Leigh Tesfatsion*

A New Swing-Contract Design for Wholesale Power Markets

Wiley/IEEE Press
(Accepted for Publication, 2020)

March 2, 2020

* Author contact information: Research Professor, Department of Economics, Iowa State University, Heady Hall 260, 518 Farm House Lane, Ames, IA 50011-1054, Homepage http://www2.econ.iastate.edu/tesfatsi, Email tesfatsi@iastate.edu.
Abstract The need for dependable flexible reserve provision in electric power systems has dramatically increased in recent years. Growing reliance on variable energy resources and greater encouragement of demand-side participation have led to greater uncertainty and volatility of net load. Consequently, system operators are finding it harder to secure reserve with sufficient flexibility to permit the continual balancing of net load, a basic requirement for power system reliability. This study reconsiders the design of wholesale power markets in light of these concerns. Four design principles are stressed: (i) Wholesale power markets must necessarily be forward markets due to the speed of real-time operations; (ii) Only one type of product can effectively be offered in a wholesale power market: namely, reserve, an insurance product offering availability of net load balancing services during future real-time operations; (iii) Net load balancing services offered into wholesale power markets primarily take the form of power paths that can be dispatched at specific grid locations over time; (iv) All dispatchable resources should be able to compete for the provision of power-paths without regard for irrelevant underlying technological differences. If these four principles are accepted, current trade and settlement arrangements for wholesale power markets need to be fundamentally altered. This study proposes a new linked swing-contract market design, consistent with principles (i)-(iv), that could meet the needs of centrally-managed wholesale power markets better than currently implemented designs.

Acknowledgements This work has been supported by U.S. Department of Energy (DOE) grants DE-AR0000214 and DE-OE0000839, by Contract No. 339051 with the Pacific Northwest National Laboratory (PNNL) operated by Battelle for the U.S. DOE under Contract DE-AC65-76RL01830, by Contract No. 1163155 with Sandia National Laboratories, by Project Award No. M-40 from the Power Systems Engineering Research Center (PSERC), and by various grants from the Iowa State University Electric Power Research Center (ISU EPRC).
Contents

1 Introduction ... 7

2 Background Motivation and Literature Review 13
 2.1 Overview ... 13
 2.2 General Goals for Wholesale Power Market Design 13
 2.3 A Brief Overview of U.S. RTO/ISO-Managed Markets 14
 2.4 Issues Faced by U.S. RTO/ISO-Managed Markets 17
 2.5 Conceptual Concerns Regarding the Current Design of U.S.
 RTO/ISO-Managed Markets .. 18
 2.5.1 Artificial Distinction Between Energy and Reserve 18
 2.5.2 Problematic Use of Hedonic Pricing 19
 2.5.3 Revenue Insufficiency and Incentive Problems 20
 2.5.4 Computational Fragility of LMP Calculations 21
 2.5.5 Performance Payment in Advance of Performance Delivery . 23
 2.5.6 Minimal Direct Representation of Retail Customer Interests 24
 2.5.7 Reliance on Overly Simplistic Cost Conceptions 25
 2.5.8 Use of Spot-Market Pricing for Forward Markets 26
 2.6 Relation of Current Study to Previous Swing-Contract Work 27

3 Swing Contracts for ISO-Managed Wholesale Power Markets 29
 3.1 Swing Contract Overview ... 29
 3.2 Swing Contracts: General Formulation 29
 3.3 Swing Contracts in Firm or Option Form 31

4 Illustrative Swing-Contract Reserve Offers 33
 4.1 Overview ... 33
 4.2 A Simple Energy-Block Swing Contract in Firm Form 34
 4.3 An Energy-Block Swing Contract in Option Form 38
 4.4 Swing-Contract Implementation of Standard Supply Offers 39
 4.5 A Swing Contract Offering Continuous Swing (Flexibility) in
 Power and Ramp ... 44
4.6 A Swing Contract Offering Battery Charge and Discharge 46
4.7 Swing-Contract Facilitation of Private Bilateral Contracting 48

