Market and Control Mechanisms Enabling Flexible Service Provision by Grid-Edge Resources Within End-to-End Power Systems

PROJECT #M-40

Academic Team Members

Project PI: Leigh Tesfatsion (Iowa State U, tesfatsi@iastate.edu)
Project Co-PIs:
 Zhaoyu Wang (Iowa State U, wzy@iastate.edu)
 Subhonmesh Bose (U of Illinois at Urbana-Champaign, bose@illinois.edu)
Graduate Research Assistants:
 Rui Cheng (Iowa State U, ruicheng@iastate.edu)
 Mariola Ndrio (U of Illinois at Urbana-Champaign, ndrio2@illinois.edu)
 Anna Winnicki (U of Illinois at Urbana-Champaign, annaw5@illinois.edu)

Industry Team Members

Lorenzo Kristov (Former CAISO Market Design Principal), Haifeng Liu (CAISO),
Jim Price (CAISO), Yonghong Chen (MISO), Jessica Harrison (MISO), Akshay Korad (MISO),
Kristin Swenson (MISO), Jianzhong Tong (PJM), Harvey Scribner (SPP), Hongyan Li (ABB),
Kwok Cheung (GE), Gary Gu (Geiri North American), Xian Guo (GE), Erik Ela (EPRI), Evangelos
Farantatos (EPRI), Robin Hytowitz (EPRI), Nikita Singhal (EPRI), Dheepak Krishnamurthy (NREL),
Jua J. Guo (AEP)

ISU Team Presenter: Leigh Tesfatsion
UI Team Presenter: Subhonmesh Bose

Power Systems Engineering Research Center (PSERC)
2021 May IAB Meeting, May 12-13, 2021 (Virtual)
ISU TEAM: Presentation Outline

• Research Contribution: Overview
• Our Proposed Transactive Energy System Design
• Analytical Illustration
• Numerical Case Study
• Conclusion

Key Reference:

https://lib.dr.iastate.edu/econ_workingpapers/127
A **Transactive Energy System (TES) design** is a collection of economic and control mechanisms that supports the dynamic balancing of power supply and demand across an entire electrical infrastructure, using value as the key operational parameter.

Our proposed **DSO-managed TES design** has the following advantages:

- Implementable for an *unbalanced distribution network*.
- **Consensus-based**: Retail prices for each operating period OP are determined by a negotiation process N(OP) between the DSO and its customers.
- Supports *multiperiod decision-making*: N(OP) permits the DSO and its customers to plan power usage over operating periods OP consisting of multiple decision periods.
- **System/customer alignment**: DSO goals and network constraints are aligned with customer goals and local constraints in a manner that respects customer privacy.
An ISO/RTO manages a wholesale power market operating over a high-voltage transmission grid.

A DSO manages distribution network reliability & power usage of distribution network customers by engaging in a retail price negotiation process with customers.

A bus is a physical location where customers connect to the distribution network.

Each customer chooses a power schedule to maximize its net benefit subject to local constraints, given negotiated retail power prices.
Step 1: ISO/RTO runs SCED optimization for a Real-Time Market RTM(OP) for a future Operating Period OP, resulting in RTM Locational Marginal Prices (LMPs) for OP.

Step 2: At start of the Look-Ahead Horizon LAH(OP), the ISO conveys RTM LMPs to the DSO, which uses them to set initial retail prices for negotiation with customers.

Step 3: During LAH(OP) the DSO conducts a Negotiation Process N(OP) with customers to determine an NK-dimensional retail price-to-go sequence for OP.

Step 4: During OP each customer implements its optimal NK-dimensional power schedule for OP, conditional on its negotiated retail price-to-go sequence for OP.
Customers:
Households with appliance mixes consisting of:
(i) price-sensitive thermostatically controlled load (TCL)
(ii) non-TCL whose usage is not sensitive to price.

