
RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

1. DISCRETE RANDOM VARIABLES

1.1. Definition of a Discrete Random Variable. A random variable X is said to be discrete if it can
assume only a finite or countable infinite number of distinct values. A discrete random variable
can be defined on both a countable or uncountable sample space.

1.2. Probability for a discrete random variable. The probability that X takes on the value x, P(X=x),
is defined as the sum of the probabilities of all sample points in Ω that are assigned the value x. We
may denote P(X=x) by p(x) or pX(x). The expression pX (x) is a function that assigns probabilities
to each possible value x; thus it is often called the probability function for the random variable X.

1.3. Probability distribution for a discrete random variable. The probability distribution for a
discrete random variable X can be represented by a formula, a table, or a graph, which provides
pX (x) = P(X=x) for all x. The probability distribution for a discrete random variable assigns nonzero
probabilities to only a countable number of distinct x values. Any value x not explicitly assigned a
positive probability is understood to be such that P(X=x) = 0.

The function pX(x)= P(X=x) for each x within the range of X is called the probability distribution
of X. It is often called the probability mass function for the discrete random variable X.

1.4. Properties of the probability distribution for a discrete random variable. A function can
serve as the probability distribution for a discrete random variable X if and only if it s values,
pX (x), satisfy the conditions:

a: pX(x) ≥ 0 for each value within its domain
b:

∑
x pX(x) = 1 , where the summation extends over all the values within its domain

1.5. Examples of probability mass functions.

1.5.1. Example 1. Find a formula for the probability distribution of the total number of heads ob-
tained in four tosses of a balanced coin.

The sample space, probabilities and the value of the random variable are given in table 1.
From the table we can determine the probabilities as

P (X = 0) =
1
16

, P (X = 1) =
4
16

, P (X = 2) =
6
16

, P (X = 3) =
4
16

, P (X = 4) =
1
16

(1)

Notice that the denominators of the five fractions are the same and the numerators of the five
fractions are 1, 4, 6, 4, 1. The numbers in the numerators is a set of binomial coefficients.

1
16

=
(

4
0

)
1
16

,
4
16

=
(

4
1

)
1
16

,
6
16

=
(

4
2

)
1
16

,
4
16

=
(

4
3

)
1
16

,
1
16

=
(

4
4

)
1
16

We can then write the probability mass function as
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TABLE 1. Probability of a Function of the Number of Heads from Tossing a Coin
Four Times.

Table R.1
Tossing a Coin Four Times

Element of sample space Probability Value of random variable X (x)
HHHH 1/16 4
HHHT 1/16 3
HHTH 1/16 3
HTHH 1/16 3
THHH 1/16 3
HHTT 1/16 2
HTHT 1/16 2
HTTH 1/16 2
THHT 1/16 2
THTH 1/16 2
TTHH 1/16 2
HTTT 1/16 1
THTT 1/16 1
TTHT 1/16 1
TTTH 1/16 1
TTTT 1/16 0

pX(x) =

(
4
x

)

16
for x = 0 , 1 , 2 , 3 , 4 (2)

Note that all the probabilities are positive and that they sum to one.

1.5.2. Example 2. Roll a red die and a green die. Let the random variable be the larger of the two
numbers if they are different and the common value if they are the same. There are 36 points in
the sample space. In table 2 the outcomes are listed along with the value of the random variable
associated with each outcome.

The probability that X = 1, P(X=1) = P[(1, 1)] = 1/36. The probability that X = 2, P(X=2) = P[(1, 2),
(2,1), (2, 2)] = 3/36. Continuing we obtain

P (X =1) =
1
36

, P (X = 2) =
3
36

, P (X = 3) =
5
36

P (X =4) =
7
36

, P (X = 5) =
9
36

, P (X = 6) =
11
36

We can then write the probability mass function as

pX(x) = P (X = x) =
2 x − 1

36
for x = 1 , 2 , 3 , 4 , 5 , 6

Note that all the probabilities are positive and that they sum to one.

1.6. Cumulative Distribution Functions.
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TABLE 2. Possible Outcomes of Rolling a Red Die and a Green Die – First Number
in Pair is Number on Red Die

Green (A) 1 2 3 4 5 6
Red (D)

1
1 1
1

1 2
2

1 3
3

1 4
4

1 5
5

1 6
6

2
2 1
2

2 2
2

2 3
3

2 4
4

2 5
5

2 6
6

3
3 1
3

3 2
3

3 3
3

3 4
4

3 5
5

3 6
6

4
4 1
4

4 2
4

4 3
4

4 4
4

4 5
5

4 6
6

5
5 1
5

5 2
5

5 3
5

5 4
5

5 5
5

5 6
6

6
6 1
6

6 2
6

6 3
6

6 4
6

6 5
6

6 6
6

1.6.1. Definition of a Cumulative Distribution Function. If X is a discrete random variable, the function
given by

FX (x) = P (x ≤ X) =
∑

t≤ x

p(t) for − ∞ ≤ x ≤ ∞ (3)

where p(t) is the value of the probability distribution of X at t, is called the cumulative distribution
function of X. The function FX (x) is also called the distribution function of X.

1.6.2. Properties of a Cumulative Distribution Function. The values FX (X) of the distribution function
of a discrete random variable X satisfy the conditions

1: F(-∞) = 0 and F(∞) =1;
2: If a < b, then F(a) ≤ F(b) for any real numbers a and b

1.6.3. First example of a cumulative distribution function. Consider tossing a coin four times. The
possible outcomes are contained in table 1 and the values of p(·) in equation 2. From this we can
determine the cumulative distribution function as follows.

F (0) = (0) =
1

16

F (1) = (0) + p(1) =
1
16

+
4
16

=
5
16

F (2) = (0) + p(1) + p(2) =
1

16
+

4
16

+
6
16

=
11
16

F (3) = (0) + p(1) + p(2) + p(3) =
1
16

+
4
16

+
6
16

+
4
6

=
15
16

F (4) = p(0) + p(1) + p(2) + p(3) + p(4) =
1
16

+
4
16

+
6
16

+
4
6

+
1
16

=
16
16

We can write this in an alternative fashion as
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FX(x) =





0 for x < 0
1
16 for 0 ≤ x < 1
5
16 for 1 ≤ x < 2
11
16 for 2 ≤ x < 3
15
16

for 3 ≤ x < 4
1 for x ≥ 4

1.6.4. Second example of a cumulative distribution function. Consider a group of N individuals, M of
whom are female. Then N-M are male. Now pick n individuals from this population without
replacement. Let x be the number of females chosen. There are

(
M
x

)
ways of choosing x females

from the M in the population and
(
N −M
n− x

)
ways of choosing n-x of the N - M males. Therefore,

there are
(
M
x

)
×

(
N −M
n−x

)
ways of choosing x females and n-x males. Because there are

(
N
n

)
ways of

choosing n of the N elements in the set, and because we will assume that they all are equally likely
the probability of x females in a sample of size n is given by

pX(x) = P (X = x) =

(
M
x

) (
N −M
n−x

)
(
N
n

) for x = 0 , 1 , 2 , 3 , · · · , n

and x ≤ M, and n − x ≤ N − M.

(4)

For this discrete distribution we compute the cumulative density by adding up the appropriate
terms of the probability mass function.

F (0) = p(0)

F (1) = p(0) + p(1)

F (2) = p(0) + p(1) + p(2)

F (3) = p(0) + p(1) + p(2) + px(3)
...

F (n) = p(0) + p(1) + p(2) + p(3) + · · · + p(n)

(5)

Consider a population with four individuals, three of whom are female, denoted respectively
by A, B, C, D where A is a male and the others are females. Then consider drawing two from this
population. Based on equation 4 there should be

(
4
2

)
= 6 elements in the sample space. The sample

space is given by

TABLE 3. Drawing Two Individuals from a Population of Four where Order
Does Not Matter (no replacement)

Element of sample space Probability Value of random variable X
AB 1/6 1
AC 1/6 1
AD 1/6 1
BC 1/6 2
BD 1/6 2
CD 1/6 2
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We can see that the probability of 2 females is 1
2 . We can also obtain this using the formula as

follows.

p(2) = P (X = 2) =

(
3
2

) (
1
0

)
(
4
2

) =
(3)(1)

6
=

1
2

(6)

Similarly

p(1) = P (X = 1) =

(
3
1

) (
1
1

)
(
4
2

) =
(3)(1)

6
=

1
2

(7)

We cannot use the formula to compute f(0) because (2 - 0) 6≤ (4 - 3). f(0) is then equal to 0. We can
then compute the cumulative distribution function as

F (0) = p(0) = 0

F (1) = p(0) + p(1) =
1
2

F (2) = p(0) + p(1) + p(2) = 1

(8)

1.7. Expected value.

1.7.1. Definition of expected value. Let X be a discrete random variable with probability function
pX (x). Then the expected value of X, E(X), is defined to be

E(X) =
∑

x

x pX (x) (9)

if it exists. The expected value exists if
∑

x

|x | pX(x) < ∞ (10)

The expected value is kind of a weighted average. It is also sometimes referred to as the popu-
lation mean of the random variable and denoted µX .