5 Swing-Contract Market Design 51
5.1 Overview 51
5.2 General Swing-Contract Market Formulation 51
5.3 Financial and Physical Feasibility of Swing-Contract Offers 53
5.4 Reserve Bids 54
5.5 Handling of Fixed Reserve Bids and Non-Dispatched Power 55
5.6 Performance Penalties and Incentives 56
5.7 ISO Cost Allocation 57

6 Swing-Contract Market Optimization: Base-Case MILP Formulation 61
6.1 Overview 61
6.2 General Assumptions and Notation 62
6.3 Discretization of the ISO’s Optimization Problem 63
6.4 ISO Objective Function 67
6.5 Complete Analytical MILP Formulation 68
6.6 Additional Discussion of Optimization Aspects 70
6.7 Five-Bus Test Case 72
6.8 Thirty Bus Test Case with Adaptive Reserve Zones 75

7 Inclusion of Reserve Offers with Price Swing 79
7.1 Overview 79
7.2 Cost Function Preliminaries 79
7.3 MILP Tractable Form of Reserve Offers with Price Swing 81

8 Inclusion of Price-Sensitive Reserve Bids 87
8.1 Overview 87
8.2 Incorporation of Benefits 88
8.3 Modeling of Price-Sensitive Reserve Bids 90
8.3.1 Overview 90
8.3.2 Reserve Bids with Time-of-Use Pricing 91
8.3.3 Reserve Bids with Price Swing 91
8.3.4 Reserve Bids Directly Expressed as Benefit Functions 93
8.4 MILP Tractable Approximation of Benefit Functions 94

9 The Linked Swing-Contract Market Design 97
9.1 Overview 97
9.2 Multistage Optimization and Time Inconsistency 98
9.3 Settlement Time-Consistency of Swing-Contract Markets 101
9.4 Swing-Contract Long-Term Forward Markets 102
9.5 Swing-Contract Short-Term Forward Markets 103
9.6 Swing-Contract Very Short-Term Forward Markets 105
9.7 Swing-Contract Deployment in Real-Time Operations 106
9.8 Summing Up: Designing to the Mission 108
10 Illustration: Linkage Between Day-Ahead and Hour-Ahead Swing-Contract Markets ... 109
 10.1 Overview .. 109
 10.2 Hour-Ahead SC Market with Reserve Offers Consisting of Swing-Contract Portfolios 110
 10.3 SCED Optimal Solution for the Hour-Ahead SC Market 113
 10.3.1 Overview .. 113
 10.3.2 Power Balance ... 113
 10.3.3 Coverage of the ISO’s Uncertainty Set 115
 10.3.4 Constrained Minimization of Expected Cost 117
 10.4 Linked Day-Ahead and Hour-Ahead SC Markets 117

11 Standard Modeling of a Competitive Market 121
 11.1 Overview .. 121
 11.2 Key Definitions .. 121
 11.3 Standard Competitive Market Assumptions 122
 11.4 Law of One Price for Commodities 122
 11.5 Competitive Market: Basic Formulation 123
 11.6 Net Surplus Extraction ... 126
 11.7 Market Efficiency Metric 127
 11.8 Market Efficiency and Pricing Rules 129
 11.9 Strategic Trade Behavior and Trader Market Power 130

12 U.S. RTO/ISO-Managed Wholesale Power Market Operations 133
 12.1 Overview .. 133
 12.2 Daily Market Operations 133
 12.3 Illustrative Analytical DAM Formulation 136
 12.4 Net Surplus Extraction in the Illustrative DAM 138
 12.5 Market Power in the Illustrative DAM: Type-I Error 142
 12.6 Market Power in the Illustrative DAM: Type-II Error 146
 12.7 Market Inefficiency in the Illustrative DAM 149
 12.8 DAM Performance: General Assessment 152
 12.9 Scheduling of Bilateral Contracts 154

13 Conceptual Comparisons with Swing-Contract Markets 157
 13.1 Overview .. 157
 13.2 Product Definition in U.S. RTO/ISO-Managed Markets 158
 13.3 Wholesale Power and the Law of One Price (Not) 160
 13.4 Differential vs. Uniform Pricing 161
 13.5 Comparison of SC and Current U.S. DAM Designs 162

