3]: 0.23 (0.44) Seller[3]: 0.26* (0.22) Seller[3]: -0.06 (0.17)

Seller[4]: ZP  (0.00) Seller[4]: ZP  (0.00) Seller[4]: ZP  (0.00)

Seller{5]: ZP  (0.00) Seller[5]: -0.30 (0.63) Seller[5]: -0.06 (0.25)

Seller[6]: 0.14 (0.36) Sellerf6]:  0.24*  (0.21) Seller[6]: -0.06 (0.17)

Efficiency: 100.00 (0.00) Efficiency: 99.49  (0.01) Efficiency: 100.00  (0.00)

MP  StdDev MP StdDev MP  StdDev

. All Buyers: -0.16* (0.09) | All Buyers: -0.08% (0.07) All Buyers: 0.06  (0.24)
Relative All Sellers:  0.60* (0.38) | All Sellers: 0.22 (0.28) All Sellers: -0.05  (0.19)
Concentration Buyer[1]: -0.14* (0.07) | Buyer[1]: -0.08* (0.07) Buyer[1]: 0.06 (0.24)
Buyer[2]: -0.30 (0.38) | Buyer[2]: -0.30 (0.58) Buyer[2]: ZP  (0.00)

1 Buyer[3]: zp (0.00) | Buyer[3]: zp (0.00) Buyer[3]: ZP  (0.00)
Sellerf1]: ZP  (0.00) | Sellerf1]: Zp (0.00) Seller[1]: ZP  (0.00)

Seller[2]: ZP  (0.00) Seller[2]:  -0.05 (1.15) Seller[2]: -0.05 (0.24)

Seller[3]: 0.60* (0.38) | Seller[3]: 0.25 (0.32) Seller[3]: -0.04 (0.16)

Efficiency: 94.13  (0.09) | Efficiency: 99.66 (0.01) Efficiency: 100.00  (0.00)
MP  StdDev MP StdDev MP  StdDev

All Buyers: -0.14* (0.07) | All Buyers: -0.06* (0.05) All Buyers: 0.10  (0.20)

All Selfers:  0.59*  (0.36) | All Sellers: 0.20* 0.19) All Sellers: -0.08  (0.16)

Buyer[1]: -0.14* (0.06) | Buyer[l]: -0.06 (0.06) Buyer[1]: 0.10  (0.20)

Buyer[2]: -0.24 (0.36) | Buyer[2]: -0.31 (0.60) Buyer[2]: ZP  (0.00)

12 Buyer[3]: ZP  (0.00) Buyer[3]: ZP (0.00) Buyer[3}: ZP  (0.00)
Buyer[4]: -0.12* (0.06) Buyer[4]: -0.06 (0.06) Buyer[4]: 0.10 (0.20)

Buyer[5]: -0.23 (0.34) Buyer[5]: -0.27 (0.64) Buyer[5]: ZP  (0.00)

Buyer[6]: ZP  (0.00) Buyer[6]: zp (0.00) Buyer[6]: ZP  (0.00)

Seller[1]: ZP  (0.00) Seller[1]: zp (0.00) Seller[1]: Zp  (0.00)

Seller[2]:  ZP  (0.00) | Sellerf2]:  ZP 0.00) | Seller2]: -0.10 (0.20)
Seller[3]:  0.59* (0.36) | Seller[3]: 020*  (0.19) | Seller[3]: -0.07 (0.14)

Efficiency: 95.22  (0.09) Efficiency: 99.56 (0.01) Efficiency: 100.00 (0.00)

ZP indicates that zero profits were earned both in the auction and in competitive equilibrium.

strictly dominates the other two learning specifications with re- A careful case-by-case examination of the microevents un-
gard to market efficiency. That is, the efficiency outcomes relerlying the outcomes reported in Tables IV-VI goes a long
ported in each table cell for Table V are as high or higher thavay toward dispelling the mystery. Briefly, one sees that the
the efficiency outcomes reported in the corresponding table callggregate measures RCAP and RCON are simply too crude to
for Tables IV and VI. reflect well the opportunities for exercising market power that
individual buyers and sellers actually face. To understand the
latter, the market microstructure must be carefully examined. In
particular, as stressed in [18], it is important to distinguish be-
What explains the failure of the market power hypotheses Hieen market outcomes that are due to market microstructure
and H2 in the current electricity market context? On the suand market outcomes that are due to learned behavior.
face, this failure seems to contradict basic economic intuition. Two different definitions for market power will next be given
Also, why is the market efficiency hypothesis H3 so stronglthat permit the separate identification of market power due to
supported? structural causes and market power due to learning.

V. DISCUSSION



514 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 5, NO. 5, OCTOBER 2001

TABLE VI
EXPERIMENTAL MARKET POWER AND EFFICIENCY OUTCOMES FOR THEBEST FIT MRE ALGORITHM WITH 1000 AUCTION ROUNDS AND PARAMETER VALUES
s(1) = 9.00,r = 0.10,AND e = 0.20