1.7.2. First example computing an expected value. Toss a die that has six sides. Observe the number
that comes up. The probability mass or frequency function is given by

pX(x) = P (X = x) =

{
1
6 for x = 1, 2, 3, 4, 5, 6
0 otherwise

(11)

We compute the expected value as

E(X) =
∑

x ε X

x pX (x)

=
6∑

i = 1

i

(
1
6

)

=
1 + 2 + 3 + 4 + 5 + 6

6

=
21
6

= 3
1
2

(12)
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1.7.3. Second example computing an expected value. Consider a group of 12 television sets, two of
which have white cords and ten which have black cords. Suppose three of them are chosen at ran-
dom and shipped to a care center. What are the probabilities that zero, one, or two of the sets with
white cords are shipped? What is the expected number with white cords that will be shipped?

It is clear that x of the two sets with white cords and 3-x of the ten sets with black cords can be
chosen in

(
2
x

)
×

(
10

3−x

)
ways. The three sets can be chosen in

(
12
3

)
ways. So we have a probability

mass function as follows.

pX(x) = P (X = x) =

(
2
x

) (
10

3−x

)
(
12
3

) for x = 0 , 1 , 2 (13)

For example

p(0) = P (X = 0) =

(
2
0

) (
10

3−0

)
(
12
3

) =
(1) (120)

220
=

6
11

(14)

We collect this information as in table 4.

TABLE 4. Probabilities for Television Problem

x 0 1 2
pX (x) 6/11 9/22 1/22
FX (x) 6/11 21/22 1

We compute the expected value as

E(X) =
∑

x ε X

x pX (x)

= (0)
(

6
11

)
+ (1)

(
9
22

)
+ (2)

(
1
22

)
=

11
22

=
1
2

(15)

1.8. Expected value of a function of a random variable.

Theorem 1. Let X be a discrete random variable with probability mass function pX(x) and g(X) be a real-
valued function of X. Then the expected value of g(X) is given by

E[g(X)] =
∑

x

g(x) pX(x) . (16)

Proof for case of finite values of X. Consider the case where the random variable X takes on a finite
number of values x1, x2, x3, · · ·xn. The function g(x) may not be one-to-one (the different values
of xi may yield the same value of g(xi). Suppose that g(X) takes on m different values (m ≤ n). It
follows that g(X) is also a random variable with possible values g1, g2, g3, . . . gm and probability
distribution

P [g(X) = gi] =
∑

∀xjsuch that
g(xj )= gi

p(xj) = p∗ (gi) (17)
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for all i = 1, 2, . . . m. Here p∗(gi) is the probability that the experiment results in a value for the
function f of the initial random variable of gi. Using the definition of expected value in equation
we obtain

E[g(X)] =
m∑

i= 1

gi p∗(gi). (18)

Now substitute in to obtain

E[g(X)] =
m∑

i = 1

gi p∗(gi) .

=
m∑

i = 1

gi




∑

∀xj 3
g ( xj ) = gi

p ( xj )




=
m∑

i = 1




∑

∀xj 3
g ( xj ) = gi

gi p ( xj )




=
n∑

j = 1

g (xj ) p( xj ).

(19)

�

1.9. Properties of mathematical expectation.

1.9.1. Constants.

Theorem 2. Let X be a discrete random variable with probability function pX (x) and c be a constant. Then
E(c) = c.

Proof. Consider the function g(X) = c. Then by theorem 1

E[c] ≡
∑

x

c pX (x) = c
∑

x

pX (x) (20)

But by property 1.4b, we have

∑

x

pX(x) = 1

and hence

E (c) = c · (1) = c. (21)

�
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1.9.2. Constants multiplied by functions of random variables.

Theorem 3. Let X be a discrete random variable with probability function pX(x), g(X) be a function of X,
and let c be a constant. Then

E [ c g ( X ) ] ≡ c E [ (g ( X ) ] (22)

Proof. By theorem 1 we have

E[c g(X)] ≡
∑

x

c g(x) pX(x)

= c
∑

x

g(x) pX(x)

= c E[g(X)]

(23)

�

1.9.3. Sums of functions of random variables.

Theorem 4. Let X be a discrete random variable with probability function pX (x), g1(X), g2(X), g3(X), · · · , gk(X)
be k functions of X. Then

E [g1(X) + g2(X) + g3(X) + · · ·+ gk(X)] ≡ E[g1(X)] + E[g2(X)] + · · ·+ E[gk(X)] (24)

Proof for the case of k = 2. By theorem 1 we have we have

E [g1(X) + g2 (X) ] ≡
∑

x

[g1 (x) + g2 (x) ] pX(x)

≡
∑

x

g1 (x) pX (x) +
∑

x

g2 (x) pX (x)

= E [g1 (X) ] + E [ g2 (X)] ,

(25)

�

1.10. Variance of a random variable.

1.10.1. Definition of variance. The variance of a random variable X is defined to be the expected
value of (X − µ)2. That is

V (X) = E
[
( X − µ )2

]
(26)

The standard deviation of X is the positive square root of V(X).

1.10.2. Example 1. Consider a random variable with the following probability distribution.

TABLE 5. Probability Distribution for X

x pX (x)
0 1/8
1 1/4
2 3/8
3 1/4
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We can compute the expected value as

µ = E(X) =
3∑

x= 0

x pX (x)

= (0)
(

1
8

)
+ (1)

(
1
4

)
+ (2)

(
3
8

)
+ (3)

(
1
4

)
= 1

3
4

(27)

We compute the variance as

σ2 = E[X − µ)2] = Σ3
x= 0 (x − µ)2 pX (x)

= (0 − 1.75)2
(

1
8

)
+ (1 − 1.75)2

(
1
4

)
+ (2 − 1.75)2

(
3
8

)
+ (3 − 1.75)2

(
1
4

)

= .9375

and the standard deviation as

σ2 = 0.9375

σ = +
√

σ
2 =

√
.9375 = 0.97.

1.10.3. Alternative formula for the variance.

Theorem 5. Let X be a discrete random variable with probability function pX (x); then

V (X) ≡ σ2 = E
[
(X − µ )2

]
= E

(
X2

)
− µ2 (28)

Proof. First write out the first part of equation 28 as follows

V (X) ≡ σ2 = E
[
(X − µ )2

]
= E

(
X2 − 2 µ X + µ2

)

= E
(
X2

)
− E (2 µ X) + E

(
µ2

) (29)

where the last step follows from theorem 4. Note that µ is a constant, then apply theorems 3 and
2 to the second and third terms in equation 28 to obtain

V (X) ≡ σ2 = E
[
( X − µ )2

]
= E

(
X2

)
− 2 µ E (X) + µ2 (30)

Then making the substitution that E(X) = µ, we obtain

V (X) ≡ σ2 = E
(
X2

)
− µ2 (31)

�

1.10.4. Example 2. Die toss.
Toss a die that has six sides. Observe the number that comes up. The probability mass or fre-

quency function is given by

pX (x) = P (X = x) =

{
1
6 for x = 1, 2, 3, 4, 5, 6
0 otherwise

. (32)

We compute the expected value as
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E(X) =
∑

x ε X

x pX (x)

=
6∑

i = 1

i

(
1
6

)

=
1 + 2 + 3 + 4 + 5 + 6

6

=
21
6

= 3
1
2

(33)

We compute the variance by then computing the E(X2) as follows

E(X2) =
∑

x ε X

x2 pX (x)

=
6∑

i = 1

i2
(

1
6

)

=
1 + 4 + 9 + 16 + 2 + 36

6

=
91
6

= 15
1
6

(34)

We can then compute the variance using the formula Var(X) = E(X2) - E2(X) and the fact the E(X)
= 21/6 from equation 33.