14 Advantages of the Linked Swing-Contract Market Design 165
 14.1 Overview .. 165
 14.2 SC Markets are Physically-Covered Insurance Markets 166
 14.3 Longer-Term SC Markets Support New Investment 167
 14.4 SC Markets Ensure Revenue Sufficiency 172
14.5 SC Markets Ameliorate Merit-Order Concerns 173
14.6 SC Markets are Robust-Control Mechanisms 174
14.7 SC Markets Reduce Rule Complexity 175
14.8 SC Markets Reduce Gaming Opportunities 176
14.9 SC Markets Have Smaller-Sized Optimizations 178
14.10 Additional Advantages of SC Markets 179
 14.10.1 Ensure a Level Playing Field for Resource Participation . 179
 14.10.2 Permit Co-Optimization of Diverse Reserve 180
 14.10.3 Appropriately Remunerate Diversity and Flexibility 180
 14.10.4 Encourage Accurate Forecasting and Dispatch Following . 180
 14.10.5 Ensure Settlement Time-Consistency 180

15 Gradual Transmission to Linked Swing-Contract Markets 181
 15.1 Overview .. 181
 15.2 A DAM Formulation Permitting Gradual Transition 183
 15.3 Cost Function Preliminaries for the Transitional DAM 185
 15.4 MILP SCUC/SCED Optimization for the Transitional DAM 188

16 Swing-Contract Support for ITD Systems 197
 16.1 Overview .. 197
 16.2 Transactive Energy System Design for ITD Systems 201
 16.3 Role of Distribution Utilities 204
 16.4 Extraction of Flexible Services from Grid-Edge Resources ... 205
 16.5 IDSOs as Grid-Edge Resource Aggregators 206
 16.6 Swing Contract Support for IDSO Participation in Wholesale
 Power Market Operations 208

17 Swing-Contract Market Evaluation via the ITD TES Platform 209
 17.1 Overview .. 209
 17.2 Design Readiness Levels 210
 17.3 The ITD TES Platform for SC Market Evaluation 212
 17.4 SC Market Performance within ITD Systems: Test Cases 214

18 Potential Future Research Directions 219

19 Conclusion: The Dots Keep Connecting 223

20 Appendix ... 225
 20.1 Quick-Reference Glossary of Standard Acronyms 225
 20.2 Quick-Reference Glossary of Transmission System Terms 226
 20.3 Quick-Reference Glossary of Economic Terms 227
 20.4 Nomenclature for an SC Market and Transitional DAM 228
 20.5 Nomenclature for a Distribution System 230

References .. 231
Chapter 1
Introduction

“Design to the mission, design as a system, keep it simple.” [103, p. 20]

Centrally-managed wholesale power markets operating over high-voltage transmission grids support the continual flow of electric power from bulk power sellers to bulk power buyers, for ultimate resale and distribution to retail customers. This mission has been complicated in recent years by a dramatic surge in the availability and use of variable energy resources.

A Variable Energy Resource (VER) is a power source whose power injections into a transmission grid cannot be fully dispatched in a controlled manner to balance changes in power withdrawals or to meet other system requirements. Examples include solar panels and wind turbines that are not fully firmed by storage. The increased participation of VERs in wholesale power markets, together with the increased encouragement of active demand-side participation, increases the uncertainty and volatility of grid net load, i.e., power withdrawal net of non-dispatched power injection.

In consequence, as discussed more fully in Chapter 2, U.S. RTO/ISO-managed wholesale power markets1 are finding it harder to secure dependable reserve with sufficient flexibility to permit the continual balancing of net load, a basic requirement for power system reliability. Trade and settlement arrangements in these markets are still largely based on rigid reserve definitions, eligibility requirements, and settlement processes that make it difficult to ensure adequate provision and appropriate compensation of needed reserve from multiple types of resources. Emphasis is placed on the designation and compensation of artificially-separated product concepts such as energy, ramping, and capacity whereas value in power markets in fact principally arises from the dispatchable availability and delivery of power-paths, i.e., flows of power into and out of a grid at specific grid locations during designated operating periods.

This study reconsiders the design of U.S. RTO/ISO-managed wholesale power markets in light of these concerns. Four market design principles are stressed:

[MD1:] All wholesale power markets must necessarily be forward markets2 due to the speed of real-time operations.