Relative Capacity

12 1 2
MP  StdDev MP StdDev MP  StdDev
All Buyers: -0.13*  (0.09) All Buyers: -0.15*  (0.09) All Buyers: 0.10  (0.30)
All Sellers: 0.55* (0.38) All Sellers: 0.38*  (0.33) All Sellers: -0.10  (0.25)
Buyer{1]: -0.12* (0.08) Buyer[1]: -0.13*  (0.10) Buyer[1]: 0.10  (0.30)
Buyer[2]: -0.20  (0.40) Buyer[2]: -0.75* (0.33) Buyer[2 ]: ZP  (0.00)
2 Buyer(3]: ZP  (0.00) Buyer|[3]: ZP (0.00) Buyer[3]: ZP  (0.00)
Seller{1]: ZP  (0.00) Seller[1]: zpP (0.00) Seller[1]: ZP  (0.00)
Seller{2]: ZP  (0.00) Seller[2]: -0.50 (1.34) Seller[2]: -0.12 (0.34)
Seller[3}: 0.54 (0.63) Seller{3]:  0.45*  (0.40) Seller[3]: -0.10 (0.22)
Seller[4]: ZP  (0.00) Seller[4]: zp (0.00) Seller[4]: ZP  (0.00)
Seller[5]: ZP  (0.00) Seller[5]: -0.42 (1.67) Seller[5]: -0.08 (0.36)
Seller[6]: 0.55 (0.60) Seller[6]: 0.46* (0.41) Seller[6]: -0.09 (0.24)
Efficiency: 99.81 (0.02) Efficiency: 96.30  (0.05) Efficiency: 99.88  (0.06)
MP  StdDev MP  StdDev MP  StdDev
. All Buyers: -0.22*% (0.12) | All Buyers: -0.13*  (0.10) All Buyers: 0.13  (0.33)
Relative All Sellers:  0.80* (0.53) | AllSellers: 0.28 (0.35) All Sellers: -0.10  (0.26)
Concentration Buyer[1]: -0.21* (0.11) | Buyer[l]: -0.11* (0.10) Buyer[1]: 0.13 (0.33)
Buyer[2]: -0.31 (0.44) | Buyer[2]: -0.80* (0.40) Buyer[2]: ZP  (0.00)
1 Buyer[3]: ZP  (0.00) | Buyer[3]: Zp (0.00) Buyer[3]: ZP  (0.00)
Seller[1]: ZP  (0.00) | Seller{1]: zp (0.00) Seller[1]: ZP  (0.00)
Seller[2]: ZP  (0.00) | Seller[2]: -0.37  (1.89) Seller[2): -0.10 (0.34)
Seller[3]: 0.76* (0.63) | Seller[3]: 0.34 (0.45) Seller[3]: -0.11  (0.24)
Efficiency: 92.13  (0.09) | Efficiency: 94.59 (0.07) Efficiency: 100.00 _ (0.00)
MP  StdDev MP StdDev MP  StdDev
All Buyers: -0.21* (0.12) All Buyers: -0.14*  (0.08) All Buyers: 0.09 (0.24)
All Sellers: 0.67*  (0.46) All Sellers:  0.30 (0.31) All Sellers: -0.07 (0.19)
Buyer[1]: -0.18* (0.12) Buyer[1]: -0.14*  (0.10) Buyer[1]: 0.09 (0.27)
Buyer[2]: -0.37 (0.47) Buyer[2]: -0.77* (0.44) Buyer[2]: ZP  (0.00)
1/2 Buyer[3]: ZP  (0.00) Buyer[3]: Zp (0.00) Buyer[3]: ZP  (0.00)
Buyer[4]: -0.20* (0.11) Buyer[4]: -0.11 (0.11) Buyer{4]: 0.10  (0.25)
Buyer[S]: -0.38  (0.47) Buyer[5]: -0.73* (0.46) Buyer[5]: ZP  (0.00)
Buyer[6]: ZP  (0.00) Buyer[6]: zp (0.00) Buyer[6]: ZP  (0.00)
Seller[1]: ZP  (0.00) Seller[1]: ZpP (0.00) Seller[1]: ZP  (0.00)
Seller[2]: ZP  (0.00) Seller[2]: 0.14 (2.69) Seller[2]: -0.08 (0.27)
Seller[3]: 0.63*  (0.55) Seller[3]): 0.32 (0.48) Seller[3]: -0.07 (0.17)
Efficiency: 91.84  (0.09) Efficiency: 94.24 (0.07) Efficiency: 100.00 (0.00)

ZP indicates that zero profits were earned both in the auction and in competitive equilibrium.

A. Structural Versus Strategic Market Power market participants under alternative auction protocols would

First suppose that no trader misrepresents its true reservafbfsUmably be of major interest. _ _ _
price, i.e., suppose each buyer bids its true marginal revenue ang€cond, by engaging in unilateral misrepresentation of their

each seller asks its true marginal cost. Under the discriminatdfy€ reservation prices, some buyers and/or some sellers may

midpoint pricing rule, the exact relative positioning of the re_have potentially exercisable market power in addition to (or even

sulting “true” market demand and supply curves can still confé} the absence of) structural market power. Call thrsilateral)
market power on some buyers and not on others and on sotH&t€gic market power
sellers and not on others. Call tlisuctural market power

Inthe current movementto restructure the electricity industny, siructural Market Power Outcomes
all participants are well aware that the choice of auction protocol
can substantially affect their relative profitability. Thus, a con- Analytically derived structural market power outcomes are
sideration of the structural market power allocated to differeptesented in Table VII for the nine tested RCAP/RCON config-



NICOLAISEN et al: MARKET POWER AND EFFICIENCY IN A COMPUTATIONAL ELECTRICITY MARKET 515

TABLE VI
ANALYTICALLY DERIVED STRUCTURAL MARKET POWER OUTCOMES
Relative Capacity
1/2 1 2
All Buyers: -0.14 All Buyers: -0.12 All Buyers: 0.04
All Sellers:  0.56 All Sellers: 0.45 All Sellers: -0.05
Buyer{1]: -0.43 Buyer[1]: -0.37 Buyer[1]: 0.12
2 Seller{3}: 1.67 Seller[3]: 1.36 Seller[3]: -0.16
Seller{6]: 1.67 Seller[6]: 1.36 Seller[6]: -0.16
All Others:  0.00 All Others: 0.00 All Others: 0.00
. All Buyers: -0.14 All Buyers: -0.12 All Buyers: 0.04
Relative All Selters: 056 All Sellers: ~ 0.45 All Sellers:  -0.05
Concentration
Buyer[1]: -0.43 Buyer[1]: -0.37 Buyer[1]: 0.12
1 Seller[3]: 1.67 Seller[3]: 136 Seller[3]: -0.16
All Others: 0.0 AllOthers:  0.00 All Others: ~ 0.00
All Buyers:  -0.14 All Buyers:  -0.12 All Buyers: 0.04
All Sellers: 0.56 All Sellers: 0.45 All Selters: -0.05
Buyer[l: 043 | Buyer[1]:  -0.37 Buyer[1]: 0.12
1/2 Buyer[4]: -0.43 Buyer[4]: -0.37 Buyer[4]: 0.12
Seller[3]: 1.67 Seller[3]: 1.36 Seller[3]: -0.16
All Others: 0.00 All Others: 0.00 All Others: 0.00

