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Variational Equations for the Eigenvalues 
and Eigenvectors of Nonsymmetric Matrices 1 

R. KALABA z, K. SPINGARN 3, AND L. TESFATSION 4 

Abstract. The tracking of eigenvalues and eigenvectors for 
parameterized matrices is of major importance in optimization and 
stability problems. In the present paper, we consider a one-parameter 
family of matrices with distinct eigenvalues. A complete system of 
differential equations is developed for both the eigenvalues and the right 
and left eigenvectors. The computational feasibility of the differential 
system is demonstrated by means of a numerical example. 
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1. Introduction: Basic Problem 

Let M (a) be an n x n complex, matrix-valued differentiable function of 
a parameter o~ varying over some simply connected domain e °  of the 
complex plane ~. It will be assumed that M (o~) has n distinct eigenvalues 
Al(a) . . . . .  ~tn(a) in J~ for each o~ e~o.  Letting the superscript T denote 
transpose, it then follows (Ref. 1) that there exist two sets of linearly 
independent vectors 

{xi(a) . . . . .  x,,(a)} and {wa(a) . . . . .  w,(a)} 

in ~"  for each a ~ ~o satisfying 

M(ot)xi(ee) = hi(ot)xi(o~), i = 1 . . . . .  n, (ia) 
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The vectors 

M (ol ) TWi(Ce ) = Ai( Ot )Wi(Ol ), 

x~(~)rwj(~){ =0, 
O, 

{xl(o~) . . . . .  x,,(a)} and 

i = 1 . . . . .  n, (lb) 

if i ~ L  
(lc) 

if i =]. 

{w~(o~) . . . . .  wn(o~)} 

are generally referred to as the right and left eigenvectors of M(a) ,  
respectively. 

The differentiability of M ( a )  over ~o, coupled with the ruling out of 
exceptional points a in l~° where eigenvalues coalesce, guarantees (Ref. 2, 
Section ILl  and Sections 11.4 to 11.6) that the eigenvalues and right and left 
eigenvectors of M (~) have differentiable representations over ~o. In this 
case, it is known (Ref. 2, p. 81) that 

.~ i (a)  = w f ( a ) x i ( o O  ' a ~ ° ,  i = 1 . . . . .  n ,  (2) 

where a dot denotes differentiation with respect to o~. However, cor- 
responding analytical expressions for the derivatives 2~ (a) and ffi (a) of the 
right and left eigenvectors of M (a) do not appear to be available in the 
literature. Without such additional equations, the system of differential 
equations (2) is analytically incomplete, in the sense that solutions Ai (a) for 
(2) cannot be obtained by integration from initial conditions. 

In the following section, the differential system (2) will be completed by 
providing differential equations for the right and left eigenvalues of M (a). 
As will be seen in Section 4 below, the resulting complete differential system 
provides a practical tool for numerical work. 

2. Complete Variational Equations for Nonsymmetric Matrices 

The exact form of the complete differential system for the eigenvalues 
and eigenvectors of M ( a )  depends on the normalization selected for the 
eigenvectors. We will start by imposing the general normalizations 

xT(ot)XI(Ot) = ~Pi(a), Ot ~ ~o,  i = 1 . . . . .  n, (3a) 

w r ( a ) w i ( a )  = qCt(o~), a ~ ~o,  i = 1 , . . . ,  n, (3b) 

for arbitrary differentiable functions 

~ : e o _ ~  and ,t~i:e°--,e. 



JOTA: VOL. 33, NO. 1, JANUARY 1981 3 

Subsequently, (3) will be specialized to 

and also to another convenient normalization. 
Let i ~ {1 . . . .  , n} and ~ c C ° be given. Differentiating (la) with respect 

to a, and suppressing reference to a for ease of notation, one obtains 

A;/x~ + Mii  = ,~;x~ + Ai~,. (4) 

Multiplying through (4) by w~, we have 

Since 

by (lb), and since 

by (lc), (5) reduces to 

wL~=aiwT 

w Txi ~ o 

T " T wl Mx i /w i  xi = dl, (6) 

the familiar differential equation for J(~. 
Since the set of right eigenvalues {xl . . . . .  x,} for M (a) spans f~", there 

exist coefficients fl~i, ] = 1 . . . . .  n, such that 

~ = Y. fliixj. (7) 
i=l  

For k ~ i, it follows from 1(c) and (7) that 

T. ~ T T wkx~ = ~ijw~xs = fl~kWkXk. (8) 
] = 1  

Hence, combining (7) and (8), we have 

~i E 7 .  T = (wj x l /wj  xi)xj +~Siixl. (9) 
i # i  

Multiplying through (9) by x f and solving for/3~i, we obtain 
T T, T. T T (wj  x i /w j  x3x~ xfl. ~ii = (1 /x i  xi)[xi x i -  Y~ (10) 

