
A. Borshchev and A. Filippov. From System Dynamics and Discrete Event to Practical Agent Based Modeling: Reasons, Techniques,
Tools. The 22nd International Conference of the System Dynamics Society, July 25 - 29, 2004, Oxford, England

From System Dynamics and Discrete Event to
Practical Agent Based Modeling: Reasons, Techniques, Tools

Andrei Borshchev & Alexei Filippov
XJ Technologies www.xjtek.com and St.Petersburg Technical University

andrei@xjtek.com

Abstract This paper may be considered as a practical reference for those who wish to add
(now sufficiently matured) Agent Based modeling to their analysis toolkit and may or may
not have some System Dynamics or Discrete Event modeling background. We focus on
systems that contain large numbers of active objects (people, business units, animals,
vehicles, or even things like projects, stocks, products, etc. that have timing, event ordering
or other kind of individual behavior associated with them). We compare the three major
paradigms in simulation modeling: System Dynamics, Discrete Event and Agent Based
Modeling with respect to how they approach such systems. We show in detail how an
Agent Based model can be built from an existing System Dynamics or a Discrete Event
model and then show how easily it can be further enhanced to capture much more
complicated behavior, dependencies and interactions thus providing for deeper insight in
the system being modeled. Commonly understood examples are used throughout the paper;
all models are specified in the visual language supported by AnyLogicTM tool. We view and
present Agent Based modeling not as a substitution to older modeling paradigms but as a
useful add-on that can be efficiently combined with System Dynamics and Discrete Event
modeling. Several multi-paradigm model architectures are suggested.

Keywords: multi-paradigm modeling, agent based modeling, system dynamics, AnyLogic

1. Simulation Modeling: Abstraction Levels, Major Paradigms
To make sure we all agree on terms we use please take a look at Figure 1. Modeling is a
way of solving problems that occur in the real world. It is applied when prototyping or
experimenting with the real system is expensive or impossible. Modeling allows you to
optimize systems prior to implementation. Modeling includes the process of mapping the
problem from the real world to its model in the world of models, – the process of
abstraction, – model analysis and optimization, and mapping the solution back to the real
system. We can distinguish between analytical and simulation models. In analytical, or
static, model the result functionally depends on the input (a number of parameters); it is
possible to implement such model in a spreadsheet. However, analytical solution does not
always exist, or may be very hard to find. Then simulation, or dynamic, modeling may be
applied. A simulation model may be considered as a set of rules (e.g. equations, flowcharts,
state machines, cellular automata) that define how the system being modeled will change in
the future, given its present state. Simulation is the process of model “execution” that takes
the model through (discrete or continuous) state changes over time. In general, for complex
problems where time dynamics is important, simulation modeling is a better answer.

http://www.xjtek.com/
mailto:andrei@xjtek.com

A. Borshchev and A. Filippov. From System Dynamics and Discrete Event to Practical Agent Based Modeling: Reasons, Techniques,
Tools. The 22nd International Conference of the System Dynamics Society, July 25 - 29, 2004, Oxford, England

The Problem

Real World

World of Models

The Solution

The Model The Optimized Model

?
Experiments

Simulation

Analytical

Y = f(X)

time

Figure 1: Analytical (Static) and Simulation (Dynamic) Modeling

Levels of Abstraction in Simulation Modeling Figure 2 shows the range of problems that
are efficiently addressed with simulation modeling. The problems are arranged on the scale
with respect to the typical level of abstraction of the corresponding models.

At the detailed level we have so-to-say “physical” modeling where individual objects with
exact sizes, distances, velocities and timings matter. Mechatronic and control systems,
micro-level traffic simulations are located at the very bottom of this chart. Factory floor
models with conveyors and stations are located a bit higher because there one typically
abstracts away from exact physical trajectories and uses average timings. Same applies to
warehouse logistics models with storages, transporters, loading and unloading operations.

High Abstraction
Less Details
Macro Level

Strategic Level

Middle
Abstraction

Medium Details
Meso Level

Tactical Level

Low Abstraction
More Details
Micro Level
Operational

Level

Marketplace & Competition Population Dynamics

R&D Project Management

Ecosystem Manpower & Personnel Health Economics

Supply Chain

Waste Management

Transportation

Traffic Macro Models

Electrical Power Grid Call Center
Emergency Department

Traffic Micro Models

Computer Hardware
Pedestrian Movement

Warehouse Factory Floor

Automotive Control System

Aggregates, Global Causal Dependencies, Feedback Dynamics, …

Individual objects, exact sizes, distances, velocities, timings, …

Asset Management

Figure 2: Applications of Simulation Modeling on Abstraction Level Scale

A. Borshchev and A. Filippov. From System Dynamics and Discrete Event to Practical Agent Based Modeling: Reasons, Techniques,
Tools. The 22nd International Conference of the System Dynamics Society, July 25 - 29, 2004, Oxford, England

Business process and service systems modeling typically operate with schedules and
timings, although physical movement is present sometimes, e.g. emergency department
room layout would be taken into account.

Network and transportation simulation deals with schedules, latencies, capacities and
loading/unloading/processing times. Macro level traffic and transportation models may not
consider individual vehicles or packets, they use their volumes instead. Supply chains are
being modeled at very different abstraction levels, so this item could be placed anywhere in
Middle to High abstraction range.

Problems at the top of the chart are typically approached in terms of aggregate values,
global feedbacks, trends, etc. Individual elements such as people, parts, products, vehicles,
animals, houses are never considered there. The model of system dynamics at this level is
typically based on reasoning like “if the number of jobs increases then we will have
increase of in-migration”.

High Abstraction
Less Details
Macro Level

Strategic Level

Middle
Abstraction

Medium Details
Meso Level

Tactical Level

Low Abstraction
More Details
Micro Level
Operational

Level

Aggregates, Global Causal Dependencies, Feedback Dynamics, …

Individual objects, exact sizes, distances, velocities, timings, …

“Discrete
Event” (DE)

• Entities (passive
objects)

• Flowcharts and/or
transport
networks

• Resources

System Dynamics (SD)
• Levels (aggregates)
• Stock-and-Flow diagrams
• Feedback loops

Agent Based
(AB)

• Active objects
• Individual

behavior rules
• Direct or indirect

interaction
• Environment

models

Dynamic Systems (DS)
• Physical state variables
• Block diagrams and/or

algebraic-differential equations

Mainly discrete Mainly continuous

Figure 3: Approaches (Paradigms) in Simulation Modeling on Abstraction Level Scale

Major Paradigms in Simulation Modeling The major approaches (paradigms) in
simulation modeling are shown in the same scale in Figure 3: System Dynamics (SD),
“Discrete Event” (DE) and Agent Based (AB). SD and DE are traditional, AB is relatively
new. There is also Dynamic Systems (DS) field, but it stays a bit aside as it is used to
model and design “physical” systems. Technically, SD and DS deal mostly with continuous
processes whereas “DE” (by which we mean all numerous descendants of GPSS) and AB
work mostly in discrete time, i.e. jump from one event to another.