urations in Table Ikt The outcomes in Table VIl reveal three Third, for each level of RCAP, the mean structural MPB
interesting regularities. across all buyers and the mean structural MPS across all sellers
First, buyers have negative structural market power a@ade invariant to changes in RCON. This directly contradicts the
sellers have positive structural market power for six of the nimearket power hypothesis H2.
tested RCAP/RCON configurations, namely, for the six cells in Comparing the experimental market power outcomes
the first two columns in Table VII. Consequently, in the currereported in Tables IV=VI against the analytically derived
electricity market context, it is generally the buyers who agructural market power outcomes reported in Table VI,
structurally disadvantaged in the auction with regard to markete sees that the experimentally determined market power
power. outcomes closely track the structural market power outcomes.
Second, for each level of RCON, the mean structural MPBonsequently, in the current electricity market context, market
across all buyers increases as RCAP increases and the nmaamostructure is strongly predictive for observed market power
structural MPS across all sellers decreases as RCAP increasagomes.
in direct contradiction to the market power hypothesis H1.

1n cell (1,1) of Table VII, the inframarginal Sellers 3 and 6 have thé. Strategic Market Power Outcomes
same marginal cost, but are matched with different buyers at different prices . )
depending on their order of selection. In cell (3, 3), the inframarginal Buyers 1 What about strategic market power? Call a traddra-

and 4 have the same marginal revenue, but are matched with different Se'f?férginal if it would engage in a positive amount of trade in

at different prices depending on their order of selection. The structural market titi ilibri éxt inaloth . A il
power levels reported for these traders are thrpectednarket power levels compettve equilibrium an@xtramarginalotherwise. As wi

under the assumption that they are randomly ordered for matching purposefe clarified in Section V-E below, every inframarginal buyer
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and seller in each of the nine tested RCAP/RCON configureempetitive equilibriumiz This implies, in particular, that no
tions in Table Il has positive strategic market power under tlextramarginal trader manages to trade in the auction and that no
discriminatory auction protocol. That is, assuming all othénframarginal trader fails to trade in the auction.

inframarginal traders bid or ask their true reservation prices, theComparing the mean and standard deviation outcomes re-
remaining inframarginal trader can always increase its profi@rted in Tables IV=VI for EA, one sees that the highest mean
above what it would obtain if it bid or asked its true reservatiomarket efficiency outcomes are uniformly attained in Table V.
price. If the trader is a buyer, it can accomplish this by suitablihe latter table reports outcomes for the case in which all buyers
lowering its bid price below its true marginal revenue. If thand sellers use the calibrated MRE algorithm with 10 000 auc-
trader is a seller, it can accomplish this by suitably raising iton rounds per run. In each cell of Table V, the market effi-
ask price above its true marginal cost. Under the discriminataziency measure EA attains a mean value of 94% or better. Nev-
midpoint-pricing rule, this opportunistic behavior would themrtheless, generally high mean market efficiency outcomes are
move the auction price in a direction favorable to the trader. also reported in Tables IV and VI for distinctly different settings

Nevertheless, structurally disadvantaged traders never leffh® MRE algorithm parameters and with only 1000 auction
to effectively exercise strategic market power in our auctid@unds per run.
experiments. By construction, the exercise of strategic market! he overall implication of these generally high market effi-
power is measured by the discrepancies between the experinﬁi@iﬂcy levels is that the discriminatory auction essentially re-
tally determined market power outcomes in Tables IV-VI arfduces to a zero-sum game. That is, total buyer and seller profits
the analytically derived levels for structural market power give®f© @pproximately given by total competitive profits in each ex-
in Table VII. While there are some discrepancies in magnitudd€riment and the key remaining issue is how these profits are re-
there are no instances in which a trader with negative structufégtributed among buyers and sellers as one switches from com-
market power attains a positive market power level in the aueetitive equilibrium pricing to discriminatory auction pricing.
tion. Moreover, instances in which a trader with a positive struc- Profit distribution under the discriminatory auction is mea-

tural market power level attains a negative market power levifred by market power. If total profit remains constant as one
in the auction are rare. switches from competitive to auction pricing, then market

pwer simply measures the manner in which the auction redis-

. fibutes this constant total profit between buyers and sellers.
power for all buyers or all sellers are as follows: Table IV h . . .
this case, apart from roundoff error, a positive attained

two sign discrepancies [mean !\/IPB_for all buyers in cells (1, rir):arket power level for one type of trader necessarily implies a
and (2, 3)], Table V has one sign discrepancy [mean MPB far

. ; . . negative attained market power level for the other. As noted in
all buyers in cell (1, 3)], and Table VI has no sign discrepancies. > . o )

: . : ction V-C, it is indeed seen in Tables IV-VI that table cells
In each case, the sign discrepancy in the mean MPB level for a

buyers is due to a sign discrepancy occurring for the mean Mlg%oortmg a high mean market efficiency level aiso generally

level of a single buyer: namely, Buyer 1. Note, also, that theg%pprt amean market power level for all buyers that is opposite

- . . . . sign to the mean market power level for all sellers.
sign discrepancies are all to the disadvantage of Buyer 1,|.e.,ﬂésg 0 he mean market power level for all Seflers

realized auction market power is negative whereas its structural
market power is positive. Finally, note that none of the me
MPB values showing a sign discrepancy is marked with anTo better understand the underlying reasons for the findings
asterisk. This implies that the sign discrepancy disappedgported in Section IV, a more detailed microanalysis will now
within one standard deviation of the reported mean observatid. given for two of the tested RCAP/RCON combinations in
These findings show that apart from the small number of sigble 1l, namely, cell (3, 1) and cell (3, 2).
discrepancy cases noted above, learning has no effect oglthe First, consider cell (3, 1) in Table [l WitRCAP = RCON =
ativeexercise of market power by buyers and sellers. When thé2. The market for this case comprises six buyers, each with ca-
discriminatory auction protocol gives greater structural markgacity 10 MWh, and three sellers, each with capacity 40 MWh.
power to buyers, the buyers retain this relative market pow&he marginal revenues and marginal costs for these buyers and
advantage in the auction experiments and similarly for selleggllers are listed in Table Ill. Making use of these capacity,
Indeed, when buyers attain a positive mean market power lev@¥enue, and cost specifications, the true demand and supply
in the auction, the mean market power level attained by sell@grves can be constructed; these are depicted in Fig. 2. The com-
in the auction is negative and vice versa. As will be clarifiegetitive outcome based on these demand and supply curves is
in Section V-E, this “zero-sum game” finding reflects the higi) = 40 MWh and P = $14/MWh.
market efficiency levels attained in the auction experiments.  The low RCAP value 1/2 for this case implies the existence
of excess potential supply, which suggests that buyers should be