T. and x/r~i in (9) and It is now necessary to replace the expressions wj xi 
(10) by a suitable expression independent of :~i. Multiplying through (4) by 
w f,/" ~ i, we have 

w TMxi + w TM~i = Aiw Txi + Aiw f ici. (11) 
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By (lb) and (lc), (11) reduces to 

w TMx~ + ,~iw }~, = ,~iw T~,. (12) 

Since the roots h i and hi are distinct by assumption, (12) can be restated as 

w]'Mx,l(,~i-,~j)= T. w i  xi. (13) 

Finally, the normalization (3a) implies that 
I . T ,  
2q)i = Xi Xi" (14) 

Substituting (3a), (10), (13), (14) into (9) yields the desired differential 
equation for the right eigenvector x~: 

~ = 1;  [w ~Ctx~/ (;t~ - aj)w f xj]xj 
]#i 

Equations analogous to (15) are similarly obtained for the left eigen- 
vectors wi. The complete differential system for the eigenvalues and right 
and left eigenvectors of M (~) thus has the form 

( i  T " T = w~ M x i / w ~  xi, i = 1 , . . . ,  n, (16a) 

~c, = Y [wTY4xd(,x,-,~,)wTxj]xs 
i#i  

+[~,~i- 1; [wfCtx, l(A,-  ~ T Aj)wi x j ] x i  xj]xff~oi,  i = 1 . . . . .  n ,  (16b) 
i¢=i 

- [ x j M w d ( ~ t i  . .  n.  --•])X i Wi]W i Wf]Wi/aJzti, i =  1,. , (16C) 

Though our primary purpose is to use Eqs. (16) for computational purposes 
some analytical consequences are immediate. For example, for the Perron 
root of a positive matrix (see Ref. 5), Eq. (16a) implies that adding a positive 
matrix to a given positive matrix cannot decrease the Perron root. 

System (16) is considerably simplified if the selected normalization is 

~pi(ot) ~ ~i(o~)--- 1, i = 1  . . . .  ,n. 

In this case, (16) reduces to 

/ ( i  T ° T = w i M x i / w i x i ,  i =  1 . . . . .  n ,  (17a) 

~i  = [ I -x ixT]  E [wT~xl / (* i -  "~ A j ) w  i x i ] x  i, i = 1 . . . . .  n,  (17b) 
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[I-  w,wl]  [ x f M w , / ( A i -  = hj)xj wj]wi ,  i =  1 . . . . .  n. (17c) 
]~i 

An even greater simplification occurs if the ~oi(" ) and ~i ("  ) functions are 
selected so that the final terms in parentheses in (16b) and (16c) vanish 
identically. The system (16) then reduces to 

(i T " T = w i  M x i / w i  xi, i = 1 . . . .  , n,  (18a) 

2, = E [wf2V, - A i ) w i x i ] x  i, i = 1 . . . . .  n,  (18b) 

wi = E [ x f J ~ [ w i / ( h i - h i ) x f w i ] w i ,  i =  1 . . . . .  n. (18c) 
j~i 

At various stages in the integration of (18), the right and left eigenvectors 
can be normalized to unit length to prevent their magnitudes from becoming 
inconveniently large or small. 

A numerical example in Section 4 illustrates the use of both (17) and 
(18). 

3. Complete Variational Equations for Symmetric Matrices 

Suppose that M (a) satisfies 

M ( a ) = M ( a )  r, f o r e a c h a ~  °. 

In this case, the right and left eigenvectors of M (a) coincide over C ° ; hence, 
the normalizations (lc) and (3) together yield 

{0, if i ~j, 
X T(OL )Xi(OL ) ~pi(a), if i = j .  (19) 

The differential system (16) thus reduces to 

,(i = xTiVlxi/~oi, i = 1 . . . . .  n,  (20a) 

E 1 . = +~(~oi/~o~)xi, i = 1 . . . .  , n. (20b) 
i~ i  

If ~p~(a) -= 1, i = 1 , . . . ,  n, (20) is further simplified to 

• (i = xTi~lxi ,  i =  1 , . . . ,  n,  (21a) 

.;ci = • [ x f f f ,  l x , / ( A i - A i ) ] x i ,  i =  1 . . . . .  n. (21b) 

As noted in Ref. 2, p. 81, equations analogous to (21) for partial 
differential operators are familiar formulas in quantum mechanics. See, e.g., 
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Ref. 3, Chapter 11, pp. 383-384. The differential form of (21a) is 

dhi--- r Xi dMxi. (22) 

It is known, by the Courant-Fischer minimax theorem (Refs. 4-5), that the 
addition of a positive definite matrix to a given positive definite matrix M 
increases all of the eigenvalues of M. This result is immediately obtainable 
from (22). For economic applications of Eqs. (21), see Ref. 6, pp. 240-246.  