[MD2:] Only one type of product can effectively be offered in a wholesale power market: namely, reserve, an insurance product offering availability of net load balancing services in future real-time operations.

1 The U.S. Federal Energy Regulatory Commission [56] defines an RTO/ISO-managed wholesale power market to be the collection of all capacity, energy, and/or ancillary service markets operated by a Regional Transmission Organization (RTO) or an Independent System Operator (ISO). The key distinction between an RTO and an ISO is that RTOs have larger regional scope.

2 A forward market is a market involving the purchase and sale of a product for which the payment method for the product is contractually determined in advance of its delivery date. In contrast, in a spot market the delivery and payment for a product are determined at the same time.
[MD3:] Net load balancing services offered into wholesale power markets generally take the form of power-paths that can be dispatched at specific grid locations over time.³

[MD4:] All dispatchable resources should be able to compete for the provision of power-paths without regard for irrelevant underlying technological differences.

A swing-contract market design is proposed that is in accordance with principles MD1-MD4. This design envisions an ISO-managed wholesale power market M(T) organized as a reserve market for some designated future operating period T. Reserve consists of dispatchable power-paths for period T. As illustrated in Fig. 1.1, a power-path for period T refers to power injected and/or withdrawn at a single designated grid location during period T.⁴ Dispatchable resources offer reserve (dispatchable power-paths) into M(T) by means of “swing contracts.”

![Fig. 1.1](https://example.com/fig1.1.png)

Fig. 1.1 One of many possible power-paths that a dispatchable resource with swing (flexibility) in down/up ramping and power amplitude could be signaled to deliver at its grid location during operating period T = \([t', t'']\).

More precisely, as carefully explained in Chapter 3, a swing contract \(SC_m\) issued by a dispatchable resource \(m\) is a reserve contract that \(m\) can offer into a swing-contract market M(T) in either firm or option form.⁵ \(SC_m\) consists of four components, each specified by \(m\): (i) an offer price \(\alpha_m\); (ii) an exercise set \(T_{ex}m\); (iii) a physically characterized set \(PP_m\) of power paths for period T, each of which \(m\) could feasibly deliver at a designated grid location during T in response to dispatch signals; and (iv) a performance payment method \(\phi_m\).

³ As discussed in [43, 57], primary frequency response is synchronized reserve capacity that autonomously responds to changes in system frequency; consequently, it is not dispatched. The provision and compensation of primary frequency response is not considered in the current study.

⁴ Since a power-path refers to the injection and/or withdrawal of power at a single grid location over time, a power-path is characterized without reference to spatial transmission. As illustrated in Fig. 1.1, power-paths can be depicted in a time-power plane.

⁵ As explained more fully in Chapter 3, a firm contract is a non-contingent contract that imposes obligations on both the issuer and the holder. An option contract is a contingent contract that gives the holder the right, but not the obligation, to exercise the contract at one or more contractually specified exercise times. The exercise of an option contract converts it into a firm contract.
If SC\(_m\) is cleared, the offer price \(\alpha_m\) (if positive) is paid to \(m\) either directly or in amortized payment-schedule form. The offer price thus permits \(m\) to cover ex ante any cost that \(m\) would have to incur to ensure the availability of the power-paths in \(PP_m\). This availability cost could include capital investment cost, start-up cost, no-load cost, and opportunity cost. The exercise set \(T_{ex}^m\) consists of designated times between the close of \(M(T)\) and the start of \(T\) at which the ISO can exercise \(SC_m\), assuming \(SC_m\) has been cleared. The number and positioning of these exercise times determine whether \(SC_m\) is a firm contract or an option contract in European, American, or Bermudan option form.

The dispatchable power-paths in \(PP_m\) are characterized in terms of attributes such as delivery location, start-time, minimum down/up time, active and reactive power limits, ramp-rate limits, duration limits, and energy capacity. The precise specification of these attributes determines the degree of swing (flexibility) in \(m\)'s offered reserve. Finally, the performance payment method \(\phi_m\) permits resource \(m\) to recover ex post any cost that \(m\) incurs for verified period-T service performance, i.e., for the verified period-T delivery of a power-path in \(PP_m\) in response to dispatch signals. This performance cost could include fuel cost, labor cost, transmission service charges, and machinery wear and tear caused by fast ramping.