Specifically, the only sign discrepancies in mean mark

Microanalysis for lllustrative Cases

D. Efficiency Outcomes

. ) 12This simple characterization for market efficiency has to be slightly qual-
Apart from roundoff and truncation error, the market effiified in the presence of marginal traders with identical marginal revenues or

ciency measure EA defined in Section lll-A equa|s 100% iffarginal costs who do not all end up trading in competitive equilibrium. In this
case, market efficiency holds regardless of which of these marginal traders actu-

finy given gucuon rOU”‘?' 'f.and Only if the set of a.Ct'Ve trade':cﬁly carries out the marginal competitive equilibrium trades. This indeterminacy
in the auction round coincides with the set of active traders igabsent for the nine tested configurations in Table II.
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favored. Yet the experimental market power outcomes reported P ($/MWh)
for this case in cell (3, 1) in Tables IV-VI show that Seller 3 is
the only trader in the discriminatory auction that is successfully 37 B4 S1
able to attain a positive market power level on average. Why is 35 Qs(P)
this the case?
It will now be shown that Seller 3 is the only trader that has

positive structural market power. On the other hand, all infra- B25

marginal buyers and sellers have countervailing strategic market i; » 52
power. This prevents any trader with negative structural market CE

power under the auction protocol from being able to success-

fully exercise its strategic market power to the point that it at- ﬁ B3,6 Qo)

tains a positive market power level.

Under the discriminatory auction protocaol, it is the 80 MWh
unused capacity of Sellers 1 and 2 that constitutes the excess po
tential supply reflected iRCAP = 1/2. These two sellers have
relatively high marginal costs of $35/MWh and $16/MWh, re-
_spect|vely._lf all traders bid and 6_‘Sk their m_‘le reserva_tlon p”CE%. 2. Cell (3, 1) true demand and supply curves for six buyers and three
in the auction, Sellers 1 and 2 will not obtain an auction matckeliers with 10 MWh and 40 MWh capacities, respectively.

Nevertheless, since they also fail to trade in competitive equilib-

rium, their profits under the auction are the same as under com—OI ith q | K hei
petitive equilibrium. This implies that their structural marke{r@der with regard to structural market power, yet their presence

power is zero even though their MPS indexes are not well dfedn change the value of RCAP. Similar observations apply for
fined extramarginal buyers in the reverse case of excess potential de-

Similarly, the relatively low marginal revenue $12/MWh ofnand. ) . )
Buyers 3 and 6 prevents any auction match for these buyers i¥Vhat about strategic market power? Consider, once again,
all traders bid and ask their true reservation prices. Thus, sirff&@! (3 1) in Table Il with true demand and supply curves de-
they also fail to trade in competitive equilibrium, their strucPicted in Fig. 2. It turns out that Seller 3 and Buyers 1, 4, 2, and
tural market power is zero even though their MPB indexes arédll have some degree of strategic market power under the dis-
not well defined. Seller 3 has a relatively low marginal cost &fiminatory auction protocol.
$11/MWh and its total electricity supply capacity is 40 Mwh. Specifically, by unilaterally misrepresenting their true will-
Buyers 1 and 4 have a relatively high marginal revenue (willfgness to pay by bidding below their true marginal revenue
ingness to pay) of $37/MWh and their total electricity deman®37/MWh, Buyers 1 and 4 can each increase their auction
capacity is 20 MWh. Under the discriminatory midpoint pricingrofits. Indeed, if either buyer were to bid $12/MWh plus
rule, assuming all traders bid or ask their true reservation pric€@me small amount epsilon, hence, above the price $12/MWh
Buyers 1 and 4 would purchase 20 MWh from Seller 3 at@ which the extramarginal Buyers 3 and 6 would be able
price of $24/MWh, a price that exceeds the competitive prié@ match, they would obtain a profit close to $250 on their
of $14/MWh. The profit of Seller 3 on this 20 MWh contractl0O MWh purchase from Seller 3. The latter profit is greater
would, thus, be $260, greater than its competitive profit $68)an their $230 competitive profits and much greater than the
and the profit of Buyers 1 and 4 would each be $130, less th&k30 auction profits that they would earn by bidding their true
their competitive profit $230. marginal revenue. The MPB strategic market power indexes

Buyers 2 and 5 with marginal revenue $17/MWh would thef®r Buyers 1 and 4 are approximately 0.09. Similarly, the MPB
end up purchasing Seller 3's remaining 20 MWh at the corfirategic market power indexes for Buyers 2 and 5 (who should
petitive price $14/MWh, giving Seller 3 a (competitive) profilso strategically bid $12/MWh plus epsilon) are approximately
of $60 and Buyers 2 and 5 each a (competitive) profit of $30:67.

The MPS structural market power index for Seller 3 is then cal- On the other hand, Seller 3 also has strategic market power.
culated to be 1.67, the MPB structural market power index f&uppose Seller 3 unilaterally raises its ask price from its true
Buyers 1 and 4 is-0.43, and the MPB structural market powemarginal cost $11/MWh up to $16/MWh minus epsilon, but
indexes for Buyers 2 and 5 are zero. no higher (to prevent Seller 2 from matching). Then, the con-

These observations imply that, contrary to the implications fct price of Seller 3 with Buyer 1 and Buyer 4 for 20 MWh
hypothesis H1, excess potential supply (a low RCAP value) cender the discriminatory midpoint pricing rule would be close to
fail to ensure that any buyer has positive structural market powk?6.50/MWh. This would give Seller 3 a profit of $310, higher
in the discriminatory auction. The reason for this is that excetign the $260 profits it would earn in the auction by asking its
potential supply can come from the excess capacity of high-céigte marginal cost, and much higher than its $60 competitive
sellers who are extramarginal under competitive equilibriurprofits.