Consider how approaches correspond to abstraction. Dynamic Systems or “physical”
modeling is at the bottom of the chart. System Dynamics dealing with aggregates is located
at the highest abstraction level. Discrete event modeling is used at low to middle
abstraction. As for Agent Based modeling, this technology is being used across all

A. Borshchev and A. Filippov. From System Dynamics and Discrete Event to Practical Agent Based Modeling: Reasons, Techniques,
Tools. The 22nd International Conference of the System Dynamics Society, July 25 - 29, 2004, Oxford, England

abstraction levels. Agents may model objects of very diverse nature and scale: at the
“physical” level agents may be e.g. pedestrians or cars or robots, at the middle level –
customers, at the highest level – competing companies.

SD, DS and DE historically have been taught at universities to very distinct groups of
students such as management, control engineers and industrial engineers. As a result, there
currently exist three separate practitioners' communities (three different worlds) that never
talk to each other. AB until recently has been almost purely academic topic. However, the
increasing demand for global business optimization have caused leading modelers to look
at AB and combined approaches to get deeper insight into complex interdependent
processes having very different natures. Therefore, there is a request for platforms that
would allow for integration and efficient cooperation between different modeling
paradigms.

 AdoptersPotential
Adopters

Adoption
from

Advertising

Adoption
from

Word of Mouth

Adoption
Rate

Advertising
Effectiveness Contact

Rate

Adoption
Fraction

Total
Population

B

B

R

Stocks, Flows and Their Causal Relationships
Structure as Interacting Feedback Loops

d(Potential Adopters)/dt =
 - Adoption Rate

d(Adopters)/dt =
 Adoption Rate

Adoption Rate =
 Adoption from Advertising +
 Adoption From Word of Mouth

Adoption from Advertising =
 Advertising Effectiveness *
 Potential Adopters

Adoption from Word of Mouth =
 Contact Rate * Adoption Fraction *
 Potential Adopters * Adopters
 / Total Population

Mathematical Model

+ +

+

+

+ + +

-
+

SD

[stock] [stock]

[flow]

Figure 4: Classic System Dynamics Model: Bass Diffusion in VensimTM

System Dynamics Developed by an electrical engineer Jay W. Forrester in the 1950s,
System Dynamics is “the study of information-feedback characteristics of industrial activity
to show how organizational structure, amplification (in policies), and time delays (in
decisions and actions) interact to influence the success of the enterprise” [Forrester 1958
and 1961]. The range of SD applications includes also urban, social, ecological types of
systems. In SD the real-world processes are represented in terms of stocks (e.g. of material,
knowledge, people, money), flows between these stocks, and information that determines
the values of the flows. SD abstracts from single events and entities and takes an aggregate
view concentrating on policies. To approach the problem in SD style one has to describe
the system behavior as a number of interacting feedback loops, balancing or reinforcing,
just like shown in Figure 4, and delay structures.

Bass Diffusion Model In the classic textbook model of product diffusion (Figure 4, [Sterman, 2000])
Potential Adopters become Adopters at Adoption Rate that depends on advertising and word of mouth
promotion. The impact of advertising is modeled as a constant percent of Potential Adopters (namely,
Advertising Effectiveness = 0.011 in this paper) becoming Adopters each time unit. Therefore, the
corresponding summand of Adoption Rate equals Potential Adopters * Advertising Effectiveness. For

A. Borshchev and A. Filippov. From System Dynamics and Discrete Event to Practical Agent Based Modeling: Reasons, Techniques,
Tools. The 22nd International Conference of the System Dynamics Society, July 25 - 29, 2004, Oxford, England

word of mouth adoption it is assumed that everybody contacts everybody else in this population group.
The number of contacts per person per time unit is Contact Rate (100). In case one of the two people in
contact is adopter and another one – not yet, the latter one will adopt with the probability Adoption
Fraction (0.015). Then, during a time unit, each adopter will convert Adopters * Contact Rate * Adoption
Fraction * [Potential Adopters / (Potential Adopters + Adopters)] people into Adopters. The expression in
the square brackets is the probability of another person being not already adopter.

Mathematically, an SD model is a system of differential equations. Important things to
know about SD modeling: a) as long as the model works only with aggregates, the items in
that same stock are indistinguishable, they do not have individuality, and b) the modeler has
to think in terms of global structural dependencies and has to provide accurate quantitative
data for them. SD modeling is supported by 3-4 tools that are very much alike.

Gravity

-9.81

Blocks (Integrator, Gain, Delay …)
Block Diagram with Feedback Loops

d(Velocity)/dt = - Gravity

d(Position)/dt = Velocity

When(Position <= 0 and Velocity < 0)
 Velocity = - Velocity

Mathematical Model

[15]

-0.8

1
s

1
s

Velocity

Position

Elasticity

[integrator]

[integrator]

[constant]

[initial condition]

[gain]

DS

Figure 5: Dynamic System Model: Bouncing Ball in MATLABTM SimulinkTM

Dynamic Systems modeling is actually the ancestor of System Dynamics. It is used in
mechanical, electrical, chemical, and other technical engineering disciplines as a standard
part of the design process. Block diagram like the MATLABTM SimulinkTM one shown in
Figure 5 is a typical graphical modeling language that a control engineer would use, there
are other graphical as well as textual languages for specific domains. The underlying
mathematical model of a dynamic system would consist of a number of state variables and
algebraic differential equations of various forms over these variables. In contrast with the
SD, integrated variables here have direct “physical” meaning: location, velocity,
acceleration, pressure, concentration, etc., they are inherently continuous, and are not
aggregates of any entities. The mathematical diversity and complexity in dynamic systems
domain can be much higher than in system dynamics, and the tools used for dynamic
system simulation could easily solve any SD problem with even much better accuracy than
SD tools. However, DS tools have been developed to be embedded in the engineering
design cycle and therefore system dynamics modelers would feel uncomfortable if they
used them because DS tools do not support the way SD modelers think.