V ar(X) = E (X2) − E2(X)

=
91
6

−
(

21
6

)2

=
91
6

−
(

441
36

)

=
546
36

−
441
36

=
105
36

=
35
12

= 2.9166

(35)
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2. THE ”DISTRIBUTION” OF RANDOM VARIABLES IN GENERAL

2.1. Cumulative distribution function. The cumulative distribution function (cdf) of a random
variable X, denoted by FX (·), is defined to be the function with domain the real line and range the
interval [0,1], which satisfies FX (x) = PX [X ≤ x] = P [ {ω : X(ω) ≤ x } ] for every real number x.
F has the following properties:

FX (−∞) = lim
x→−∞

FX(x) = 0, FX(+∞) = lim
x→+∞

FX(x) = 1, (36a)

FX (a) ≤ FX(b) for a < b, nondecreasing function of x, (36b)

lim
0<h→0

FX(x + h) = FX(x), continuous from the right, (36c)

2.2. Example of a cumulative distribution function. Consider the following function

FX (x) =
1

1 + e−x
(37)

Check condition 36a as follows.

lim
x→−∞

FX(x) = lim
x→−∞

1
1 + e−x

= lim
x→∞

1
1 + ex

= 0

lim
x→∞

FX(x) = lim
x→∞

1
1 + e−x

= 1
(38)

To check condition 36b differentiate the cdf as follows

d FX ( x )
dx

=
d

(
1

1 + e−x

)

dx

=
e−x

( 1 + e−x )2
> 0

(39)

Condition 36c is satisfied because FX(x) is a continuous function.

2.3. Discrete and continuous random variables.

2.3.1. Discrete random variable. A random variable X will be said to be discrete if the range of X is
countable, that is if it can assume only a finite or countably infinite number of values. Alternatively,
a random variable is discrete if FX (x) is a step function of x.

2.3.2. Continuous random variable. A random variable X is continuous if FX (x) is a continuous func-
tion of x.

2.4. Frequency (probability mass) function of a discrete random variable.

2.4.1. Definition of a frequency (discrete density) function. If X is a discrete random variable with the
distinct values, x1, x2, · · · , xn, · · · , then the function denoted by p(·) and defined by

pX (x) =

{
P [X = xj] x = xj, j = 1, 2 , ... , n, ...

0 x 6= xj

(40)

is defined to be the frequency, discrete density, or probability mass function of X. We will often
write fX(x) for pX(x) to denote frequency as compared to probability.

A discrete probability distribution on Rk is a probability measure P such that
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∞∑

i= 1

P ({xi}) = 1 (41)

for some sequence of points in Rk , i.e. the sequence of points that occur as an outcome of the
experiment. Given the definition of the frequency function in equation 40, we can also say that any
non-negative function p on Rk that vanishes except on a sequence x1, x2, · · · , xn, · · · of vectors and
that satisfies

∞∑

i= 1

p(xi) = 1

defines a unique probability distribution by the relation

P ( A ) =
∑

xi ε A

p (xi ) (42)

2.4.2. Properties of discrete density functions. As defined in section 1.4, a probability mass function
must satisfy

pX (xj) > 0, for j = 1, 2, ... (43a)

pX(x) = 0, for x 6= xj ; j = 1, 2, ..., (43b)
∑

j

pX (x)j = 1 (43c)

2.4.3. Example 1 of a discrete density function. Consider a probability model where there are two
possible outcomes to a single action (say heads and tails) and consider repeating this action several
times until one of the outcomes occurs. Let the random variable be the number of actions required
to obtain a particular outcome (say heads). Let p be the probability that outcome is a head and (1-p)
the probability of a tail. Then to obtain the first head on the xth toss, we need to have a tail on the
previous x-1 tosses. So the probability of the first had occurring on the xth toss is given by

pX(x) = P (X = x) =

{
(1 − p)x− 1 p for x = 1, 2 , ...

0 otherwise
(44)

For example the probability that it takes 4 tosses to get a head is 1/16 while the probability it
takes 2 tosses is 1/4.

2.4.4. Example 2 of a discrete density function. Consider tossing a die. The sample space is {1, 2, 3, 4,
5, 6}. The elements are {1}, {2}, ... . The frequency function is given by

p(x) = P (X = x) =

{
1
6 for x = 1, 2, 3, 4, 5, 6
0 otherwise

. (45)

The density function is represented in figure 1.

2.5. Probability density function of a continuous random variable.
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FIGURE 1. Frequency Function for Tossing a Die
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2.5.1. Alternative definition of continuous random variable. In section 2.3.2, we defined a random vari-
able to be continuous if FX (x) is a continuous function of x. We also say that a random variable X
is continuous if there exists a function f(·) such that

FX(x) =
∫ x

−∞
f(u) du (46)

for every real number x. The integral in equation 46 is a Riemann integral evaluated from -∞ to
a real number x.

2.5.2. Definition of a probability density frequency function (pdf). The probability density function,
fX (x), of a continuous random variable X is the function f(·) that satisfies

FX(x) =
∫ x

−∞
fX (u) du (47)

2.5.3. Properties of continuous density functions.

fX (x) ≥ 0 ∀x (48a)
∫ ∞

−∞
fX (x) dx = 1, (48b)

Analogous to equation 42, we can write in the continuous case

P (X ε A) =
∫

A

fX (x) dx (49)
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where the integral is interpreted in the sense of Lebesgue.

Theorem 6. For a density function fX(x) defined over the set of all real numbers the following holds

P (a ≤ X ≤ b) =
∫ b

a

fX (x) dx (50)

for any real constants a and b with a ≤ b.

Also note that for a continuous random variable X the following are equivalent

P (a ≤ X ≤ b) = P (a ≤ X < b) = P (a < X ≤ b) = P (a < X < b) (51)
Note that we can obtain the various probabilities by integrating the area under the density func-

tion as seen in figure 2.

FIGURE 2. Area under the Density Function as Probability

fHxL

2.5.4. Example 1 of a continuous density function. Consider the following function

fX (x) =

{
k · e− 3x for x > 0
0 elsewhere

. (52)

First we must find the value of k that makes this a valid density function. Given the condition
in equation 48b we must have that

∫ ∞

−∞
fX (x) dx =

∫ ∞

0

k · e− 3x dx = 1 (53)
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Integrate the second term to obtain
∫ ∞

0

k · e− 3x dx = k · lim
t →∞

e− 3x

− 3
|t0 =

k

3
(54)

Given that this must be equal to one we obtain
k

3
= 1

⇒ k = 3
(55)

The density is then given by

fX (x) =

{
3 · e−3 x for x > 0
0 elsewhere

. (56)

Now find the probability that (1 ≤ X ≤ 2).

P (1 ≤ X ≤ 2) =
∫ 2

1

3 · e−3 x dx

= − e− 3x |21
= − e− 6 + e− 3

= − 0.00247875 + 0.049787
= 0.047308

(57)

2.5.5. Example 2 of a continuous density function. Let X have p.d.f.

fX (x) =

{
x · e− x for 0 ≤ x ≤ ∞
0 elsewhere

. (58)

This density function is shown in figure 3.

We can find the probability that (1 ≤ X ≤ 2) by integration

P (1 ≤ X ≤ 2) =
∫ 2

1

x · e−x dx (59)

First integrate the expression on the right by parts letting u = x and dv = e−x dx. Then du = dx
and v = - e−xdx. We then have

P (1 ≤ X ≤ 2) = − x e− x |21 −
∫ 2

1

− e− x dx

= − 2 e− 2 + e− 1 −
[

e− x |21
]

= − 2 e− 2 + e− 1 − e− 2 + e− 1

= − 3 e− 2 + 2 e− 1

=
−3
e2

+
2
e

= − 0.406 + 0.73575

= 0.32975

(60)
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FIGURE 3. Graph of Density Function x e−x
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This is represented by the area between the lines in figure 4.
We can also find the distribution function in this case.

FX (x) =
∫ x

0

t · e− t d t (61)

Make the u dv substitution as before to obtain

FX(x) = − t e− t |x0 −
∫ x

0

− e− t d t

= − t e− t |x0 − e− t|x0

= e− t (− 1 − t)|x0

= e− x (− 1 − x) − e− 0 (− 1 − 0)

= e− x (− 1 − x) + 1

= 1 − e− x (1 + x)

(62)

The distribution function is shown in figure 5.