Assuming all traders bid or ask their true reservation prices,In addition, by asking $16/MWh minus epsilon, Seller 3's
these sellers will not be able to obtain matches in the discriminaentract price with Buyers 2 and 5 for 20 MWh would be ap-
tory auction. Consequently, the presence of these extra-margimalximately $16.50/MWh. This would give Seller 3 a profit of

sellers confers neither advantage nor disadvantage on any o810, which is higher than the $60 profits that Seller 3 would

S3

10 20 30 40 50 60 70 80 90100110120
MWh
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earn on this 20 MWh contract either in the discriminatory auc- Next, consider cell (3, 2) in Table Il witRCAP = 1
tion with bidding and asking of true reservation prices orin conend RCON = 1/2. The market for this case comprises six
petitive equilibrium. The total profit of Seller 3 would there-buyers, each with capacity 10 MWh, and three sellers, each
fore be $420. Hence, the MPS strategic market power index feith capacity 20 MWh. The marginal revenues and marginal
Seller 3 is 2.50. costs for these buyers and sellers are listed in Table IIl.
Thus, Seller 3 and Buyers 1, 2, 4, and 5 in cell (3, 1) all hawaking use of these specifications for capacities, revenues, and
positive strategic market power. As previously determined, howests, the true demand and supply curves can be constructed;
ever, only Seller 3 has positive structural market power. Exartitese are depicted in Fig. 4. The competitive outcome based
ining the results reported for cell (3, 1) in Tables IV-VI, it ison these demand and supply curvegjs= 40 MWh and
seen that none of the buyers succeeds in exercising its stratdgie- $16.50/MWh.
market power to the point that it ends up with a positive MPB An analysis of the results reported for cell (3, 2) in Ta-
market power level in the auction. The problem for the buyebdes IV-VI proceeds along lines similar to the foregoing
is that strategic market power is being exercised on both sidesalysis for cell (3, 1), with one interesting exception. As seen
of the market. When ask prices are being raised by sellers at lyecomparing Fig. 4 with Fig. 2, Buyers 2 and 5 and Seller 2 in
same time that bid prices are being lowered by buyers, the teell (3, 2) face a much greater challenge with regard to learning
dency is for the midpoint price of each bid-ask spread to remdiow to select their bid and ask prices than any inframarginal
essentially the same. trader in cell (3, 1). This is because the price range in which
An examination of the actual price offers submitted to thiéhey can successfully match is much narrower.
auction by Seller 3and Buyers 1, 2, 4, and 5in cell (3, 1) revealsindeed, under the calibrated MRE algorithm with 1000 auc-
this effect. Seller 3 learns to submit ask prices higher than tien rounds per run, itis seenin cell (3, 2) of Table IV that Buyer
marginal cost and this exercise of strategic market power Byails to match at all and Buyer 5 matches only rarely. An exam-
Seller 3 foils the attempts by the buyers to lower their auctidnation of bid and ask data for cell (3, 2) in Table IV reveals that
price by underbidding their true marginal revenues. the bid prices of these buyers are extremely volatile and they al-
Specifically, as seen in Fig. 3, the average ask price of Sellapst never exceed the marginal cost of Seller 2. Consequently,
3 in the final auction round is roughly $15/MWh regardless dhis learning specification does not permit price discovery for
the precise parameter values set for the MRE algorithm. Ndteese buyers.
from Table Il that $15/MWh exceeds Seller 3's true marginal Seller 2 in cell (3, 2) of Table IV manages to match frequently
cost of $11/MWh and is just below the price $16/MWh at whicknough with Buyer 1 and Buyer 4 to sustain a positive average
the extramarginal Seller 2 could feasibly enter the market. market power level, although with extremely high standard de-
On the other hand, on average, the bid prices of Buyer 1 avidtion. The average ask price of Seller 2 is roughly $20/MWh,
Buyer 4 in the final auction round are roughly $24/MWh fowhich is higher than the marginal revenue $17/MWh of Buyers
each tested MRE algorithm specification. This level is lowetr and 5. The average ask price of Buyers 1 and 4 in cell (3,
than their true marginal revenue $37/MWh, but also higher th&h of Table IV is roughly $25/MWh. Interestingly, the average
the level $12/MWh at which the extramarginal Buyers 3 anask price of Seller 3 in cell (3, 2) of Table IV is only about
6 could feasibly enter the market. Also, on average, the Hd6/MWh, which is below the marginal revenue of Buyers 2
prices of Buyers 2 and 5 in each final auction round are roughdyd 5. Nevertheless, given the extreme volatility of these latter
$15/MWh, below their true marginal revenue of $17/MWh, butuyers’ bids, matches with these buyers essentially never occur.
high enough to prevent entry by Buyers 3 and 6. Buyers 2 and 5 in cell (3, 2) perform better under the MRE
Thus, all active traders in cell (3, 1) exercise strategic markaigorithm specifications reported in Tables V and VI. For ex-
power to some degree by asking higher than true marginal costsple, bid data for Buyers 2 and 5 in cell (3, 2) of Table VI
or bidding below true marginal revenues. Nevertheless, the neteal that they manage to bid close to their true marginal rev-
result of these countervailing forces is that Seller 3's structurahue $17/MWh in the final auction round in about one third of
market power advantage prevails. the 100 runs and this percentage improves for Table V.
Regarding market efficiency, bid and ask price data for cell (3, In contrast, Seller 2 in cell (3, 2) performs worse in Tables V
1) reveal that all inframarginal traders learn to place their bidsd VI, failing to match at all in Table V. In Table VI, the average
and asks within ranges that prevent the entry of extramargirak price of Seller 2 in cell (3, 2) is only about $16/MWh, close
traders. Moreover, the buyers end up bidding above asks, torits true marginal cost. This permits matches with Buyers 2 and
average, so that coordination failures are relatively infrequeBt.but with very little gains to trade. In contrast, the average ask
The result is high market efficiency, despite the fact that Sellprice of Seller 3 in cell (3, 2) of Table VI is around $15/MWh.
3 achieves a relatively high market power level. Thus, as the seller submitting the lowest ask on average, Seller
Higher market efficiency is achieved for cell (3, 1) as th8 is now matched most frequently with Buyers 1 and 4, thus
overall volatility of the bid and ask prices in the final auctiorcrowding out Seller 2 and forcing Seller 2 to trade with Buyers
round decreases. As indicated in Fig. 3 for Seller 3, the great2sind 5 for much lower gain. The average ask price of Buyers 1
overall volatility is observed for the calibrated MRE algorithnand 4 in cell (3, 2) of Table VI is about $24/MWh.
with 1000 auction rounds per run and the least overall volatility Despite the increased challenge that some traders face
is observed for the calibrated MRE algorithm with 10 000 aute achieve matches in cell (3, 2), the coordination failures
tion rounds per run. This decline in volatility is particularlymostly involve marginal traders with small gains to trade.
marked for Buyers 2 and 5. Consequently, high market efficiency is still achieved.
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Fig. 3. Plot of Seller 3's ask price in cell (3, 1) in the final generation across all 100 runs under three different MRE algorithm specificatioble. ) Ta