In our further investigation below we will not be considering dynamics systems simulation
because it has quite distinct application area where other methods can rarely be applied
(although there are attempts to model, e.g. molecules of gas as agents)

A. Borshchev and A. Filippov. From System Dynamics and Discrete Event to Practical Agent Based Modeling: Reasons, Techniques,
Tools. The 22nd International Conference of the System Dynamics Society, July 25 - 29, 2004, Oxford, England

Figure 6: Discrete Event Model: Bank Kiosk in ArenaTM

Entities and Resources (Passive Objects)
Flowchart Blocks (Queues, Delays, etc.) drive the model

[source]

DE

Customers
Arrive

Need to
see teller

?

Teller lines
& service

[decision] [process]
[sink]

Customers
Exit

Use
ATM

[queue+delay]

Need
addtn. help

?

[decision]
Tellers

[resource]

Y

N

Y

N

Discrete Event We will reserve the term “discrete event modeling” for the modeling
approach based on the concept of entities, resources and block charts describing entity flow
and resource sharing, see Figure 6. This approach roots to 1960s when Geoffrey Gordon
conceived and evolved the idea for GPSS and brought about its IBM implementations
[Gordon 1961]. Entities (transactions in GPSS) are passive objects that represent people,
parts, documents, tasks, messages, etc. They travel through the blocks of the flowchart
where they stay in queues, are delayed, processed, seize and release resources, split,
combined, etc. The classic (ArenaTM-like) view of the discrete event flowchart is shown in
Figure 6. There are many (about a hundred) commercial tools that support this modeling
style, some are general purpose, some target particular niches: service, manufacturing,
logistics, business processes, call centers, etc. Their user interfaces may look very different
because of tool specialization, but underneath they all have similar discrete event
simulation engines that push entities through blocks. For the purpose of this investigation,
we would like to underline that DE modeling may be considered as definition of a global
entity processing algorithm, typically with stochastic elements.

Agent Based Many different developments have been going on under the slogan of Agent
Based modeling in very different disciplines like artificial intelligence, complexity science,
game theory, etc. There are no universally accepted definitions in this area, and people still
discuss what kind of properties an object should have to “deserve” to be called an “agent”:
pro- and re-activeness, spatial awareness, ability to learn, social ability, “intellect”, etc.
[Schieritz and Milling 2003]. We are not going to suggest more definitions or argue here
because agents we use in our modeling practice are very diverse, but we would like to
stress just one feature of agent based models: they are essentially decentralized. Compared
to SD or DE models, there is no such place in AB model where the global system behavior
(dynamics) would be defined. Instead, the modeler defines behavior at individual level, and
the global behavior emerges as a result of many (tens, hundreds, thousands, millions)
individuals, each following its own behavior rules, living together in some environment and
communicating with each other and with the environment. That is why AB modeling is also
called bottom-up modeling. You can view the Figure 7 as agent based model of country

A. Borshchev and A. Filippov. From System Dynamics and Discrete Event to Practical Agent Based Modeling: Reasons, Techniques,
Tools. The 22nd International Conference of the System Dynamics Society, July 25 - 29, 2004, Oxford, England

population dynamics. In this model a part of the agent behavior is defined as a statechart
(this construct is explained below), and housing, jobs, transport infrastructure, etc. are
represented in the environment model. We will pay more attention to AB modeling in this
presentation because we intend to show where and how this new modeling approach can be
practically applied and how does it compare to SD and DE.

Individual objects with local behavior rules drive the model
Objects interact with each other and environment

[statechart]

AB

Child

Dating

Childbearing

Senior

Agent Behavior Agents Interacting Directly and Indirectly Environment

Figure 7: Agent Based Model Generic Architecture. Behavior (Statechart) in AnyLogicTM

Correspondences between the approaches We will now restrict the scope of our
investigation with the systems that contain large numbers of active objects (people,
business units, animals, vehicles, or even things like projects, stocks, products, etc. that
have timing, event ordering or other kind of individual behavior associated with them). In
the following two sections we are going to illustrate that for that type of systems Agent
Based approach is more general and powerful because it enables to capture more complex
structures and dynamics. The other important advantage is that it provides for construction
of models in the absence of the knowledge about the global interdependencies: you may
know nothing or very little about how things affect each other at the aggregate level, or
what is the global sequence of operations, etc., but if you have some perception of how the
individual participants of the process behave, you can construct the AB model and then
obtain the global behavior. Thus, even if there exists, say, a SD model that answers the
question, it might be much easier to build the AB model. Agent based models are also
typically easier to maintain: model refinements normally result in very local, not global
changes.

2. Correspondence between SD and AB Models
In this section we will investigate the relationships between System Dynamics and Agent
Based models. We will first show how to “re-conceptualize” an existing SD model into an
AB model, and then – how to enhance the AB model to capture more sophisticated
dynamics. The following quick reference will help to understand the technique.

A. Borshchev and A. Filippov. From System Dynamics and Discrete Event to Practical Agent Based Modeling: Reasons, Techniques,
Tools. The 22nd International Conference of the System Dynamics Society, July 25 - 29, 2004, Oxford, England

Statecharts In our modeling practice we extensively use statecharts to specify behavior of agents.
Statechart is actually a state machine with several useful enhancements suggested by David Harel, adopted
by worldwide community and included as a part of the standard UML (The Unified Modeling Language,
[UML]). Statecharts enable you to graphically capture different states of the agents, transitions between
them, events that trigger those transitions, timing, and actions that the agent makes during its lifetime.
Such construct as composite states enables to specify modes of agent operation. Agent may have several
statecharts working in parallel and interacting: this is useful when one models several aspects of the
agent’s life, e.g. education and family. As a general remark we would like to say that while the traditional
(SD and DE) simulation modeling communities have not really generated any new ideas within the last
few decades, the software engineering world has made a huge progress in approaching the complexity of
systems. A good part of that experience has been accumulated as the UML. And although the UML “as is”
cannot be used as a simulation modeling language (due, for example, to the lack of executable semantics,
etc.), such things as separation of structure and behavior, object-orientedness (the concept of classes and
instances, encapsulation), etc. can save a lot of simulation modeler’s time and efforts if applied within the
model design process.