Now consider the probability that (1 ≤ X ≤ 2)
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FIGURE 4. P (1 ≤ X ≤ 2)
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P (1 ≤ X ≤ 2) = F (2) − F (1)

= 1 − e− 2(1 + 2) − 1 + e− 1 (1 + 1)

= 2 e− 1 − 3 e− 2

= 0.73575 − 0.406

= 0.32975

(63)

We can see this as the difference in the values of FX (x) at 1 and at 2 in figure 6

2.5.6. Example 3 of a continuous density function. Consider the normal density function given by

f( x : µ, σ ) =
1√

2 π σ2
· e

−1
2 ( x − µ

σ )2

(64)

where µ and σ are parameters of the function. The shape and location of the density function
depends on the parameters µ and σ. In figure 7 the diagram the density is drawn for µ = 0, and σ =
1 and σ = 2.

2.5.7. Example 4 of a continuous density function. Consider a random variable with density function
given by

fX (x) =

{
(p + 1)xp 0 ≤ x ≤ 1
0 otherwise

(65)
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FIGURE 5. Graph of Distribution Function of Density Function x e−x
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where p is greater than -1. For example, if p = 0, then fX (x) = 1, if p = 1, then fX (x) = 2x and so
on. The density function with p = 2 is shown in figure 8. The distribution function with p = 2 is
shown in figure 9.

2.6. Expected value.

2.6.1. Expectation of a single random variable. Let X be a random variable with density fX (x). The
expected value of the random variable, denoted E(X), is defined to be

E(X) =





∫∞
−∞ x fX(x) dx if X is continuous
∑

x ε X

x pX(x) if X is discrete
. (66)

provided the sum or integral is defined. The expected value is kind of a weighted average. It is
also sometimes referred to as the population mean of the random variable and denoted µX .

2.6.2. Expectation of a function of a single random variable. Let X be a random variable with density
fX(X). The expected value of a function g(·) of the random variable, denoted E(g(X)), is defined to
be

E(g(X)) =
∫ ∞

−∞
g(x) f (x)dx (67)

if the integral is defined.
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FIGURE 6. P (1 ≤ X ≤ 2) using the Distribution Function
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The expectation of a random variable can also be defined using the Riemann-Stieltjes integral
where F is a monotonically increasing function of X. Specifically

E(X) =
∫ ∞

−∞
x dF (x) =

∫ ∞

−∞
x dF (68)

2.7. Properties of expectation.

2.7.1. Constants.

E[a] ≡
∫ ∞

−∞
a fX (x)dx

≡ a

∫ ∞

−∞
fX(x)dx

≡ a

(69)

2.7.2. Constants multiplied by a random variable.

E[a X] ≡
∫ ∞

−∞
a x fX(x)dx

≡ a

∫ ∞

−∞
x fX (x)dx

≡ a E[X]

(70)
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FIGURE 7. Normal Density Function
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2.7.3. Constants multiplied by a function of a random variable.

E[a g(X)] ≡
∫ ∞

−∞
a g(x) fX(x)dx

≡ a

∫ ∞

−∞
g(x) fX (x)dx

≡ a E[g(X)]

(71)

2.7.4. Sums of expected values. Let X be a continuous random variable with density function fX (x)
and let g1(X), g2(X), g3(X), · · · , gk(X) be k functions of X. Also let c1, c2, c3, · · · ck be k constants.
Then

E [c1 g1(X) + c2 g2(X) + · · ·+ ck gk(X) ] ≡ E [c1 g1(X)] + E [c2 g2(X)] + · · · + E [ck gk(X)] (72)

2.8. Example 1. Consider the density function

fX(x) =

{
(p + 1)xp 0 ≤ x ≤ 1
0 otherwise

(73)

where p is greater than -1. We can compute the E(X) as follows.
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FIGURE 8. Density Function (p + 1) xp
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E(X) =
∫ ∞

−∞
x fX (x)dx

=
∫ 1

0

x(p + 1)xpdx

=
∫ 1

0

x(p+1)(p + 1)dx

=
x(p+2)(p + 1)

(p + 2)
∣∣ 1

0

=
p + 1
p + 2

(74)

2.9. Example 2. Consider the exponential distribution which has density function

fX (x) =
1
λ

e
−x
λ 0 ≤ x ≤ ∞ , λ > 0 (75)

We can compute the E(X) as follows.
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FIGURE 9. Density Function (p = 1) xp
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E(X) =
∫ ∞

0

x
1
λ

e
−x
λ dx

= −x e
−x
λ |∞0 +

∫ ∞

0

e
−x
λ dx

(
u =

x

λ
, du =

1
λ

dx, v = −λ e
−x
λ , dv = e

−x
λ dx

)

= 0 +
∫ ∞

0

e
−x
λ dx

= − λ e
−x
λ |∞0

= λ

(76)

2.10. Variance.

2.10.1. Definition of variance. The variance of a single random variable X with mean µ is given by

V ar(X) ≡ σ2 ≡ E
[
(X − E(X))2

]

≡ E
[
( X − µ)2

]

≡
∫ ∞

−∞
(x − µ)2 fX (x)dx

(77)
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We can write this in a different fashion by expanding the last term in equation 77.

V ar(X) ≡
∫ ∞

−∞
(x − µ)2 fX (x)dx

≡
∫ ∞

−∞
(x2 − 2 µ x + µ2) fX (x)dx

≡
∫ ∞

−∞
x2 fX(x) dx − 2 µ

∫ ∞

−∞
x fX(x) dx + µ2

∫ ∞

−∞
fX (x) dx

= E
[
X2

]
− 2 µ E [X] + µ2

= E
[
X2

]
− 2 µ2 + µ2

= E
[
X2

]
− µ2

≡
∫ ∞

−∞
x2 fX(x)dx −

[∫ ∞

−∞
x fX(x)dx

]2

(78)

The variance is a measure of the dispersion of the random variable about the mean.

2.10.2. Variance example 1. Consider the density function

fX (x) =

{
(p + 1)xp 0 ≤ x ≤ 1
0 otherwise

(79)

where p is greater than -1. We can compute the Var(X) as follows.

E(X) =
∫ ∞

−∞
x fX (x)dx

=
∫ 1

0

x(p + 1)xpdx

=
x(p+2)(p + 1)

(p + 2)
| 1
0

=
p + 1
p + 2

E(X2 ) =
∫ 1

0

x2 (p + 1)xp dx

=
x(p + 3)(p + 1)

(p + 3)
| 1
0

=
p + 1
p + 3

V ar ( X ) = E (X2 ) − E2( X )

=
p + 1
p + 3

−
(

p + 1
p + 2

)2

=
p + 1

(p + 2 )2 (p + 3 )

(80)

The values of the mean and variances for various values of p are given in table 6.
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TABLE 6. Mean and Variance for Distribution fX (x) = (p + 1) xp for alternative
values of p

p -.5 0 1 2 ∞
E(x) 0.333 0.5 0.66667 0.75 1

Var(x) 0.08888 0.833333 0.277778 0.00047 0

2.10.3. Variance example 2. Consider the exponential distribution which has density function

fX (x) =
1
λ

e
−x
λ 0 ≤ x ≤ ∞ , λ > 0 (81)

We can compute the E(X2) as follows

E(X2) =
∫ ∞

0

x2 1
λ

e
−x
λ dx

= −x2e
−x
λ |∞0 + 2

∫ ∞

0

x e
−x
λ dx

(
u =

x2

λ
, du =

2 x

λ
dx, v = −λ e

−x
λ , dv = e

−x
λ dx

)

= 0 + 2
∫ ∞

0

x e
−x
λ dx

= − 2 λ x e
−x
λ |∞0 + 2

∫ ∞

0

λ e
−x
λ dx

(
u = 2 x , du = 2 dx, v = −λ e

−x
λ , dv = e

−x
λ dx

)

= 0 + 2 λ

∫ ∞

0

e
−x
λ dx

= (2 λ)
(
−λ e

−x
λ |∞0

)

= (2 λ) ( λ )

= 2 λ2

(82)

We can then compute the variance as

V ar(X) = E (X2) − E2 (X)

= 2 λ2 − λ2

= λ2

(83)
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3. MOMENTS AND MOMENT GENERATING FUNCTIONS

3.1. Moments.

3.1.1. Moments about the origin (raw moments). The rth moment about the origin of a random vari-
able X, denoted by µ′

r , is the expected value of Xr ; symbolically,

µ′
r = E(Xr)

=
∑

x

xrfX (x) (84)

for r = 0, 1, 2, . . . when X is discrete and

µ′
r = E( Xr)

=
∫ ∞

−∞
xrfX (x) dx

(85)

when X is continuous. The rth moment about the origin is only defined if E[Xr ] exists. A
moment about the origin is sometimes called a raw moment. Note that µ′

1 = E(X) = µX , the
mean of the distribution of X, or simply the mean of X. The rth moment is sometimes written as a
function of θ where θ is a vector of parameters that characterize the distribution of X.