4. Illustrative Numerical Example 

Consider a matrix-valued function M (or) defined over a ~ R by 

For this simple example, analytical expressions are easily obtainable for the 
eigenvalues {hl(a),hz(a)} and the right and left eigenvectors 
{xl(o0, xa(a), wl(a), wz(a)} of M(~) ,  where the latter are normalized to 
have unit length. Specifically, 

)q(~) = 2 + ~ ( a ) ,  (24a) 

)tz(a) = 2 - ~ (a), (24b) 

x~(a) = lake/(1 + 3~(a)), kl] r, (24c) 

x2(a) = [ak2/(1 - 7(a)),  k2] r, (24d) 

k r Wl(a) = [(y(o~)-- 1)k3/a, 3] , (24e) 

w2(a ) = [ ( - y ( a )  - 1)k,/ a, k4] "r, (24f) 

where 
~(,~)----,/(1 + 3 )  

and the constants k~ . . . . .  k4 are given by 

kl =- 1/ ,/[az / (1 + 3,(~))z + 1], (25a) 

k2-1/ , /[o~2/(1 - 3,(a))2 + 1], (25b) 

k3 =- 1/ , / [ (y(a)-  1)2/a2 + 1], (25c) 

k4 =- 1 / , / [ ( - y ( a ) -  1)2/a2 + 1]. (25d) 

Note that the eigenvalues of M (a) are real iff c~ ->--1.0, 
A numerical solution was first obtained for the eigenvalues and right 

and left eigenvectors of M (a) over the a interval [0.5, 2.0] by integrating 
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Table 1. Eigenvalues and eigenvectors for a = 2.0. 

Numerical solution 

Normalized Unit normalized Unit normalized 
Eqs. (18) Eqs. (17) analytical solution 

Component Component Component 

1 2 1 2 t 2 

hi 5.0 - -  5.0 - -  5.0 - -  
A2 -1.0 - -  -1.0 - -  -1.0 - -  

xl 0.449584 0.899168 0.447214 0.894427 0.447214 0.894427 
x2 -0.73633 0.73633 -0.707107 0.707107 -0.707107 0.707107 

wl 0 .73633 0 .73633  0.707107 0.707107 0.707107 0.707107 
wa -0.899168 0.449584 -0.894427 0.447214 -0.894427 0.447214 

the unit normalized differential equations (17). A four th-order  Runge -  
Kut ta  method was used for the integration with the a grid intervals set equal 
to 0.01. The integration was initialized by solving (24) for the eigenvalues 
and right and left eigenvectors of M (a) at a = 0.5. As indicated in Table 1, 
the numerical solution obtained using the unit normalized differential 
equations (17) agreed with the analytical unit normalized solution (24) to at 
least six digits. 

A numerical solution was also obtained for the eigenvalues and eigen- 
vectors of M (a) over [0.5, 2.0] by integrating the differential equations (18). 
By initializing the system as before,  we were guaranteed that the magnitudes 
of the right and left eigenvectors xl . . . . .  x ,  and Wl . . . . .  w ,  would be 
positive in some neighborhood of o~ = 0.5, and in fact the magnitudes 
remained positive over  the entire interval [0.5, 2.0]. As indicated in Table  1, 
the eigenvalues were obtained with the same accuracy as before.  In addition, 
a subsequent unit normalization of the eigenvectors obtained via (18) 
yielded the same eigenvectors as obtained via the unit normalized differen- 
tial equations (17). 

As seen f rom (24a) and (24b), the eigenvalues of M ( a )  coalesce at 
a = - 1 . 0  and are complex for o~ < - 1 . 0 .  The unit normalized differential 
equations (17) are integrated f rom 0.5 to -1 .0 ,  using the integration stepsize 
of - 0 .01  for a. Six-digit accuracy for the eigenvalues and eigenvectors was 
obtained over [ -0 .97 ,  0.5], degenerating to approximately two-digit 
accuracy at a = - 1 . 0 .  Similar results were obtained by integrating the 
differential equations (18) from 0.5 to -1 .0 .  
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5. Discussion 

The present paper represents a first step toward the development of a 
computationally feasible procedure for tracking the eigenvalues and right 
and left eigenvectors of a parameterized matrix. Our main motivation has 
been the capability of modern-day computers to integrate, with great speed 
and accuracy, large-scale systems of ordinary differential equations subject 
to initial conditions. The computational feasibility of the initial value 
differential system developed in the present paper is illustrated by a 
numerical example. 

In a subsequent paper, it will be shown that initial-value systems can 
also be developed for tracking a single eigenvalue together with one of its 
corresponding right or left eigenvectors. 
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