Simple State

State A
Control is always located in one of the simple
states. States have Entry and Exit actions

State B

State C

H

B State D

Composite State
A group of states with common behavior

State E Transition
Can be triggered by an external or internal
event, condition or timeout. Has Action

History Pseudo State
Denotes last visited state in the composite state

Final

Initial

Branch Pseudo State
Specifies conditional branching of transitions

Figure 8: UML Statecharts: A Language for Specification of Event- and Time-Driven Behavior

Let us consider the SD model as the chain of stocks and flows between them and the
“decision rules” part that controls the flows, see Figure 9. The key starting point is to
“disaggregate” the stocks, i.e. to look at the stocks as if they are not “tanks with liquid” but
“boxes” containing discrete items, e.g. balls. These balls will become agents. Put yourself
inside a single ball and watch what is happening. You will discover that you only have two
states State A and State B corresponding to the stock/box you are currently in, and if you
are in State A you will eventually transition to State B. The moment of time at which this
happens (intuitively) depends on the flow rate. The AB model that shows behavior
corresponding to the SD model will consist of a number (Stock A + Stock B) of agents each
executing such statechart. The transition between the states can be implemented in several
ways, two of them shown in Figure 9: synchronous, when the decision is made every time
step dt, and asynchronous when the time delay associated with the transition is calculated
once upon entering State A and may be re-calculated later on depending on the Rate. Note
that in the latter case the notion of time step is not present in the agent based model at all.
Asynchronous agents may be much more efficient computationally than synchronous ones.
In the examples below we will be using asynchronous agents whenever possible. For more
formal description of the technique please see Addendum A.

A. Borshchev and A. Filippov. From System Dynamics and Discrete Event to Practical Agent Based Modeling: Reasons, Techniques,
Tools. The 22nd International Conference of the System Dynamics Society, July 25 - 29, 2004, Oxford, England

 Stock B

Rate

Decision Rules

Stock A

State A

State B
Think of stocks as if they contain discrete items.
Each stock becomes a state of agent’s statechart.
Transitions between states are governed by rates.

Delay (depends on
Rate and may change)

Asynchronous Agent

SD

AB

Synchronous Agent

State A

State B

Time step (dt)

B Decision
(depends on Rate)

N

Y

Figure 9: Re-Conceptualizing a System Dynamics Model into Agent Based Model. General Scheme

Bass Diffusion – Agent Based Version We will now illustrate this technique on a classic
textbook SD model – Bass Diffusion described earlier, see Figure 10. This is simple:

Step 1. For the two stocks we create two states of an agent: Potential Adopter and
Adopter.

Step 2. The two summands of the Adoption Rate will be modeled separately. For the
Adoption from Advertising part we will create a transition from the Potential
Adopters state to Adopters state that is triggered by an exponentially distributed
time delay with the mean value of Advertising Effectiveness. This models the
constant percent of people becoming adopters each time unit because of
advertising, see Addendum for more information.

Step 3. For the Adoption from Advertising part of the flow we will create a periodic
transition for each person being an adopter. That transition will model his contacts
with other people with the Contact Rate. During each contact the adopter will pass
a message “Good stuff – buy it!” to another guy. In case the other one has not yet
adopted, i.e. is in Potential Adopter state, he will transition to Adopter state with
the corresponding probability, hence the second transition from Potential Adopter
to Adopter. Already adopted people will just ignore this message. Please note that
we have implemented this word of mouth less straightforwardly but much more
efficiently by modeling only a successful fraction of contacts (the rate of cyclic
transition is multiplied by Adoption Fraction) and making the effect of receiving
the message by a Potential Adopter deterministic.

A. Borshchev and A. Filippov. From System Dynamics and Discrete Event to Practical Agent Based Modeling: Reasons, Techniques,
Tools. The 22nd International Conference of the System Dynamics Society, July 25 - 29, 2004, Oxford, England

 AdoptersPotential
Adopters

Adoption
from

Advertising

Adoption
from

Word of Mouth

Adoption
Rate

Advertising
Effectiveness Contact

Rate

Adoption
Fraction

Total
Population

B

B

R + +

+

+

+ + +

-
+

Adopter

Potential
Adopter

exponential
Advertising

Effectiveness

Delay:

“Good stuff - Buy it!”
Signal Event:

exponential(Contact Rate * Adoption Fraction)
Delay:

To Random Agent: “Good stuff - Buy it!”

A

Figure 10: Bass Diffusion Model Converted From System Dynamics to Agent Based

The SD model generates the well-known S-shape, and so does the AB model. While the
number of agents is low, the discrete (thus closer to reality and more accurate!) nature of
the model shows well on the chart. If we increase the number of agents, the chart will be
virtually indistinguishable from the SD one.

One of the frequently asked questions is “How many agents can I efficiently simulate?” This certainly
depends on software and hardware one uses, but much more interesting question is “How many agents do
I need to simulate?” For example, if one needs to model the population of a country (like 300,000,000
people), does he need 300 million agents? The answer is: in most cases not necessarily! There are several
techniques of reducing the number of agents to make the simulation computationally efficient yet giving
the correct results. This exciting topic is however outside the scope of this paper.

The re-conceptualization procedure we have just described only makes sense if you wish to
further develop the agent based model, to add more details, e.g. individual memory
(history), agent communication, etc. If the items that are stocked in the SD model are
naturally passive and indistinguishable, you will probably not benefit at all from converting
them to agents. A notable example would be stocks of money: we normally are not
interested in individual dollar history and (at least in the sense of this paper) dollars do not
show any active behavior :)

Potential
Adopters

Potential
Adopters

Adopters

Adopters

SD Simulation Results (AnyLogicTM)

10,000 Agents Simulation Results (AnyLogic

BSD

100 Agents Simulation Results (AnyLogicTM)

TM)

A. Borshchev and A. Filippov. From System Dynamics and Discrete Event to Practical Agent Based Modeling: Reasons, Techniques,
Tools. The 22nd International Conference of the System Dynamics Society, July 25 - 29, 2004, Oxford, England

Let us now refine our model a bit. Let the word of mouth influence of a particular person
(i.e. the fraction of people who will adopt as a result of a contact with that person) depend
on how long ago he has purchased the product. We will assume that soon after the purchase
the adopter “promotes” the product quite actively, and then this influence goes down and
stabilizes at some moderate level, like shown in the lookup function chart in Figure 11.