Market Timing:
The durations of RTM(OP), LAH(OP), and OP are set to 1min, 59min, and 60min.
Goal of each household ψ: *Max net benefit (i.e., benefit - cost) by feasible choice of TCL power schedule for subperiods t in $K = \{1, 2, ..., NK\}$*

Objective:

$$\max_{P_\psi(K)} \sum_{t \in K} u(p_\psi(t), t) - \mu_\psi \pi_\psi(K) P_\psi(K) * S_{base} \Delta t$$

Benefit obtained from TCL power schedule

Cost of TCL power schedule, given the retail price-to-go sequence $\pi_\psi(K)$

Choice Variables:

— TCL power schedule $P_\psi(K) = [p_\psi(1), ..., p_\psi(NK)]^T$

Feasible Choice Set $X_\psi(K)$:

— Choice variables must satisfy *thermal dynamic equations* determining household ψ’s inside air temperature over time as a function of appliance attributes, initial state conditions, external forcing terms, & appliance TCL/non-TCL power usage.

Hence, solution for household ψ’s optimization problem takes form:

$$P_\psi(\pi_\psi(K)) = \arg \max_{P_\psi(K) \in X_\psi(K)} [U(P_\psi(K)) - \mu_\psi \pi_\psi(K) P_\psi(K) * S_{base} \Delta t]$$
Goal of DSO: Max household net social benefit subject to household constraints and network constraints (i.e., a peak demand limit and lower/upper bounds on voltage magnitudes).

DSO Objective:

$$\max_{P(K) \in X(K)} \sum_{\psi \in \Psi} \left[U(P_{\psi}(K)) - \mu_{\psi} LMP(K) P_{\psi}(K) \right] - \mu LMP(K) P_{\psi}(K) * S_{base} \Delta t$$

DSO Choice Variables:

Set of all household TCL power schedules: $P(K) = \{P_{\psi}(K) | \psi \in \Psi\}$

DSO Constraints: $X_{\psi}(K), \psi \in \Psi$ plus network constraints

NOTE: The DSO cannot directly solve this centralized control problem because the DSO does not have the required household private info.
TC Design Illustration: Negotiation Process N(OP)

DSO uses N(OP) to set household retail price-to-go sequences

\[\pi(K) = \{ \pi_{\psi}(K) \} \]

such that the resulting household-chosen TCL power schedules

\[P(K) = \{ P_{\psi}(\pi_{\psi}(K)) \} \]

satisfy all household and network constraints.

Propositions 1-5 in ref. [1] give the theoretical basis for alignment of DSO goals & constraints with household goals & constraints.

The centralized DSO control problem (previous slide) can be expressed as a standard nonlinear programming problem:

\[
\max_{x \in X} F(x) \\
\text{subject to } g(x) \leq c
\]

The Lagrangian Function is:

\[
L(x, \lambda) = F(x) + \lambda[c - g(x)]
\]
TC Design Illustration: Propositions from Ref. [1]

Definition: Suppose an optimal solution \(P^*(K) \) for the DSO centralized control problem equals \(P(\pi^*(K)) \) for a collection \(\pi^*(K) \) of household retail price-to-go sequences for OP. Then \((P^*(K), \pi^*(K)) \) will be called a **TES equilibrium for OP**.

Proposition 2: Suppose \((x^*, \lambda^*) \) is a saddle point for the Lagrangian Function \(L(x, \lambda) \), where \(x^* = P^*(K) \). Suppose, also, that \(x^* \) uniquely maximizes \(L(x, \lambda^*) \) with respect to \(x \) in \(X \). Then \((x^*, \lambda^*) \) determines a TES equilibrium \((P^*(K), \pi^*(K)) \) for OP.