3.1.2. Central moments. The rth moment about the mean of a random variable X, denoted by µr , is
the expected value of (X − µX )r symbolically,

µr = E[(X − µX)r ]

=
∑

x

(x − µX )r
fX (x) (86)

for r = 0, 1, 2, . . . when X is discrete and

µr = E[(X − µX)r ]

=
∫ ∞

−∞
(x − µX )rfX (x) dx

(87)

when X is continuous. The rth moment about the mean is only defined if E[(X − µX )r ] exists.
The rth moment about the mean of a random variable X is sometimes called the rth central moment
of X. The rth central moment of X about a is defined as E[(X−a)r ]. If a = µX , we have the rth central
moment of X about µX . Note that µ1 = E[(X −µX )] = 0 and µ2 = E[(X −µX )2] = Var[X]. Also note
that all odd moments of X around its mean are zero for symmetrical distributions, provided such
moments exist.

3.1.3. Alternative formula for the variance.

Theorem 7.

σ2
X = µ′

2 − µ2
X (88)
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Proof.

V ar(X) ≡ σ2
X ≡ E

[
(X − E(X) )2

]

≡ E
[
(X − µX )2

]

≡ E
[
X2 − 2 µX X + µ2

X

]

= E
[
X2

]
− 2 µXE [X ] + µ2

X

= E
[
X2

]
− 2 µ2

X + µ2
X

= E
[
X2

]
− µ2

X

= µ′
2 − µ2

X

(89)

�

3.2. Moment generating functions.

3.2.1. Definition of a moment generating function. The moment generating function of a random vari-
able X is given by

MX (t) = E et X (90)

provided that the expectation exists for t in some neighborhood of 0. That is, there is an h > 0
such that, for all t in −h < t < h, E etX exists. We can write MX (t) as

MX ( t ) =

{∫ ∞
−∞ et x fX (x) dx if X is continuous∑

x et x P (X = x) if X is discrete
. (91)

To understand why we call this a moment generating function consider first the discrete case.
We can write etx in an alternative way using a Maclaurin series expansion. The Maclaurin series of
a function f(t) is given by

f(t) =
∞∑

n= 0

f (n)(0)
n!

tn =
∞∑

n=0

f (n)(0)
tn

n !

= f( 0 ) +
f (1)(0)

1!
t +

f (2)(0)
2!

t2 +
f (3)(0)

3!
t3 + · · · +

= f(0) + f (1)(0)
t

1!
+ f (2)(0)

t2

2!
+ f (3)(0)

t3

3!
+ · · · +

(92)

where f (n) is the nth derivative of the function with respect to t and f (n)(0) is the nth derivative
of f with respect to t evaluated at t = 0. For the function etx, the requisite derivatives are
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d etx

d t
= x etx ,

d etx

d t

]

t= 0

= x

d2 etx

d t2
= x2 etx ,

d2 etx

d t2

]

t= 0

= x2

d3 etx

d t3
= x3 etx ,

d3 etx

d t3

]

t= 0

= x3

...

dj etx

d tj
= xj etx ,

dj etx

d tj

]

t= 0

= xj

(93)

We can then write the Maclaurin series as

et x =
∞∑

n= 0

dnet x

d tn
(0)

tn

n !

=
∞∑

n= 0

xn tn

n !

= 1 + t x +
t2 x2

2 !
+

t3 x3

3 !
+ · · · +

trxr

r !
+ · · ·

(94)

We can then compute E(etx) = MX (t) as

E
[
et x

]
= MX(t) =

∑

x

et x fX (x) (95)

=
∑

x

[
1 + t x +

t2 x2

2 !
+

t3 x3

3!
+ · · ·+ tr xr

r!
+ · · ·

]
fX (x)

=
∑

x

fX (x) + t
∑

x

xfX(x) +
t2

2!

∑

x

x2fX (x) +
t3

3!

∑

x

x3fX (x) + · · ·+ tr

r!

∑

x

xrfX (x) + · · ·

=1 + µt + µ′
2

t2

2!
+ µ′

3

t3

3!
+ · · ·+ µ′

r

tr

r!
+ · · ·

In the expansion, the coefficient of tr

t!
is µ′

r , the rth moment about the origin of the random
variable X.

3.2.2. Example derivation of a moment generating function. Find the moment-generating function of
the random variable whose probability density is given by

fX (x) =

{
e−x for x > 0
0 elsewhere

(96)

and use it to find an expression for µ′
r . By definition
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MX (t) = E
(
etX

)
=

∫ ∞

−∞
et x · e−x dx

=
∫ ∞

o

e−x (1− t)dx

=
− 1

t − 1
e−x (1− t) |∞0

= 0 −
[

−1
1 − t

]

=
1

1 − t
for t < 1

(97)

As is well known, when |t| < 1 the Maclaurin’s series for 1
1 − t is given by

MX (t) =
1

1 − t
= 1 + t + t2 + t3 + · · · + tr + · · ·

= 1 + 1! · t

1!
+ 2! · t2

2!
+ 3! · t3

3
! + · · · + r! · tr

r!
+ · · ·

(98)

or we can derive it directly using equation 92. To derive it directly utilizing the Maclaurin series
we need the all derivatives of the function 1

1 − t evaluated at 0. The derivatives are as follows

f(t) =
1

1 − t
= (1 − t)− 1

f (1) = (1 − t)− 2

f (2) = 2 (1 − t)−3

f (3) = 6 (1 − t)−4

f (4) = 24 (1 − t)−5

f (5) = 120 (1 − t)−6

...

f (n) = n ! (1 − t)(n + 1)

...

(99)

Evaluating them at zero gives
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f(0) =
1

1 − 0
= (1 − 0)− 1 = 1

f (1) = (1 − 0)−2 = 1 = 1!

f (2) = 2 (1 − 0)−3 = 2 = 2!

f (3) = 6 (1 − 0)−4 = 6 = 3!

f (4) = 24 (1 − 0)−5 = 24 = 4!

f (5) = 120 (1 − 0)−6 = 120 = 5!

...

f (n) = n! (1 − 0)− (n + 1) = n!

...

(100)

Now substituting in appropriate values for the derivatives of the function f(t) = 1
1 − t

we obtain

f(t) =
∞∑

n = 0

f (n) (0)
n!

tn

= f (0) +
f (1) (0)

1!
t +

f (2) (0)
2!

t2 +
f (3) (0)

3!
t3 + · · · +

= 1 +
1!
1!

t +
2!
2!

t2 +
3!
3!

t3 + · · · +

= 1 + t + t2 + t3 + · · · +

(101)

A further issue is to determine the radius of convergence for this particular function. Consider
an arbitrary series where the nth term is denoted by an. The ratio test says that

If lim
n→∞

∣∣∣∣
an+ 1

an

∣∣∣∣ = L < 1 , then the series is absolutely convergent (102a)

lim
n→∞

∣∣∣∣
an+ 1

an

∣∣∣∣ = L > 1 or lim
n→∞

∣∣∣∣
an+ 1

an

∣∣∣∣ = ∞ , then the series is divergent (102b)

Now consider the nth term and the (n+1)th term of the Maclaurin series expansion of 1
1 − t

.

an = tn

lim
n→∞

∣∣∣∣
tn+ 1

tn

∣∣∣∣ = lim
n→∞

| t | = L
(103)

The only way for this to be less than one in absolute value is for the absolute value of t to be less
than one, i.e., |t| < 1. Now writing out the Maclaurin series as in equation 98 and remembering that
in the expansion, the coefficient of tr

r! is µ′
r , the rth moment about the origin of the random variable

X
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MX (t) =
1

1 − t
= 1 + t + t2 + t3 + · · · + tr + · · ·

= 1 + 1! · t

1!
+ 2! · t2

2!
+ 3! · t3

3
! + · · · + r! · tr

r!
+ · · ·

(104)

it is clear that µ′
r = r! for r = 0, 1, 2, ... For this density function E[X] = 1 because the coefficient of

t1

1 !
is 1. We can verify this by finding E[X] directly by integrating.