0.02

Influence vs
Time since purchase

0.03

0.01

0 1 2 3

Adopter

Potential
Adopter

exponential (Advertising Effectiveness)
Delay:

“Good stuff - Buy it!”
Signal Event:

exponential(Contact Rate * Influence(Now – Time Purchased))
Delay:

To Random Agent: “Good stuff - Buy it!”

AB
Time Purchased = Now Time Purchased = Now

Time Purchased
Agent’s local variable

Figure 11: Agent Based Bass Diffusion Model: Capturing Dynamically Changing WOM Influence

Our agent needs only small modifications to capture this: first, we introduce the variable
Time Purchased, then we remember the time when a person becomes an adopter (see
actions of the two transitions from Potential Adopter state) and finally use a lookup
function Influence instead of the constant Adoption Fraction. The resulting behavior is
shown in Figure 11. The curve shapes certainly differ from the previous ones because of
different value of adoption through word of mouth.

Now, here’s the question: can you capture such behavior in SD? The word of mouth
contribution into the Adoption Rate may now be different for any two adopters, and it also
changes over time for an adopter. Therefore aggregating the adopters into one (or any
reasonable finite number) of stocks will distort the results.

Of course, system dynamics have faced that kind of problems long ago, and have even suggested a certain
partial solution, to be more precise – a workaround: a stock containing objects with sufficiently different
properties is decomposed into an array of buckets, and objects move between the buckets as their
properties change. Consider however objects having not one, but several such properties. The array of
buckets grows as a product of dimensions and, after a few steps the number of cells in the array may
easily exceed the number of individual objects in the real world we are modeling [Keenan and Paich
2004]. This obviously makes such system dynamics model senseless (and terribly slow), while the agent
based model will always contain as many objects as needed.

Potential
Adopters

Adopters

10,000 Agents Simulation Results (AnyLogicTM)

A. Borshchev and A. Filippov. From System Dynamics and Discrete Event to Practical Agent Based Modeling: Reasons, Techniques,
Tools. The 22nd International Conference of the System Dynamics Society, July 25 - 29, 2004, Oxford, England

Predator Prey – Agent Based Version We will use different (and maybe more practical)
approach to create an agent based version of another classic SD model – Predator Prey
[Lotka 1925 and Volterra 1926], see Figure 12.

Predator Prey Model is composed of a pair of differential equations that describe predator-prey (or
herbivore-plant, or parasitoid-host) dynamics in their simplest case (one predator population, one prey
population). It was developed independently by Alfred Lotka and Vito Volterra in the 1920's, and is
characterized by oscillations in the population size of both predator and prey, with the peak of the
predator's oscillation lagging slightly behind the peak of the prey's oscillation. The model makes several
simplifying assumptions: a) the prey population has unlimited resources and prey only die when eaten up
by the predator; b) prey is the only source of food for the predator and predators only die because of
starvation; c) predators can consume infinite quantities of prey; and d) there is no environmental
complexity (in other words, both populations are moving randomly through a homogeneous environment).

Lynx * 10

SD Simulation Results (AnyLogicTM)

Hares

d(Hares)/dt = Hare Births – Hare Deaths

Hare Births = Hares * Hare Natality

Hare Deaths = Hare Density * Lynx

Hare Density = Hares / Area

d(Lynx)/dt = Lynx Births – Lynx Deaths

Lynx Births = Lynx * Lynx Natality

Lynx Deaths = Lynx *
 Lynx Mortality(Hare Density)

 Hare

Hare
Births

+
Hare

Natality
Hare

Deaths

 Lynx

Lynx
Births

Lynx
Deaths

Lynx
Natality

Hare
Density

+

+
+

+

-
+

Area

0.4

Lynx Mortality

0.6

0.2

0 50 100 150

Figure 12: The Classic System Dynamics model of Predator Prey

Instead of reproducing this dynamics literally in AB model (as we did with Bass Diffusion),
we will build an agent based model with richer content “directly” from a bit more realistic
set of assumptions. In our model a) hares and lynx both have life expectancy, so they die
because of age as well as because of being eaten up or starving; b) hares and lynx live in
2D space (are “space-aware”); c) hares density is limited, and they only breed if there is
enough space around; d) lynx can only reach hares within a certain geographical range; e)
lynx hunt at a certain rate; f) if lynx cannot find a hare during a hunt it moves; and e) if
lynx does not eat a hare within a certain period of time, it dies.

In Figure 13 both Hare and Lynx agents have variable Location that stores their current
location in 2D space; initial location is random. It is updated when the agent moves and
affects its behavior. During their lifetime lynx and hares have babies with a certain
frequency – this is modeled by the cyclic timers Births that create new agents; in case of
hare births depend upon local density of hares. The hare statechart is quite simple: two
states Alive and Dead and two transitions between them corresponding to the two reasons
of dying: age and being killed by the lynx (message sent directly from a lynx to the hare).

A. Borshchev and A. Filippov. From System Dynamics and Discrete Event to Practical Agent Based Modeling: Reasons, Techniques,
Tools. The 22nd International Conference of the System Dynamics Society, July 25 - 29, 2004, Oxford, England

Lynx statechart is a bit more complicated. Lynx hunts each Lynx Hunting Period and if it
finds no hares (that probabilistically depends on the hare density in the lynx neighborhood),
it moves (changes Location) but stays in the Hungry state. In case it kills a hare (sends the
“I ate you!” message), it exits and immediately re-enters the Hungry state, which
(according to the statecharts semantics) causes “restart” of the delay transition Lynx Hunger
Death Threshold. Therefore lynx needs no less than one hare per Lynx Hunger Death
Threshold to survive.

Alive

exponential (Hare Natality)

Cyclic Timer:

“I ate you!”
Signal Event:

If local density allows,
create new Hare nearby.

Delete this agent

Simulation Results (AnyLogicTM):

Location

Variable:

Hare:

Dead

Hare Life Expectancy
Delay:Births

Figure 13: Agent Based Predator Prey Model: Making More Realistic Assumptions

The simulation shows the oscillating behavior similar to the SD model with lynx population
peaks lagging behind the hare population peaks. Subject to the model parameters, lynx (or
hares and lynx together) may become totally extinct, which never happens in the SD model
due to its continuous nature. The oscillations are stochastic because of the random and
spatial nature of the model. In this agent based model you are able to view the 2D picture
and trace a single hare, lynx, their families, or generations.