calibrated MRE algorithm with 1000 auction rounds per run. (b) Table V, calibrated MRE algorithm with 10 000 auction rounds per run. (c) TablétWIRest f
algorithm with 1000 auction rounds per run.

VI. CONCLUDING REMARKS model should adequately reflect the actual microstructure of
the market. Second, the artificial traders in the model should
behave in ways that approximate the behavior of real traders.
The careful testing of auction protocols for a restructured This study attempts to capture in a computational model the
electricity market by means of an agent-based computatiomalsic features of a restructured wholesale electricity market op-
model imposes two requirements on this model. First, tlegating in the short run, abstracting from longer run contracting

A. Summary of Key Findings
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P ($/MWh) The problem with hypotheses H1 and H2 in the current elec-
tricity market context is that they attempt to predict relative
37 Bl.4 S1 market power effects purely on the basis of aggregate aspects of
35 E—— market structure as measured by RCAP and RCON. However,
as seen in Section IV, neither aggregate turns out to be well cor-
related with the actual opportunities open to individual buyers
17 and sellers to exercise market power under the discriminatory
16 CE auction protocol.
$2 In contrast, as shown in Section V, the microstructure of the
" electricity market is strongly predictive for the relative ability
1 B3.6 Qo of buyers and sellers to exercise market power in the discrimi-
$3 natory auction. More precisely, the relative market power levels
attained by buyers and sellers when they are permitted to learn to
o 10 20 30 40 S0 60 make opportunistic price offers closely track the relative “struc-
MWh tural” market power levels they attain when the buyers are in-
stead forced to bid their true willingness to pay and the sellers
Fig. 4. Cell (3, 2) true demand and supply curves for six buyers and thrgee instead forced to ask their true marginal costs.
sellers with10 MWh and 20 MWh capacities, respectively. . . .
Interestingly, examining the market power results obtained
in an earlier electricity study [23, Table IlI] in which the buyer
considerations. We have assumed that, under restructuriagd seller populations instead each engage in social mimicry
a small number of heterogeneous buyers (energy serviearning via a genetic algorithm (GA), it is seen that a similar
providers) actively participate in this market along with a smadlonclusion holds. Structural market power is strongly predic-
number of heterogeneous sellers (generators). The buyers twelfor the relative exercise of market power by the buyers and
sellers submit price and quantity offers repeatedly to a cleaellers; the effects of GA social mimicry learning on relative
inghouse double auction that employs discriminatory midpoiniarket power are small and unsystematic. For ease of compar-
pricing. The capacities, marginal revenues, and marginal cogisn, these GA results are reproduced here as Tablg¥VIIl.
of the buyers and sellers are private information. These featureJaken together, these relative market power outcomes suggest
imply that the buyers and sellers face an inherently compléxat the microstructure of our electricity market under the dis-
strategic situatios? criminatory auction protocol so strongly channels the behavior
Moreover, we have attempted to implement learning in &f buyers and sellers that the precise form of their learning be-
manner supported by empirical data. Each buyer and selfewvior is largely irrelevant. As noted next, however, this robust-
is assumed to update its price offers over time in accordanegss to variations in learning behavior does not extend fully to
with the MRE learning algorithm, a modified version of arefficiency outcomes.
individual reinforcement learning algorithm developed by Roth As detailed in Section IlI-A, we also test a basic market ef-
and Erev [16], [17]. The latter researchers developed their aldiziency hypothesis (H3). A third key finding of our study is
rithm on the basis of extensive data obtained from experimemit this hypothesis H3 is strongly supported. The market effi-
with human subjects in multiagent decision environments. ciency measure EA is 90% or better for almost all of the tested
As detailed in Section IlI-A, we test two hypotheses regardir@RCAP/RCON configurations.
relative market power: H1 and H2. As seen in Section IV, one The particular parameter values specified for the MRE
key finding of this study is that hypothesis H1 is not supportetéarning algorithm used by traders in our current electricity
When RCON is held fixed, the effects of increasing RCAP araarket study do affect the ability of some traders to avoid
often in the opposite direction of the effects predicted by H1.coordination failure. However, in accordance with hypothesis
A second key finding of this study is that hypothesis H2 alsg3, the trades in question are marginal trades offering the
receives no support. Holding RCAP fixed, changes in RCO$allest gains and the resulting effects on market efficiency
have only small unsystematic effects on market power in cogenerally tend to be small and unsystematic. Our experiments
tradiction to H2!4 This latter finding strongly cautions againstsuggest that the number of auction rounds per run may be a
the common practice of confounding capacity and concentratiotore important determinant of market efficiency than these
effects in market power studies by letting firm size and numbelesarning parameter settings per se.
of firms vary together in an uncontrolled way. On the other hand, the market efficiency levels of the auction
outcomes obtained in [23] under the assumption that the elec-
Bndeed, in game-theoretic terms, it can be shown that the computatiotrICIty tr-aders instead use GA social mimicry learning are re-
electricity market has numerous “pu’re Nash equilibria,” i.e., numerous offl ?lrted in Table VIII. These results show that market efficiency

configurations that satisfy the following condition: given the price and quanti§btained with GA social mimicry learning is substantially de-

offers of all other traders, no individual trader can increase its profits by meagjeaded relative to market efficiency obtained with individual
of a unilateral deviation from its own current price and quantity offers.