E (X) =
∫ ∞

0

x · e−x dx (105)

To do so we need to integrate by parts with u = x and dv = e−xdx. Then du = dx and v = −e−x dx.
We then have

E (X) =
∫ ∞

0

x · e−x dx, u = x, du = dx , v = − e− x , dv = e−x dx

= − x e−x |∞0 −
∫ ∞

0

− e− x dx

= [0 − 0] −
[
e− x |∞0

]

= 0 − [0 − 1] = 1

(106)

3.2.3. Moment property of the moment generating functions for discrete random variables.

Theorem 8. If MX (t) exists, then for any positive integer k,

dk MX ( t ) )
dtk

]

t = 0

= M
(k)
X (0) = µ′

k . (107)

In other words, if you find the kth derivative of MX (t) with respect to t and then set t = 0, the
result will be µ′

k .

Proof. dk MX (t)
dtk , or M

(k)
X (t), is the kth derivative of MX (t) with respect to t. From equation 95 we

know that

MX(t) = E
(
et X

)
= 1 + t µ′

1 +
t2

2!
µ′

2 +
t3

3!
µ′

3 + · · · (108)

It then follows that

M
(1)
X (t) = µ′

1 +
2 t

2!
µ′

2 +
3 t2

3!
µ′

3 + · · · (109a)

M
(2)
X (t) = µ′

2 +
2 t

2!
µ′

3 +
3 t2

3!
µ′

4 + · · · (109b)

where we note that n
n! = 1

(n − 1 ) ! . In general we find that

M
( k )

X ( t ) = µ′
k +

2 t

2 !
µ′

k + 1 +
3 t2

3 !
µ′

k + 2 + · · · . (110)

Setting t = 0 in each of the above derivatives, we obtain
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M
(1)

X (0) = µ′
1 (111a)

M
(2)

X (0) = µ′
2 (111b)

and, in general,

M
(k)

X (0) = µ′
k (112)

�

These operations involve interchanging derivatives and infinite sums, which can be justified if
MX (t) exists.

3.2.4. Moment property of the moment generating functions for continuous random variables.

Theorem 9. If X has mgf MX (t), then

E Xn = M
(n)
X (0) , (113)

where we define

M
(n)
X (0) =

dn

dtn
MX (t)

∣∣
t = 0

(114)

The nth moment of the distribution is equal to the nth derivative of MX (t) evaluated at t = 0.

Proof. We will assume that we can differentiate under the integral sign and differentiate equation
91.

d

dt
MX (t) =

d

dt

∫ ∞

−∞
et x fX (x ) dx

=
∫ ∞

−∞

(
d

dt
et x

)
fX (x ) dx

=
∫ ∞

−∞

(
x et x

)
fX (x ) dx

= E
(
X e t X

)

(115)

Now evaluate equation 115 at t = 0.

d

dt
MX (t) |t= 0 = E

(
X e t X

) ∣∣
t=0

= E X (116)

We can proceed in a similar fashion for other derivatives. We illustrate for n = 2.
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d2

dt2
MX (t) =

d2

dt2

∫ ∞

−∞
et x fX (x ) dx

=
∫ ∞

−∞

(
d2

dt2
et x

)
fX (x) dx

=
∫ ∞

−∞

(
d

dt
x et x

)
fX (x) dx

=
∫ ∞

−∞

(
x2 et x

)
fX (x) dx

= E
(
X2 e t X

)

(117)

Now evaluate equation 117 at t = 0.

d2

dt2
MX (t) |t= 0 = E

(
X2 e t X

) ∣∣
t=0

= E X2 (118)

�

3.3. Some properties of moment generating functions. If a and b are constants, then

MX+a (t) = E
(
e (X + a)t

)
= eat · MX (t) (119a)

MbX (t) = E
(
e b X t

)
= MX ( b t ) (119b)

MX + a
b

(t) = E
(
e(

X+a
b ) t

)
= e

a
b t · MX

(
t

b

)
(119c)

3.4. Examples of moment generating functions.

3.4.1. Example 1. Consider a random variable with two possible values, 0 and 1, and corresponding
probabilities f(1) = p, f(0) = 1-p where we write f(·) for p(·). For this distribution

MX (t) = E
(
et X

)

= et · 1 f (1) + et · 0 f (0)

= et p + e0 (1 − p)

= e0 (1 − p) + et p

= 1 − p + et p

= 1 + p
(
et − 1

)

(120)

The derivatives are
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M
(1)
X (t) = p et

M
(2)
X (t) = p et

M
(3)
X (t) = p et

...

M
(k)
X (t) = p et

...

(121)

Thus

E
[
Xk

]
= M

(k)
X (0) = p e0 = p (122)

We can also find this by expanding MX (t) using the Maclaurin series for the moment generating
function for this problem

MX (t) = E
(
e t X

)

= 1 + p
(
et − 1

) (123)

To obtain this we first need the series expansion of et. All derivatives of et are equal to et. The
expansion is then given by

et =
∞∑

n= 0

dn et

d tn
(0)

tn

n!

=
∞∑

n= 0

tn

n!

= 1 + t +
t2

2!
+

t3

3!
+ · · · +

tr

r!
+ · · ·

(124)

Substituting equation 124 into equation 123 we obtain

MX (t) = 1 + p et − p

= 1 + p

[
1 + t +

t2

2!
+

t3

3!
+ · · · +

tr

r !
+ · · ·

]
− p

= 1 + p + p t + p
t2

2!
+ p

t3

3!
+ · · · + p

tr

r!
+ · · · − p

= 1 + p t + p
t2

2!
+ p

t3

3!
+ · · · + p

tr

r!
+ · · ·

(125)

We can then see that all moments are equal to p. This is also clear by direct computation
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E (X) = (1) p + (0) (1 − p) = p

E
(
X2

)
= (12) p + (02) (1 − p) = p

E
(
X3

)
= (13) p + (03) (1 − p) = p

...

E
(
Xk

)
= (1k) p + (0k) (1 − p) = p

...

(126)

3.4.2. Example 2. Consider the exponential distribution which has a density function given by

fX (x) =
1
λ

e
−x
λ , 0 ≤ x ≤ ∞ , λ > 0 (127)

For λ t < 1, we have

MX (t) =
∫ ∞

0

et x 1
λ

e
−x
λ dx

=
1
λ

∫ ∞

0

e− ( 1
λ − t ) x dx

=
1
λ

∫ ∞

0

e− ( 1 − λ t
λ ) x dx

=
1
λ

[
−λ

1 − λ t

]
e− ( 1 − λ t

λ ) x |∞0

=
[

− 1
1 − λ t

]
e− ( 1 − λ t

λ ) x |∞0

= 0 −
[

− 1
1 − λ t

]
e0

=
1

1 − λ t

(128)

We can then find the moments by differentiation. The first moment is

E(X) =
d

dt
(1 − λ t )−1

∣∣∣
t = 0

= λ (1 − λ t)−2
∣∣∣
t = 0

= λ

(129)

The second moment is
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E(X2) =
d2

dt2
(1 − λ t)−1

∣∣∣
t= 0

=
d

dt

(
λ (1 − λ t)−2

) ∣∣∣
t= 0

= 2 λ2 (1 − λ t)−3
∣∣∣
t= 0

= 2 λ2

(130)

3.4.3. Example 3. Consider the normal distribution which has a density function given by

f(x ; µ, σ2) =
1√

2πσ2
· e

−1
2 ( x−µ

σ ) 2

(131)

Let g(x) = X - µ, where X is a normally distributed random variable with mean µ and variance
σ2. Find the moment-generating function for (X - µ). This is the moment generating function for
central moments of the normal distribution.

MX (t) = E[et (X − µ)] =
1√

2πσ2

∫ ∞

−∞
et (x−µ) e

−1
2 ( x−µ

σ )2

dx (132)

To integrate, let u = x - µ. Then du = dx and

MX (t) =
1

σ
√

2π

∫ ∞

−∞
etue

− u2

2σ2 du

=
1

σ
√

2π

∫ ∞

−∞
e

[
t u − u2

2 σ2

]
du

=
1

σ
√

2π

∫ ∞

−∞
e[

1
2 σ2 (2σ2 t u − u2) ] du

=
1

σ
√

2π

∫ ∞

−∞
exp

[(
− 1
2 σ2

)
(u2 − 2σ2 t u )

]
du

(133)

To simplify the integral, complete the square in the exponent of e. That is, write the second term
in brackets as

(
u2 − 2σ2 t u

)
=

(
u2 − 2σ2 t u + σ4 t2 − σ4 t2

)
(134)

This then will give

exp
[(

−1
2σ2

)
(u2 − 2σ2tu)

]
= exp

[(
−1
2σ2

)
(u2 − 2σ2tu + σ4t2 − σ4t2)

]

= exp
[(

− 1
2 σ2

)
(u2 − 2σ2 t u + σ4 t2)

]
· exp

[(
−1
2σ2

)
(−σ4t2)

]

= exp
[(

−1
2σ2

)
(u2 − 2σ2tu + σ4 t2)

]
· exp

[
σ2t2

2

]
(135)

Now substitute equation 135 into equation 133 and simplify. We begin by making the substitu-

tion and factoring out the term exp
[

σ2t2

2

]
.