Lynx:

exponential (Lynx Natality)

Cyclic Timer:

Create new Lynx at the
same location.

Location
Variable:

Births
B

Alive

Hungry

Dead
Delete this agent

Lynx Life Expectancy
Delay:

Lynx Hunger Death Threshold
Delay:

No luck

Move to a
new location

Lynx Hunting Period
Delay:

Found a Hare in the
neighborhood (probabilistic)

To the Hare: “I ate you!”
[resets this transition:]

<< Animation and

Hares

Lynx

A. Borshchev and A. Filippov. From System Dynamics and Discrete Event to Practical Agent Based Modeling: Reasons, Techniques,
Tools. The 22nd International Conference of the System Dynamics Society, July 25 - 29, 2004, Oxford, England

3. Correspondence between DE and AB Models
We will now make a (less detailed) investigation into the relationships of Discrete Event
and Agent Based modeling. In DE model we already have individual entities, which makes
life a bit easier: those entities can naturally become agents. The DE entities are however
described as passive objects and the rules that drive the system are concentrated in the
flowchart blocks. The exercise is to describe the process from the entity’s viewpoint, thus
decentralize (some of) the rules. Again, this only makes sense in case you wish to model
some extra individual behavior later on that is hard to capture in DE style.

Arrival

Resource

Y
N

Service Decision

Delay Exit

Agent (Entity)

Wait Resource

In Service

B
N

Y

Delayed

Request Service

Resource granted

Finished

Delay Time

Decision

Busy

Idle

Released
Seized

Agent (Resource Unit)

 Dispatcher

DE
AB

Look at the process from an entity (or resource unit) viewpoint.
Each entity (resource unit) becomes an agent.
A kind of Dispatcher may be needed to arrange interactions.

Delete this agent

Release Resource

Figure 14: Re-conceptualizing a Discrete Event Model into an Agent Based Model. General Scheme

Let us consider a simple service system Figure 14 where entities (people, transactions, etc.)
enter the system, get serviced (resource unit required) one or more times depending on their
properties, then make a delay and then exit the system. Entities will become agents. The
event of entity generation corresponds to the creation of an agent. Upon creation, the agent
will request service (but not necessarily get it immediately) and go to the state Wait
Resource (corresponds to the entity waiting in the queue at the block Service). When the
resource is granted, the agent proceeds to state In Service (corresponds to the service delay)
and, when finished, decides whether to request service again or proceed to the Delayed
state. When completed, the agent destroys itself, which corresponds to the entity exiting the
flowchart.

Resource units could also be modeled as agents if needed, in which case each resource unit
will have e.g. two states: Idle and In Use. To co-ordinate agent’s access to the resources a
central Dispatcher may be needed. Such dispatcher may be considered as a part of the
environment model that implements indirect communication between agents, e.g. queuing.

A. Borshchev and A. Filippov. From System Dynamics and Discrete Event to Practical Agent Based Modeling: Reasons, Techniques,
Tools. The 22nd International Conference of the System Dynamics Society, July 25 - 29, 2004, Oxford, England

Alternatively, agents may “see each other” and communicate directly to manage resource
access.

Wait Resource

In Service

B
N

Y

Delayed

Request Service

Resource granted

Finished

Delay Time

Decision

Delete this agent

Release Resource

Emergency Process…

Alarm!

Normal

Normal process

Emergency process

Figure 15: Agent Based Service Model: Capturing Events Associated with Individuals

Similarly to what we did with the Bass Diffusion model, we will now slightly change the
definition of the problem in the service model. Suppose an event may occur for an agent
and cause him to leave the system at any time regardless the stage of the process, see Figure
15. This may be e.g. a phone call, a heart attack, an alarm signal, etc. In the Agent Based
model this is captured by simply enclosing all states in a composite state Normal denoting
normal operation and adding a transition from that state to the Emergency Process state
triggered by the event (of course, one has to define also cancellation of the resource
requests issued by that agent where appropriate). In the flowchart languages such
specification change would be either impossible to capture or require the modeler to insert
code in many places across several blocks.

4. Tools Available. AnyLogic – Multi-Paradigm Simulation Tool
Almost all the existing tools for simulation modelers are designed to support some
particular modeling paradigm, please see Figure 16. There are just about four tools for SD.
There are tens of different tools for DE modeling. The latter is explained by the fact that
Discrete Event modeling as a discipline is not as rigorously defined as SD and there are a
lot of DE “dialects” tailored for particular applications. DS world is very much dominated
by MATLAB Simulink. As for agents, until recently, they were toys played around within
the academic community by means of coding in Java or C++, so there were no commercial
tools, just university written libraries.

AnyLogic [AnyLogic] – the tool that we and our partners use – historically was developed
not by simulation modelers but by people with background in distributed systems,
concurrency theory and computer science. Therefore none of the classical simulation
modeling paradigms was used as a foundation. Instead, approaches and languages designed

A. Borshchev and A. Filippov. From System Dynamics and Discrete Event to Practical Agent Based Modeling: Reasons, Techniques,
Tools. The 22nd International Conference of the System Dynamics Society, July 25 - 29, 2004, Oxford, England

to handle complexity and adopted in the software engineering world were implemented. It
turned out that stock-and-flow diagrams and flowcharts are naturally expressed in the
object-oriented core language of AnyLogic, and there is a lot of value added even for those
who stay within the classical modeling styles: compact structured representation, flexible
data definition, etc. But the most exciting thing is the ability to rapidly compose industrial-
strength agent based models within the same visual environment. AnyLogic supports ready-
to-use constructs for defining agent behavior, communication, environment model, and has
rich visualization capabilities. Moreover, AnyLogic enables one to specify different parts of
the model using different paradigms thus providing for more adequate modeling of large
and complex systems.

MATLAB™
VisSim™
LabView™
Easy 5™
…

[Academic
 software:]
Swarm
RePast

Arena™
Extend™
SimProcess™
AutoMod™
PROMODEL™
Enterprise
 Dynamics™
FlexSim™
eMPlant™
…

VenSim™
PowerSim™
iThink™
ModelMaker™

AnyLogic™ – Multi-Paradigm Simulation Tool

SD DE AB DS

Figure 16: Tools for Simulation Modeling

5. Examples of Practical Applications
Alcohol Use Dynamics In this model developed in cooperation with Research Triangle
Institute International [see also Bobashev et al 2004] we investigate people’s attitude
towards alcohol, life expectancy and the corresponding healthcare expenses. We distinguish
between the four possible states of a person with respect to alcohol use: Never User,
Recreational User, Addict and Quitter, see Figure 17. The transitions between the states are
probabilistic delays. For example, Initiation delay is a sample of Initiation Time
Distribution that, in turn, is formed on the basis of statistical data that was available,
namely the probability of starting drinking alcohol at a certain age. Same applies for Death
Time Distribution, but that may change dynamically during the person’s lifetime depending
on whether and how the person drinks. Please notice that in this model agents do not
interact with each other.