nterestingly, a similar finding of unsystematic effects for changes in 15Table VIII corrects a labeling problem in [23, Table Ill], namely, the row
RCON, taking RCAP as given, is reported in [22] for a computaional labdabeledRCON = 1/2 should instead have been labeRGON = 2 and vice
market. versa.

B2,5
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TABLE VIII
EXPERIMENTALLY DETERMINED MARKET POWER AND EFFICIENCY OUTCOMESWITH GA SOCIAL LEARNING FROM [23]

Relative Capacity
1/2 1 2

MP  StdDev MP StdDev MP  StdDev
All Buyers: -0.53* (0.35) All Buyers: -0.50*  (0.39) All Buyers: -037 (0.57)
All Sellers: 0.19  (1.04) All Sellers: 0.19  (1.02) All Sellers: -0.43  (0.54)
Buyer[1]: -0.52* (0.36) Buyer[1]: -0.49* (0.40) Buyer[1l]: -0.37 (0.57)
Buyer[2]: -0.63* (0.62) Buyer[2]: -0.99* (0.09) Buyer(2 I: ZP  (0.00)
2 Buyer[3]: ZP  (0.00) Buyer[3]: ZP  (0.00) Buyer(3}]: ZP  (0.00)
Seller[l]: ZP  (0.00) Seller[1]: ZP  (0.00) Seller[1]: ZP  (0.00)
Seller[2]: ZP  (0.00) Seller[2]: -0.72  (1.89) Seller[2]: -0.44 (0.65)
Seller[3]: -0.12 (1.47) Seller[3]: 030 (1.12) Seller[3]: -0.42 (0.50)
Seller[4]: ZP  (0.00) Seller[4]: ZP  (0.00) Seller[4]: ZP (0.00)
Seller[5]: ZP  (0.00) Seller[S]: ZP  (0.00) Seller[5]: -0.44 (0.66)
Seller[6]: 0.50 (1.84) Seller[6]: 027  (1.12) Seller[6]: -0.41 (0.51)

Efficiency: 60.50 Efficiency: 65.33 Efficiency: 59.68
MP  StdDev MP StdDev MP  StdDev
. All Buyers: -0.66* (0.29) All Buyers: -0.60*  (0.34) All Buyers: -0.44  (0.57)
Relative All Sellers:  0.25* (1.13) All Sellers:  0.24 (1.12) All Sellers: -0.50*  (0.49)
Concentration Buyer{1]: -0.63* (0.32) Buyer[1}: -0.59* (0.35) Buyer[1]: -0.44 (0.57)
Buyer[2]: -0.90* (0.35) Buyerf{2]: -1.00 (0.00) Buyer[2]: ZP  (0.00)
1 Buyer([3]: ZP  (0.00) Buyer[3]: zp (0.00) Buyer[3]: ZP  (0.00)

Seller[1}:  ZP  (0.00) | Seller[i]: P (0.00) Seller[1]:  ZP  (0.00)
Seller[2]:  ZP  (0.00) | Seller2]: -0.20  (3.30) Seller[2]:  -0.52 (0.58)
Seller[3]:  0.19* (1.17) | Seller[3]: 028  (1.26) | Seller[3]: -0.48 (0.49)

Efficiency: 51.06 Efficiency: 58.67 Efficiency: 52.68

MP  StdDev MP StdDev MP  StdDev
All Buyers: -0.59* (0.28) All Buyers: -0.53* (0.32) All Buyers: -0.30  (0.54)
All Sellers: 0.71  (1.15) All Sellers: 0.67 (1.12) All Sellers: -0.30  (0.44)

Buyer[1]: -0.55* (0.30) Buyer[1]: -0.51%* (0.32) Buyer[1]: -0.31 (0.58)
Buyer(2]: -0.83* (0.46) Buyer[2]: -1.00 (0.00) Buyer[2]: ZP  (0.00)
1/2 Buyer[3]: ZP  (0.00) Buyer[3]: zp (0.00) Buyer[3]: ZP  (0.00)
Buyer[4]: -0.56* (0.29) Buyer[4]: -0.52* (0.32) Buyer[4]: -0.30 (0.56)
Buyer[5]: -0.79* (0.50) Buyer[5]: -1.00 (0.00) Buyer[5]: ZP  (0.00)
Buyer[6]: ZP  (0.00) Buyer[6]: zp (0.00) Buyer[6]: ZP  (0.00)

Seller[1]: ZP  (0.00) Selter[1]: zp (0.00) Selter[1]: ZP  (0.00)
Seller[2]:  ZP  (0.00) | Seller[2]: 0.05 (4.53) Seller[2]:  -0.38 (0.57)
Seller[3]: 070 (1.17) | Seller[3]: 0.73 (1.29) Seller[3]:  -0.24 (0.48)

Efficiency: 65.38 . Efficiency: 73.67 Effictency: 70.00

ZP indicates that zero profits were earned both in the auction and in competitive equilibrium.

MRE learning. Consequently, market efficiency is not robugtatory auction protocol per se. This is true whether the traders
with respect to switches from individual to social learntfg.  use individual or social learning.