NOTE: The equilibrium price-to-go sequence \(\pi^*_\psi(K) \) for household \(\psi \) in Prop. 2 has the following separable structure:

\[
\pi^*_\psi(K) = \text{Initial retail price-to-go sequence set for } \psi \text{ by DSO} \\
+ \text{Price-to-go adjustment (if needed) to ensure } \text{peak demand limit} \\
+ \text{Price-to-go adjustment (if needed) to ensure } \text{voltage magnitude limits}
\]
Proposition 3: Suppose the following three conditions hold

[P3.A] \(X \) is compact, and the objective function \(F(x) \) and constraint function \(g(x) \) are continuous over \(X \).

[P3.B] For every \(\lambda \in R_+^m \), the Lagrangian Function \(L(x, \lambda) \) achieves a finite maximum at a unique point \(x(\lambda) \in X \).

[P3.C] The primal and dual variable iterates in the DDA converge to a limit point \((x^*, \lambda^*) \) as the iteration time approaches +\(\infty \).

Then the DDA limit point \((x^*, \lambda^*) \) is a saddle point for the Lagrangian Function that determines a TES equilibrium for OP.

NOTE: Complete proofs for Propositions 1-5 are provided in Ref. [1].
Network constraints = Peak demand & voltage magnitude limits
- Peak demand limit is 3200kW & min squared voltage mag limit is 0.95
- Without TES, peak demand is 2962kW < 3200kW (no violation)
- Without TES design, voltage mag limit violation occurs (0.9485 < 0.95)
Under TES design, there is no violation either of network constraints (peak demand & voltage magnitude limits) or of household constraints.

The retail price for hour 17 differs from bus to bus and from phase to phase.
TC Design Case Study ... Continued

- TES outcomes closely track centralized DSO control solution

Fig. 8: Centralized control vs. TES outcomes for total TCL demand during day D

Fig. 9: Centralized control vs. TES outcomes for phase-a TCL demand during hour 17 across the entire network (123 buses)
UI Team Presentation: Market efficiency impacts of aggregated distributed energy resources (DERs)

Prosumer participation through profit-motivated retail aggregator

Stackelberg Game

Wholesale Market

Retail Aggregator (price-arbitrageur)

Prosumers

Price and quantity \((\lambda, q_A)\)

Capacity \(X(\rho)\)

Direct prosumer participation in wholesale markets (ideal but impractical benchmark)

Inverse Supply Offers

Price of aggregation

Retail market design

Design supply offers/demand bids

- Must be a two-sided market mechanism
- The offer and bid format must be succinct
- Should support an efficient competitive equilibrium with price-taking market participants
- Must limit impacts of strategic behavior with price-anticipating market participants

Our work: A scalar parameterized mechanism for two-sided markets

Design and analyze price formation

- Prices should be nodally uniform
- Should support an efficient competitive equilibrium
- Payment mechanism must be revenue adequate under reasonable assumptions

Our work: Convex relaxation-based (distribution) locational marginal prices

...ignores bid/offer mechanism and the multi-phase unbalanced nature of distribution grids

“Convex Relaxation based Locational Marginal Prices for Electricity Markets,” A. Winnicki, M. Ndrio, and S. Bose.
What should the bid/offer format be in a two-sided retail market?

Generalizes one-sided scalar-parameterized supply functions
Kelly ‘03, Johari ‘04 & ‘11, Hajek ‘02, Maheswaran ‘04

What a demander provides
Scalar-parameterized demand bid with elastic and inelastic component
\[d_i = D(\theta_d^i, p) := d_0 + \frac{\theta_d^i}{p}, \quad \theta_d^i \geq 0. \]

What a supplier provides
Scalar-parameterized supply offer with capacity constraints
\[s_i = S(\theta_s^i, p) := \kappa_0 - \frac{\theta_s^i}{p}, \quad \theta_s^i \geq 0. \]

Market is cleared at a price at which total supply equals total demand
\[\sum_{i=1}^{M} D(\theta_d^i, p) = \sum_{i=1}^{N} S(\theta_s^i, p). \]
Properties of the market mechanism

- The mechanism supports an efficient competitive equilibrium with price-taking market participants.