36 RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

MX(t) =
1

σ
√

2π

∫ ∞

−∞
exp

[(
−1
2 σ2

)
(u2 − 2σ2 t u)

]
du

=
1

σ
√

2π

∫ ∞

−∞
exp

[(
−1
2 σ2

)
(u2 − 2σ2 t u + σ4 t2)

]
· exp

[
σ2 t2

2

]
du

= exp
[
σ2 t2

2

] [
1

σ
√

2π

] ∫ ∞

−∞
exp

[(
−1
2 σ2

)
(u2 − 2σ2 t u + σ4 t2)

]
du

(136)

Now move
[

1
σ
√

2π

]
inside the integral sign, take the square root of (u2 − 2σ2 t u + σ4 t2) and

simplify

MX (t) = exp
[
σ2 t2

2

] ∫ ∞

−∞

exp
[( −1

2σ2

)
(u2 − 2σ2 t u + σ4 t2)

]

σ
√

2π
du

= exp
[
σ2 t2

2

] ∫ ∞

−∞

exp
[( −1

2σ2

)
(u − σ2 t )2

]

σ
√

2π
du

= e
t2 σ2

2

∫ ∞

−∞

e
−1
2

[
u−σ2t

σ

]2

σ
√

2π
du

(137)

The function inside the integral is a normal density function with mean and variance equal to
σ2t and σ2, respectively. Hence the integral is equal to 1. Then

MX (t) = e
t2 σ2

2 . (138)

The moments of u = x - µ can be obtained from MX(t) by differentiating. For example the first
central moment is

E(X − µ ) =
d

dt

(
e

t2 σ2
2

) ∣∣∣
t= 0

= t σ2
(
e

t2 σ2
2

) ∣∣∣
t= 0

= 0

(139)

The second central moment is

E(X − µ )2 =
d2

dt2

(
e

t2 σ2
2

) ∣∣∣
t = 0

=
d

dt

(
t σ2

(
e

t2 σ2
2

)) ∣∣∣
t= 0

=
(
t2 σ4

(
e

t2 σ2
2

)
+ σ2

(
e

t2 σ2
2

)) ∣∣∣
t= 0

= σ2

(140)

The third central moment is
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E(X − µ )3 =
d3

dt3

(
e

t2 σ2
2

) ∣∣∣
t= 0

=
d

dt

(
t2 σ4

(
e

t2 σ2
2

)
+ σ2

(
e

t2 σ2
2

)) ∣∣∣
t= 0

=
(

t3 σ6
(
e

t2 σ2
2

)
+ 2 t σ4

(
e

t2 σ2
2

)
+ t σ4

(
e

t2 σ2
2

)) ∣∣∣∣∣
t= 0

=
(

t3 σ6
(
e

t2 σ2
2

)
+ 3 t σ4

(
e

t2 σ2
2

)) ∣∣∣∣∣
t= 0

= 0

(141)

The fourth central moment is

E(X − µ )4 =
d4

dt4

(
e

t2 σ2
2

) ∣∣∣
t= 0

=
d

dt

(
t3 σ6

(
e

t2 σ2
2

)
+ 3 t σ4

(
e

t2 σ2
2

)) ∣∣∣
t= 0

=
(

t4 σ8
(
e

t2 σ2
2

)
+ 3 t2 σ6

(
e

t2 σ2
2

)
+ 3 t2 σ6

(
e

t2 σ2
2

)
+ 3 σ4

(
e

t2 σ2
2

)) ∣∣∣∣∣
t= 0

=
(

t4 σ8
(
e

t2 σ2
2

)
+ 6 t2 σ6

(
e

t2 σ2
2

)
+ 3 σ4

(
e

t2 σ2
2

)) ∣∣∣∣∣
t= 0

= 3 σ4

(142)

3.4.4. Example 4. Now consider the raw moments of the normal distribution. The density function
is given by

f(x ; µ, σ2 ) =
1√

2πσ2
· e

−1
2 ( x−µ

σ )2

(143)

To find the moment-generating function for X we integrate the following function.

MX (t) = E[etX ] =
1√

2πσ2

∫ ∞

−∞
etx e

−1
2 ( x−µ

σ )2

dx (144)

First rewrite the integral as follows by putting the exponents over a common denominator.
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MX (t) = E[etX ] =
1√

2πσ2

∫ ∞

−∞
etx e

−1
2 ( x−µ

σ )2

dx

=
1√

2πσ2

∫ ∞

−∞
e

−1
2 σ2 (x−µ)2 + tx dx

=
1√

2πσ2

∫ ∞

−∞
e

−1
2 σ2 (x−µ )2 + 2 σ2 t x

2 σ2 dx

=
1√

2πσ2

∫ ∞

−∞
e

−1
2 σ2 [(x−µ )2 − 2σ2 t x] dx

(145)

Now square the term in the exponent and simplify

MX (t) = E[etX ] =
1√

2πσ2

∫ ∞

−∞
e

−1
2 σ2 [x2 − 2µ x + µ2 − 2σ2 t x] dx

=
1√

2πσ2

∫ ∞

−∞
e

−1
2 σ2 [ x2 − 2x (µ + σ2 t ) + µ2 ] dx

(146)

Now consider the exponent of e and complete the square for the portion in brackets as follows.

x2 − 2x
(
µ + σ2 t

)
+ µ2 = x2 − 2 x

(
µ + σ2 t

)
+ µ2 + 2µσ2t + σ4t2 − 2µσ2t − σ4t2

=
(
x2 − (µ + σ2 t)

) 2 − 2 µ σ2 t − σ4 t2
(147)

To simplify the integral, complete the square in the exponent of e by multiplying and dividing
by

[
e

2 µ σ2 t+σ4 t2

2 σ2

] [
e

−2 µ σ2 t − σ4 t2

2 σ2

]
= 1 (148)

in the following manner

MX (t) =
1√

2πσ2

∫ ∞

−∞
e

−1
2 σ2 [x2−2x (µ+σ2 t ) + µ2] dx

=
[
e

2µσ2t+σ4t2

2σ2

]
1√

2πσ2

∫ ∞

−∞
e

−1
2σ2 [x2−2x(µ+σ2t)+µ2 ]

[
e

− 2µσ2t−σ4t2

2 σ2

]
dx

=
[

e
2µσ2t+σ4t2

2σ2

]
1√

2πσ2

∫ ∞

−∞
e

−1
2σ2 [x2−2x(µ+σ2t)+µ2+2µσ2t+σ4t2] dx

(149)

Now find the square root of

x2 − 2x
(
µ + σ2t

)
+ µ2 + 2µσ2t + σ4t2 (150)

Given we would like to have (x − something)2, try squaring x − (µ + σ2t) as follows

[
x − (µ + σ2t)

]
= x2 − 2

(
x(µ + σ2t)

)
+

(
µ + σ2t

)2

= x2 − 2x
(
µ − σ2t

)
+ µ2 + 2µσ2t + σ4t2

(151)

So
[
x − (µ + σ2t)

]
is the square root of x2 − 2x

(
µ − σ2t

)
+ µ2 + 2µσ2t + σ4t2. Making the

substitution in equation 149 we obtain
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MX (t) =
[
e

2µσ2t+σ4t2

2σ2

]
1√

2πσ2

∫ ∞

−∞
e

−1
2σ2 [x2−2x(µ+σ2t)+µ2+2µσ2t+σ4t2] dx

=
[
e

2µσ2t+σ4t2

2σ2

]
1√

2πσ2

∫ ∞

−∞
e

−1
2σ2 ([x−(µ+σ2t)])

(152)

The expression to the right of e
2µσ2t+σ4t2

2 σ2 is a normal density function with mean and variance
equal to µ + σ2t and σ2, respectively. Hence the integral is equal to 1. Then