As detailed in Section V-E, a careful examination of the bid Nevertheless, under individual MRE learning, inframarginal
and ask behavior of individual buyers and sellers in our eletaders are better able to home in on bids and asks that are suf-
tricity market provides an explanation for these market powéciently close to their true reservation prices to ensure posi-
and efficiency findings. Since both trader types can submit ofive bid-ask spreads and prevent entry by extramarginal traders.
portunistic price offers, each type has countervailing strategimordination failure is, thus, largely avoided, meaning that the
market power that holds in check the ability of the other type &t of trades conducted under the discriminatory auction agrees
offset the structural market power biases inherent in the discriglesely with the set of trades that would occur in competitive

equilibrium. The resultis high market efficiency, despite the fact
16For an example of an oligopoly market in which a switch from individua}hf’it some buyers and sellers have substantially positive Or. neg-
to social learning results in substantially higher average output, see [23, Fig.%ﬁ'.ve structural market power levels. The root cause of the inef-
In Vriend’s example, all firms have identical costs. ficiency under GA social mimicry learning is a relatively high



522 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 5, NO. 5, OCTOBER 2001

coordination failure rate due to inappropriate mimicry by struc- These two additional findings suggest that the following cau-

turally distinct traders. tion is in order. While the discriminatory clearinghouse double
auction may reliably deliver high market efficiency when buyers
B. Comparison With Other Studies and sellers refrain from inappropriate learning behavior, it may

not be robust against the active exercise of bad judgment.

Our findings regarding relative market power support the g extent to which our market power and efficiency findings
conclusion reached by Weiss [4] for human-subject electricifynaralize to wholesale electricity markets operating under dif-
market experiments that active bidding by buyers may limftent ayction protocols is an interesting open question. For ex-
the ability of sellers to exercise market power. However, Sincg,yie \would our findings generalize to clearinghouse double-
Weiss only considers nodal and uniform pricing, he is notled {9,ctions with uniform pricing? Or to continuous double auc-
consider the distinction between structural and strategic markget, exhibiting the various special types of rules (opening price

power. o _ . rules, priority rules, etc.) listed in [25] on the basis of a survey
In our context, the discriminatory auction protocol inherently¢ sy siems in actual operation?
allocates market power to some traders in preference to other: . . . .
even in the absenrée of opportunistic bids ar?d asks. On the ot j}lnder alternative auction protocols, the learning behavior of
hand. all buvers and sglrl)ers can attermpt to sec.ure strate{}?cgers might have more substantial effects on market power or
' Y P |%arket efficiency because the traders have a greater leeway for

market power in the sense that buyers can attempt to mcre%see exercise of strategic market power. In any case, it might be

their profits by bidding lower than their true marginal revenu . . S .
and sellers can attempt to increase their profits by asking hig?tl?'e?t the MRE learning algorithm applied in the current study is

than their true marginal costs. Therefore, our market powioro ?mdpllstlcto capture fully the strategic opportunities open to
conclusion must be nuanced by saying that the presence 5t traders.
active traders on each side of the market reduces the ability of OF €xample, Camerer and Ho [26] have developed an
structurally disadvantaged traders to overcome the structdfiividual learning algorithm that permits traders to use past
market power biases inherent in the auction protocol througRServations to form beliefs about what other traders will do
the exercise of strategic market power. In addition, the ability t8 the future. Would the observed strategic behavior of traders
exercise strategic market power is further limited in our conte¥f'der Camerer—Ho learning differ significantly from what we
by the threat of entry by extramarginal traders. hqvg observe.d using ind.ividual MRE learning and GA social
our findings regarding market efficiency are reminiscent glimicry leaming? In particular, would the use of Camerer—Ho
the conclusions reached by Gode and Sunder [18] and other pF&/NING permit traders to overcome structural market power
vious researchers regarding the efficiency of continuous doul9igses through strategic pricing? The inability of the traders in
auctions. Acontinuous double auctiois a double auction in OUr current experiments to overcome structural market power
which bids and asks are continuously received, trades can ocRi@ses through strategic pricing appears to be due more to the
at any time, and bids and asks are accepted by the traders theymetric design of the double guctlon (simultaneous bids and
selves rather than matched by a clearinghouse. As noted in38Ks) than to any lack of learning power per se. However, a
pp. 5-6], continuous double auctions have been observedR® systematic examination of this issue is clearly needed.
human-subject experiments to induce very efficient outcomesln addition, the representation of the traders’ actions in the
under a wide range of treatment conditions, much more so thewrent study is very simplistic: each trader submits a single
traditional economic theory would suggest. price offer and a single quantity offer to the auction in each
A key question raised by Gode and Sunder [18] is the extedgction round. In contrast, as described in [10], each generator
to which the efficiency of any given market mechanism is at? the England and Wales day-ahead electricity market submits
tributable to trader rationality or inherent in the design of therice and quantity offers for up to three incremental levels of
mechanism. Their findings for continuous double auctions wigttput for each of its generating units, i.e., in each auction round,
zero-intelligence traders suggest that efficiency is inherent in thach generator submits a supfiyctionrather than a single
continuous double-auction mechanism per se. price-quantity pair. The domain of possible offers by each gen-
Similarly, our market efficiency findings would seem to sugerator is thus enormously enlarged from a set of points to a set
gest that efficiency is inherent in the design of the discrimpf functions.
natory clearinghouse double-auction mechanism. Neverthelessfo handle these real-world features, it seems essential to
this conclusion is tempered by two additional findings. permit the traders to engage in more comprehensive forms of
First, market efficiency is seriously degraded when the buykearning that include inductive reasoning (experimentation with
and seller populations each use GA social mimicry learning inew ideas) as well as aspects of reinforcement learning, social
stead of individual MRE learning. This form of social mimicrymimicry, and forecasting of future events. As discussed in
is not particularly appropriate in the current electricity contef7], social scientists are just beginning to appreciate the care
since buyers have different marginal revenues and sellers hamel attention needed to model computationally the learning
different marginal costs. Second, as indicated in footnote 6 loéhavior of multiple social agents interacting in complex
Section II-E, market efficiency can also be seriously degradeshl-world contexts.
when buyers and sellers learn in accordance with the originalThese issues, critically important for the computational mod-
RE learning algorithm, implying that they do not respond to theling of restructured electricity markets, will be addressed in
unfavorable stimulus of zero profits. future studies.
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