Two population groups are being compared: one with "natural" dynamics of alcohol usage
and another one being intervened. Intervention (that may be e.g. a change of law, a
promotion campaign, etc. preventing people from starting using alcohol or convincing users
to quit) is modeled as change in initiation and quitting probabilities.

A. Borshchev and A. Filippov. From System Dynamics and Discrete Event to Practical Agent Based Modeling: Reasons, Techniques,
Tools. The 22nd International Conference of the System Dynamics Society, July 25 - 29, 2004, Oxford, England

Sample simulation results (the number of non-users, users, addicts and quitters vs. age) are
shown in the two timed stack charts on the right. The intervened group in this case has
twice lower initiation probabilities and twice higher quitting probabilities. People in the
intervened group live longer and spend less healthcare resources, the exact numbers shown
in the figure. Models like that can be used as decision support tools in the healthcare policy
development.

Never User

Recreational User

Addict

Quitter

User

Alive

Dead

Initiation

Addiction

Quitting

Death Never
users

Recreational
users

Addicts Quitters

Annual cost

Normal Group

Intervened Group

No. of people Age

A Person

No. of people Age

Total man*years: 55922

Total man*years: 65813

Initiation rates twice lower,
quitting rates twice higher

Birth Date

Figure 17: Agent Based Model of Alcohol Use Dynamics

Dynamics of Hispanic Population Acculturation and Behavior This model [Wallis,
Paich and Borshchev 2004] was developed by Decisio Consulting [Decisio] for Synthesis
Alliance. In recent US Census data widely reported in the press “Hispanics” have become
the largest minority group in the US. Using simulation modeling technology the modelers
look at some of the structural forces that shape the characteristics of the Hispanic
population.

The model creates a simulated Hispanic population whose level of acculturation to the
broader population of which it is a part dynamically varies according to individual choice.
The modeling technique used draws on both System Dynamic and Agent based paradigms.
The representative Hispanic population is disaggregated down to the individual level as
individual agents. Each agent makes choices stochastically as modulated by its current state
and the outside environment that it is in. The essence of being “Hispanic” is rooted in
cultural attributes that are transmitted through the population by agent mobility and other
mechanisms.

While some aspects of an agent’s state are represented discretely the modelers also draw on
the well developed System Dynamics concepts of modeling “soft” variables to represent the
accumulation and decay of cultural attributes within an agent. Also in the System Dynamics
tradition the global level feedback structures that shape agent level behavior are identified.
Finally, innovative data visualization is employed to expose the system’s dynamic behavior
to the audience in a compelling fashion.

A. Borshchev and A. Filippov. From System Dynamics and Discrete Event to Practical Agent Based Modeling: Reasons, Techniques,
Tools. The 22nd International Conference of the System Dynamics Society, July 25 - 29, 2004, Oxford, England

The model helps to find that dynamically complex behavior endogenously emerges in the
population with temporally stable population sub-segments developing. The underlying
dynamics that create these segments and the segments themselves are of interest to those
who want a deeper understanding of the Hispanic population. In addition, most of the
structures captured in this model are broadly applicable to studies of population and
cultural dynamics and are not limited to the Hispanic population.

A Person

Education

Life Phase

Neighborhood

Purchase Funnel

1st 2nd 3rd 4th 5thGenerations:

Acculturation level in 2013: … and under alternative assumptions

Figure 18: Agent Based Model of Dynamics of Hispanic Population Acculturation and Behavior

6. Conclusion. Which Approach to Use?
We have seen that in general using AB approach you are able to capture more real life
phenomena than with SD or DE approach. This does not mean however AB is a
replacement for SD or DE modeling. There are a lot of applications where SD or DE model
can efficiently solve the problem, moreover, agent based modeling for many of such
applications will not make much sense being less efficient, harder to develop, or simply not
matching the nature of the problem. Whenever this is the case, traditional approaches

A. Borshchev and A. Filippov. From System Dynamics and Discrete Event to Practical Agent Based Modeling: Reasons, Techniques,
Tools. The 22nd International Conference of the System Dynamics Society, July 25 - 29, 2004, Oxford, England

should be used without hesitation, and there are many off-the-shelf commercial tools
supporting these approaches, AnyLogic being one of them.

Agent based modeling is for those who wish to go beyond the limits of SD and DE
approaches [see also Keenan and Paich 2004], especially in the case the system being
modeled contains active objects (people, business units, animals, vehicles, or projects,
stocks, products, etc.) with timing, event ordering or other kind of individual behavior. For
that kind of systems AnyLogic will not only enable you to develop agents efficiently with
minimum coding required, but also support your partial or full migration from legacy stock
and flow diagrams or process flowcharts to agents.

You should also consider using different modeling paradigms for different parts of the
simulation model. Some examples of multi-paradigm model architectures are given in
Figure 19. The top one may be found in many papers on supply network simulation
[Schieritz and Grosler 2003]: the processes inside the company are modeled in system
dynamics terms, whereas the communication between the companies is essentially discrete.
In the middle the model of e.g. a hospital process is extended to capture the bigger
lifecycles of patients and staff. At the bottom agents (people or households) live in the
environment (jobs, housing, infrastructure, etc.) whose dynamics is described in SD terms.

…

Agents (e.g. people or
households) live in an

Environment modeled in
System Dynamics way

Agents (e.g. customers or
patients) interact with other
agents (staff) in a Discrete

Event flowchart

…

System Dynamics Sub-
Models inside discretely

communicating Agents (e.g.
producers in supply network)

Figure 19: Multi-Paradigm Model architectures

A. Borshchev and A. Filippov. From System Dynamics and Discrete Event to Practical Agent Based Modeling: Reasons, Techniques,
Tools. The 22nd International Conference of the System Dynamics Society, July 25 - 29, 2004, Oxford, England

7. References
Forrester, Jay. 1958. Industrial Dynamics: A Major Breakthrough for Decision Makers.

Harvard Business Review, Vol. 36, No. 4, 37-66.