MX(t) =
[
e

2µσ2 t+σ4t2

2σ2

]

= eµt+ t2σ2
2

. (153)

The moments of X can be obtained from MX (t) by differentiating with respect to t. For example
the first raw moment is

E(X) =
d

dt

(
eµ t + t2 σ2

2

) ∣∣∣
t= 0

= (µ + t σ2)
(
eµt+ t2 σ2

2

) ∣∣∣
t= 0

= µ

(154)

The second raw moment is

E(x2) =
d2

dt2

(
eµ t + t2 σ2

2

) ∣∣∣
t=0

=
d

dt

((
µ + t σ2

) (
eµ t+ t2 σ2

2

)) ∣∣∣
t=0

=
((

µ + t σ2
)2

(
eµ t+ t2 σ2

2

)
+ σ2

(
eµt+ t2 σ2

2

)) ∣∣∣
t= 0

= µ2 + σ2

(155)

The third raw moment is

E(X3) =
d3

dt3

(
eµt+ t2σ2

2

) ∣∣∣
t=0

=
d

dt

((
µ + tσ2

)2
(
eµt+ t2 σ2

2

)
+ σ2

(
eµt+ t2 σ2

2

)) ∣∣∣
t= 0

=
[(

µ + tσ2
)3

(
eµ+ t2σ2

2

)
+ 2 σ2

(
µ + tσ2

) (
eµ+ t2σ2

2

)
+ σ2

(
µ + tσ2

) (
eµ+ t2σ2

2

)] ∣∣∣
t=0

=
((

µ + t σ2
)3

(
eµ+ t2σ2

2

)
+ 3 σ2

(
µ + tσ2

) (
eµ+ t2σ2

2

)) ∣∣∣
t= 0

= µ3 + 3σ2µ

(156)
The fourth raw moment is
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E(X4) =
d4

dt4

(
eµ+ t2σ2

2

) ∣∣∣
t=0

=
d

dt

((
µ + t σ2

)3
(
eµ+ t2 σ2

2

)
+ 3 σ2

(
µ + t σ2

) (
eµ+ t2 σ2

2

)) ∣∣∣
t=0

=
((

µ + t σ2
)4

(
eµ+ t2 σ2

2

)
+ 3σ2

(
µ + t σ2

)2
(
eµ+ t2 σ2

2

)) ∣∣∣
t=0

+
(
3σ2

(
µ + t σ2

)2
(
eµ+ t2 σ2

2

)
+ 3 σ4

(
eµ+ t2 σ2

2

)) ∣∣∣
t=0

=
((

µ + t σ2
)4

(
eµ+ t2 σ2

2

)
+ 6 σ2

(
µ + t σ2

)2
(
eµ+ t2 σ2

2

)
+ 3 σ4

(
eµ+ t2 σ2

2

)) ∣∣∣
t=0

= µ4 + 6µ2σ2 + 3σ4

(157)

4. CHEBYSHEV’S INEQUALITY

Chebyshev’s inequality applies equally well to discrete and continuous random variables. We
state it here as a theorem.

4.1. A Theorem of Chebyshev.

Theorem 10. Let X be a random variable with mean µ and finite variance σ2. Then, for any constant k > 0,

P (|X − µ| < k σ) ≥ 1 − 1
k2

or P (|X − µ| ≥ k σ) ≤ 1
k2

. (158)

The result applies for any probability distribution, whether the probability histogram is bell-
shaped or not. The results of the theorem are very conservative in the sense that the actual proba-
bility that X is in the interval µ ± kσ usually exceeds the lower bound for the probability, 1 − 1/k2,
by a considerable amount.

Chebyshev’s theorem enables us to find bounds for probabilities that ordinarily would have to
be obtained by tedious mathematical manipulations (integration or summation). We often can ob-
tain estimates of the means and variances of random variables without specifying the distribution
of the variable. In situations like these, Chebyshev’s inequality provides meaningful bounds for
probabilities of interest.

Proof. Let fX (x) denote the density function of X. Then

V (X) = σ2 =
∫ ∞

−∞
(x − µ)2 f (x) dx

=
∫ µ−k σ

−∞
(x − µ)2 fX (x) dx

+
∫ µ + k σ

µ− k σ

(x − µ )2 fX(x) dx

+
∫ ∞

µ + k σ

(x − µ )2 fX (x) dx.

(159)



RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS 41

The second integral is always greater than or equal to zero.

Now consider relationship between (x − µ)2 and kσ2.

x ≤ µ − k σ

⇒ −x ≥ k σ − µ

⇒ µ − x ≥ k σ

⇒ ( µ − x ) 2 ≥ k2 σ2

⇒ ( x − µ ) 2 ≥ k2 σ2

(160)

And similarly,

x ≥ µ + k σ

⇒ x − µ ≥ k σ

⇒ ( x − µ ) 2 ≥ k2 σ2

(161)

Now replace (x − µ)2 with kσ2 in the first and third integrals of equation 159 to obtain the
inequality

V (X) = σ2 ≥
∫ µ− k σ

−∞
k2 σ2 fX (x) dx +

∫ ∞

µ+ k σ

k2 σ2 fX (x) dx . (162)

Then

σ2 ≥ k2 σ2

[∫ µ− k σ

−∞
fX (x) dx +

∫ +∞

µ + k σ

fX (x) dx

]
(163)

W can write this in the following useful manner

σ2 ≥ k2 σ2{P ( X ≤ µ − k σ) + P ( X + ≥ µ + k σ)}

= k2 σ2 P ( |X − µ | ≥ k σ).
(164)

Dividing by k2σ2, we obtain

P ( |X − µ | ≥ k σ ) ≤ 1
k2

, (165)

or, equivalently,

P ( |X − µ | < k σ ) ≥ 1 −
1

k2
. (166)

�

4.2. Example. The number of accidents that occur during a given month at a particular intersec-
tion, X, tabulated by a group of Boy Scouts over a long time period is found to have a mean of 12
and a standard deviation of 2. The underlying distribution is not known. What is the probability
that, next month, X will be greater than eight but less than sixteen. We thus want P [8 < X < 16].
We can write equation 158 in the following useful manner.

P [(µ − k σ ) < X < ( µ + k µ)] ≥ 1 − 1
k2

(167)
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For this problem µ = 12 and σ = 2 so µ − kσ = 12 - 2k. We can solve this equation for the k that
gives us the desired bounds on the probability.

µ − k µ = 12 − (k) (2) = 8

⇒ 2 k = 4

⇒ k = 2

and

12 + ( k ) ( 2 ) = 16
⇒ 2 k − 4

⇒ k = 2

(168)

We then obtain

P [(8) < X < (16) ] ≥ 1 − 1
22

= 1 − 1
4

=
3
4

(169)

Therefore the probability that X is between 8 and 16 is at least 3/4.

4.3. Alternative statement of Chebyshev’s inequality.

Theorem 11. Let X be a random variable and let g(x) be a non-negative function. Then for r > 0,

P [g(X) ≥ r] ≤ E g (X)
r

(170)

Proof.

E g (X) =
∫ ∞

−∞
g (x) fX (x) dx

≥
∫

[x : g (x) ≥ r]

g (x) fX (x) dx (g is nonnegative)

≥ r

∫

[ x : g(x) ≥ r ]

fX (x) dx (g (x) ≥ r)

= r P [ g (X) ≥ r ]

⇒ P [g (X) ≥ r ] ≤ E g (X)
r

(171)

�

4.4. Another version of Chebyshev’s inequality as special case of general version.

Corollary 1. Let X be a random variable with mean µ and variance σ2. Then for any k > 0 or any
ε > 0

P [ |X − µ| ≥ k σ ] ≤ 1
k2

(172a)

P [ |X − µ| ≥ ε ] ≤ σ2

ε2
(172b)
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Proof. Let g(x) = (x−µ)2

σ2 , where µ = E(X) and σ2 = Var (X). Then let r = k2. Then

P

[
( X − µ )2

σ2
≥ k2

]
≤ 1

k2
E

(
(X − µ )2

σ2

)

=
1
k2

E (X − µ )2

σ2
=

1
k2

(173)

because E(X − µ)2 = σ2. We can then rewrite equation 173 as follows

P

[
(X − µ)2

σ2
≥ k2

]
≤ 1

k2

⇒ P
[
( X − µ )2 ≥ k2 σ2

]
≤ 1

k2

⇒ P [|X − µ | ≥ k σ] ≤ 1
k2

(174)

�
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