Reserve offers submitted into \(M(T)\) take the form of portfolios of swing contracts offered by dispatchable resources for operating period \(T\). These dispatchable resources can include generators, distributed-resource aggregators, and storage facilities. Reserve offers in firm form effectively constitute regulation reserve whereas reserve offers in option form effectively constitute contingency or planning reserve.

As demonstrated in Chapter 4, these reserve offers can take the standard supply-offer forms required by current U.S. RTO/ISO-managed wholesale power markets. Examples include: must-run energy blocks; hourly step-function power supply schedules with a separate price ($/MWh) designated for each power-step; and power self-scheduled by power traders to secure needed transmission for the power outcomes of privately negotiated physically covered bilateral contracts.

However, as is also demonstrated in Chapter 4, the general formulation of a swing contract can accommodate reserve offers with a much broader range of offered attributes than envisioned in these standard supply offer forms. Moreover, the issuer \(m\) of a swing contract \(SC_m\) can use the performance payment method \(\phi_m\) included in \(SC_m\) to specify \(m\)'s required compensation ex post for dynamic aspects of a delivered power-path, such as ramping, duration, and reactive power support, as well as static aspects such as total delivered energy.

Reserve bids submitted into a swing-contract market \(M(T)\) take the form of price-sensitive and/or fixed demands for power-path delivery during operating period \(T\). Reserve bids can be submitted by load-serving entities to service the forecasted loads of their end-use customers during \(T\), and by power traders who need to self-schedule the power outcomes of privately negotiated physically covered bilateral contracts in order to secure needed transmission.

As detailed in Chapters 5-8, an ISO managing a swing-contract market \(M(T)\) solves a contract-clearing optimization problem to determine which reserve offers and price-sensitive reserve bids to clear for operating period \(T\). The objective of
the ISO is to maximize the expected total net benefit of the market participants, conditional on initial state conditions and subject to system constraints.

Total net benefit consists of total benefit net of total avoidable cost. The system constraints include power balance, transmission line, and reserve constraints. These constraints incorporate, as exogenous inputs: (i) all fixed demands; (ii) all forecasts for non-dispatched power injection; (iii) all of the power-path attributes included by dispatchable resources in their reserve offers; and (iv) zonal and system-wide reserve requirements set by the ISO to ensure coverage of net load uncertainty sets as a robust means of protection against net load forecast errors.

The ISO functions as a clearing house for $M(T)$, collecting payments and overseeing payouts to market participants. However, the ISO does not have any financial stake in market operations. To maintain this independent status, all net reserve cost and transmission service cost (including line losses) incurred through market operations are passed through to market participants. Net reserve cost is allocated across market participants based on the relative volatility and size of their net must-service load. Transmission service cost is allocated across market participants based on the power imbalance at their grid locations.

More generally, Chapter 9 proposes a linked collection of swing-contract markets whose look-ahead horizons for designated future operating periods can range in duration from multiple years to minutes. The linkage among these markets is achieved by having the reserve offers and price-sensitive reserve bids cleared in earlier markets be carried forward on the books of the ISO as a portfolio of contracts that can be adaptively updated in subsequent markets. This linkage facilitates reserve procurement by permitting a successively refined understanding of resource availability and system conditions for future operating periods.

The key features of this Linked Swing-Contract Market Design in comparison with current U.S. RTO/ISO-managed wholesale power market designs, elaborated in Chapters 9-14, are summarized below:

- permits the robust-control management of uncertain net load
- handles uncertain net load by ensuring dependable flexible reserve supply
- eliminates the need for detailed net load scenario specifications
- facilitates a level playing field for resource participation
- recognizes the forward nature of wholesale power markets
- recognizes all offered product in these forward markets is a form of reserve
- identifies reserve as dispatchable power-paths available for future operations
- requires resources to internally manage commitment and capacity constraints
- permits co-optimization across a wide range of reserve attributes

6 *Net reserve cost* is reserve procurement cost net of any price payments for cleared price-sensitive reserve bids and net of any penalty payments for real-time deviations from dispatch signals.