- With price-anticipating participants, Nash equilibrium does not exist when a pivotal supplier exists in the market.

- When pivotal suppliers do not exist, a unique Nash equilibrium exists. Moreover, this equilibrium can be computed as the solution of a convex optimization problem with modified utilities and costs.

- The efficiency loss at this equilibrium is bounded below as

\[
\sum_{i=1}^{M} U_i(d_i^{\text{Nash}}) - \sum_{i=1}^{N} C_i(s_i^{\text{Nash}}) \geq \frac{3}{4} \sum_{i=1}^{N} U_i(d_i^\ast) - \frac{4}{3} \sum_{i=1}^{N} C_i(s_i^\ast).
\]
The Dispatch Problem

minimize \(\sum_{k=1}^{n} c_k(p^G_k, q^G_k) \),

subject to \(p^G_k - p^D_k = \sum_{e \rightarrow e'} P_{ke} - \sum_{e \rightarrow e'} (P_{ke} - r_{ke} J_{ke}) \),
\(q^G_k - q^D_k = \sum_{e \rightarrow e'} Q_{ke} - \sum_{e \rightarrow e'} (Q_{ke} - x_{ke} J_{ke}) \),
\(P_{ke} \leq f_{ke}, \ r_{ke} J_{ke} - P_{ke} \leq f_{ke}, \)
\(p_k \leq p^G_k \leq \bar{p}_k, \ q_k \leq q^G_k \leq \bar{q}_k, \ \bar{v}_k^2 \leq w_k \leq \bar{v}_k^2, \)
\(w_e = w_k - 2(P_{ke} r_{ke} + Q_{ke} x_{ke}) + (r_{ke}^2 + x_{ke}^2) J_{ke} \),
\(P_{ke}^2 + Q_{ke}^2 = J_{ke} w_k \)
for \(k \in \mathbb{N}, \ k \rightarrow \ell \in \mathbb{E} \)

The Pricing Problem

minimize \(\sum_{k=1}^{n} c_k(p^G_k, q^G_k) \),

subject to \(p^G_k - p^D_k = \sum_{e \rightarrow e'} P_{ke} - \sum_{e \rightarrow e'} (P_{ke} - r_{ke} J_{ke}) \),
\(q^G_k - q^D_k = \sum_{e \rightarrow e'} Q_{ke} - \sum_{e \rightarrow e'} (Q_{ke} - x_{ke} J_{ke}) \),
\(P_{ke} \leq f_{ke}, \ r_{ke} J_{ke} - P_{ke} \leq f_{ke}, \)
\(p_k \leq p^G_k \leq \bar{p}_k, \ q_k \leq q^G_k \leq \bar{q}_k, \ \bar{v}_k^2 \leq w_k \leq \bar{v}_k^2, \)
\(w_e = w_k - 2(P_{ke} r_{ke} + Q_{ke} x_{ke}) + (r_{ke}^2 + x_{ke}^2) J_{ke} \),
\(P_{ke}^2 + Q_{ke}^2 \leq J_{ke} w_k \)
for \(k \in \mathbb{N}, \ k \rightarrow \ell \in \mathbb{E} \)

Relaxation-based Locational Marginal Prices (DLMP) \(\lambda^p_k, \lambda^q_k \)

Dispatch and prices are derived from two different problems (both derived with branch-flow model for distribution networks)
Properties of relaxation-based DLMPs

When relaxation is exact, the dispatch and prices support an efficient competitive equilibrium. On radial distribution networks, relaxation is often exact.

Non-binding voltage lower bounds are sufficient, but not necessary, for revenue adequacy.

Due to the nature of the power flow equations, real power prices are sensitive to real power demand & line limits and reactive power prices are sensitive to limits on voltage magnitudes.

These prices minimize a form of side payments that comprises lost opportunity cost and product revenue shortfall. Such a property is more relevant for its generalization to a semidefinite relaxation-based locational marginal prices.

Real power prices

Reactive power prices