Forrester, Jay. 1961. Industrial Dynamics. Cambridge, MA: MIT Press.

Sterman, John. 2000. Business Dynamics: Systems Thinking and Modeling for a Complex
World. McGraw Hill.

Lotka, Alfred J. 1925. Elements of physical biology. Baltimore: Williams & Wilkins Co.

Volterra, Vito. 1926. Variazioni e fluttuazioni del numero d'individui in specie animali
conviventi. Mem. R. Accad. Naz. dei Lincei. Ser. VI, vol. 2.

Gordon, Geoffrey. 1961. A General Purpose Systems Simulation Program. McMillan NY,
Proceedings of EJCC, Washington D.C., 87-104.

Schelling, Thomas. 1978. Micromotives and Macrobehavior. W. W. Norton and Co.

Bobashev, Georgiy, Zule, William, Root, Elizabeth, Wechsberg, Wendee, Borshchev
Andrei, and Filippov, Alexei. 2004. Geographically-Enhanced Mathematical
Models of HIV Dynamics. NIDA Symposium on AIDS, Cancer and Related
Problems, St. Petersburg, Russia.

Bobashev, Georgiy, Zule, William, Root, Elizabeth, Wechsberg, Wendee, Borshchev
Andrei, and Filippov, Alexei. 2004. Scalable Mathematical Models for Substance
Use: From Social Networks to the Whole Populations. The College on Problems of
Drug Dependence 66th Annual Meeting, San Juan, Puerto Rico.

Wallis, Lyle, Paich, Mark, and Borshchev, Andrei. 2004. Agent Modeling of Hispanic
Population Acculturation and Behavior. The 3rd International Conference on
Systems Thinking in Management (ICSTM 2004), Philadelphia, Pennsylvania,
USA.

Schieritz, Nadine, and Milling, Peter. 2003. Modeling the Forest or Modeling the Trees - A
Comparison of System Dynamics and Agent-Based Simulation. The 21st
International Conference of the System Dynamics Society, New York, USA.

Schieritz, Nadine, and Grosler, Andreas. 2003. Emergent Structures in Supply Chains – A
Study Integrating Agent-Based and System Dynamics Modeling. The 36th Annual
Hawaii International Conference on System Sciences, Washington, USA.

Solo, Kirk, and Paich, Mark. 2004. A Modern Simulation Approach for Pharmaceutical
Portfolio Management. International Conference on Health Sciences Simulation
(ICHSS'04), San Diego, California, USA. Available from
http://www.simnexus.com/SimNexus.PharmaPortfolio.pdf.

Keenan, Philip, and Paich, Mark. 2004. Modeling General Motors and the North American
Automobile Market. The 22nd International Conference of the System Dynamics
Society, Oxford, England

UML – The Unified Modeling Language. http://www.uml.org.

http://www.simnexus.com/SimNexus.PharmaPortfolio.pdf
http://www.uml.org/

A. Borshchev and A. Filippov. From System Dynamics and Discrete Event to Practical Agent Based Modeling: Reasons, Techniques,
Tools. The 22nd International Conference of the System Dynamics Society, July 25 - 29, 2004, Oxford, England

AnyLogic. http://www.anylogic.com.

Decisio Consulting. http://www.decisio.net.

http://www.anylogic.com/
http://www.decisio.net/

A. Borshchev and A. Filippov. From System Dynamics and Discrete Event to Practical Agent Based Modeling: Reasons, Techniques,
Tools. The 22nd International Conference of the System Dynamics Society, July 25 - 29, 2004, Oxford, England

Addendum. Correspondence of SD and AB Models

Rate is constant
Value of A

State A

Delay = <agent #> / R

Deterministic Agent

t

A0

A0/R0

t

A0

A0/R0

State A

Delay = uniform(0, A0/R)

Probabilistic Agent

Delay PDF

Case A:

[Delay is calculated once
upon entering State A]

[Delay is calculated once
upon entering State A]

Value of A

0

State A

Delay = exponential(C)

[Delay is calculated once
upon entering State A]

 A
R

Value of A

Rate is
proportional to
the value of A

Case B:

 A
R = C*A

Delay
PDF

A0

t

Rate changes at
discrete point of
time

Rate change:

State A

Delay = uniform(0,
<# of agents in state A>/R)

[Delay is calculated each
time agent enters State A]

t

A0

t10

R1

R2
A1

Delay PDF

Value of A

R changes at t1
[causes re-calculation
of Delay]

State A

Delay = exponential(C)

[Delay is calculated each
time agent enters State A]

t

A0

t10

A*C1

A*C2

Value of A

C changes at t1
[causes re-calculation
of Delay]

[constant rate]

[proportional rate] Delay PDF

Figure 20: Correspondence of SD and AB Models. Constant and Proportional Rates

A. Borshchev and A. Filippov. From System Dynamics and Discrete Event to Practical Agent Based Modeling: Reasons, Techniques,
Tools. The 22nd International Conference of the System Dynamics Society, July 25 - 29, 2004, Oxford, England

Births

Case C:

 A B

 B
R = C*B

R = C*B

Value of B

0

B0

t

State B

Delay = exponential(C)

Create New Agent

Forced Conversion

State B

Delay = exponential(C)

To Random Agent in State A: “Become B!”

State A

Signal Event “Become B!”

Case D:

 A B
R = C*A*B

Internal Influence
State B

Delay = exponential(C)

To Random Agent in Any State: “Become B!”

State A

Signal Event “Become B!”

 A

External Influence

R = C*G

 G

State G

Delay = exponential(C)

To Random Agent in State A: “Go!”

State A

Signal Event “Go!”

Compositionality:

 A
R = C1*A + C2*A + f(…)

State A

Delay = exponential(C1)
Delay = exponential(C2)

Delay depends on f(…)

Figure 21: Correspondence of SD and AB Models. Multiple Stocks. Compositionality

	1. Simulation Modeling: Abstraction Levels, Major Paradigms
	2. Correspondence between SD and AB Models
	3. Correspondence between DE and AB Models
	4. Tools Available. AnyLogic – Multi-Paradigm Simulation Tool
	5. Examples of Practical Applications
	6. Conclusion. Which Approach to Use?
	7. References
	Addendum. Correspondence of SD and AB Models