7 *The net must-service load* of a market participant at a particular grid location is the amount of its non-dispatched power withdrawal at that location, if any, minus the amount of its non-dispatched power injection at that location, if any.

8 *Power imbalance* is said to occur at a particular bus in a transmission grid if there is a non-zero net power injection at this bus that requires the transmission of power to or from other buses in order to ensure power balance across the transmission grid as a whole.
• ensures settlement time-consistency through two-part pricing
• compensates reserve availability ex ante and reserve deployment ex post
• permits resource owners to cover ex ante their full costs of availability
• permits resource owners to recover ex post their full real-time performance costs
• eliminates the need for out-of-market payment adjustments
• provides system operators with real-time flexibility for net load balancing
• encourages close following of dispatch signals through performance incentives
• reduces the complexity of market rules

Chapter 15 considers how current U.S. RTO/ISO-managed Day-Ahead Markets (DAMs) could gradually transition to a swing-contract market design. As shown, a swing contract submitted by a dispatchable resource into a DAM can in principle be incorporated as follows. First, the swing-contract’s offer price and performance payment method can be incorporated into the objective function of the DAM SCUC/SCED optimization\(^9\) used by the RTO/ISO to solve for unit commitments, reserve, and scheduled power dispatch levels for next-day operations. Second, the power-path attributes designated by this swing contract can be incorporated into the system constraints for this optimization.

However, in order for this incorporation to result in accurate merit-order dispatch, the DAM SCUC/SCED optimization would have to account fully for the expected total net benefit associated with each possible RTO/ISO decision regarding unit commitments, reserve, and dispatch levels. At present this is not the case. For example, the unit commitment cost appearing in the objective function typically covers (at most) the start-up and no-load energy usage of generators, not full availability cost. Also, voltage limits are typically not included among the system constraints, thus preventing the valuation of offered voltage-support services.

In consequence, swing contracts offering diverse reserve, with explicit offer prices and performance payment methods ensuring full coverage of availability and performance costs, could be incorrectly judged to be too costly to be cleared. To address this issue, an extended DAM SCUC/SCED optimization formulation is presented that permits benefits and costs to be more fully and accurately incorporated.

Finally, Chapters 16-17 explore swing-contract support for Integrated Transmission and Distribution (ITD) system operations; see Fig. 1.2. Special attention is focused on the possibility that Independent Distribution System Operators (IDSOs), functioning in distribution systems as grid-edge resource aggregators,\(^10\) could use swing contracts to facilitate their participation in transmission systems as ancillary service providers as well as load-serving entities. Specifically, the ancillary service provision of an IDSO could take the form of reserve offers (swing-contract portfolios), where reserve consists of dispatchable power-paths harnessed from grid-edge resources in return for appropriate compensation. This IDSO participation would

\(^9\) SCUC is an acronym for Security-Constrained Unit Commitment, and SCED is an acronym for Security-Constrained Economic Dispatch.

\(^10\) In this study a Grid-Edge Resource (GER) is defined to be any power source with a direct point of connection to a distribution grid. A GER aggregator is any entity that manages power usage, power supply, and/or ancillary service provision for a collection of GERs.
permit retail customer interests to be more directly and completely represented at the wholesale power market table.

Potential future research directions are outlined in Chapter 18, and concluding remarks are given in Chapter 19. Glossaries and nomenclature tables for terms used to describe market operations in both standard and swing-contract forms are provided in Chapter 20.
References

Handbook of Computational Economics 4: Heterogeneous Agent Models, Handbooks in Economics Series, North Holland (Elsevier), Amsterdam, the Netherlands.

http://www2.econ.iastate.edu/tesfatsi/TESHandbookChapter.LTesfatsion.pdf

174. Tesfatsion, L (2020a) Agent-Based Research on Restructured Electricity Markets:
www.econ.iastate.edu/tesfatsi/aelect.htm

175. Tesfatsion, L (2020b) Empirical Validation and Verification of Agent-Based Models:
http://www2.econ.iastate.edu/tesfatsi/empvalid.htm

http://www2.econ.iastate.edu/tesfatsi/AMESMarketHome.htm

http://www2.econ.iastate.edu/tesfatsi/GLDETHouseholdModelNotes.LTesfatsionSBattula.pdf

